RICE UNIVERSITY

Bordism Invariants of the Mapping Class Group
by

Aaron Heap

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Tim D. Cochran, Professor, Chair
Mathematics

John Hempel, Milton B. Porter Professor
Mathematics

Ian Duck, Professor
Physics and Astronomy

HousToON, TEXAS
MAY 2004



ABSTRACT

Bordism Invariants of the Mapping Class Group

by

Aaron Heap

We define new bordism and spin bordism invariants of certain subgroups of the
mapping class group of a surface. In particular, they are invariants of the Johnson
filtration of the mapping class group. The second and third terms of this filtration are
the well-known Torelli group and Johnson subgroup, respectively. We introduce a new
representation in terms of spin bordism, and we prove that this single representation
contains all of the information given by the Johnson homomorphisms, the Birman-

Craggs homomorphisms, and the Morita homomorphisms.



ACKNOWLEDGEMENTS

There have been many supportive people who have been an integral part of my
life and have played essential roles in my success. I am extremely grateful for all of
them, and I will mention a few of them here.

First and foremost, I would like to thank my Lord and Savior, Jesus Christ, for
giving me the strength and courage to achieve my goals and for the uncountably many
blessings He has bestowed upon me throughout my life.

I must also thank my advisor, Tim Cochran, for everything. His encouragement
and patience, his seemingly infinite intellect, and his uncanny ability to share that
intellect with his students make him an excellent teacher and mentor. I also thank the
entire mathematics department at Rice University for the support that has helped me
reach this point, but I must make special mention of Brendan Hassett, John Hempel,
and John Polking for the significant role they have played in shaping my career. I
thank any and every teacher or professor I have had throughout my life for pushing
me and challenging me to be the best I can be. I thank all of my fellow graduate
students for freely sharing their knowledge with me and helping me tremendously to
become a better mathematician.

And finally, I would like to thank my parents, all of my family, and all of my
friends for their infinite support and love, for their unwavering faith in my abilities,
for always being honest and true to me, and for bringing joy to my life. Each one of

them helped mold me into who I am now, and I am eternally grateful.

I dedicate this thesis to all of these people.

Without their help, the challenges I have faced would have been insurmountable.



Contents

Abstract . . . . . .o
Acknowledgements . . . . . ...

List of Figures . . . . . . . . . . . . ..

1 Introduction
1.1 Background . . . . . .. ... ..
1.2 Summary of Results . . . . .. ... ... oo
1.3 Outline of Thesis . . . . . . . . . ..

2 The Johnson Homomorphism
2.1 Johnson’s Original Definitionof 7, . . . . . . ... ... .. ... ..
2.2 Massey Products . . . . . . . .. ...
2.3 Massey Product Descriptionof 7, . . . . . . . ... ...

2.4 Morita’s Refinement of 7, . . . . . . ... ... ... ... ... ...
3 Birman-Craggs Homomorphism
4 Abelianization of the Torelli Group

5 A Bordism Representation of the Mapping Class Group

11
i

vi

11
14

17

20

22



5.1 The Bordism Group Q3(X,A) . . . .. ...

5.2 A Bordism Invariant of J(k) . . . . . .. ... oL

5.3 Relating o to the Johnson Homomorphism . . . . .. ... ... ..

5.4 Relating o4 to Morita’s Homomorphism . . . . ... ... ... ...

6 A Spin Bordism Representation of the Mapping Class Group

6.1 A Spin Bordism Invariant of J(k) . . . . . .. .. ... L.

6.2 ACloser Look at my . . . . . . . ..o

6.3 Analysis of 7,

Bibliography

22
23
40
46

ol
o4
63

69



List of Figures

5.1
5.2
5.3

6.1
6.2
6.3
6.4

A relative bordism over (X, A) . . . . . ... Lo L 23
T'tog1 considered in "blocks" . . . . .. .. ..o 0oL 27
The 4-manifold V' . . . ... oo 28
Embedding of S into Ty < T} and the map ¢, . . . . . .. .. ... 55
Scutopenalong 8 . . . . . . ... o8
Surface S’ in 77 with boundary SI1 —f (8) (forg=2) .. ... ... 60
Surface S’ in 77 with boundary S11 —f (8) (forg>3) . .. ... .. 62



Chapter 1

Introduction

1.1 Background

Let 3,1 be a compact, oriented surface of genus g with one boundary component. Let
I'y 1 be the mapping class group of 3, ;. That is, Iy ; is the group of isotopy classes of
orientation-preserving homeomorphisms of ¥, ; which fix the boundary. The study of
mapping class groups has important applications in many different areas of topology,
differential geometry, and algebraic geometry. Here we are particularly interested in
I'; 1 within the area of 3-manifold topology.

The mapping class group I'y ; acts naturally by automorphisms on the fundamental
group F' = m1(X,1), which is a free group of rank 2g. Then we have the induced
representation I'y; — Aut(F), and this representation is known classically to be
injective. Let {F}},-, be the lower central series of F'. That is, F1 = F and the rest

of the terms are defined inductively by Fji1 = [Fi, Fi] for any k£ > 1. Then I'y ; acts



naturally on the nilpotent quotients F'/F}, providing a series of representations

F
P Lg1 — Aut (Fk) :

Note that F'/F, is isomorphic to the first homology group Hy = Hy(X,1;Z), and p, is
the same as the classical representation I'y ; — Sp(2¢;Z) of the mapping class group
onto the Siegel modular group, which is the group of symplectic automorphisms of
H, with respect to the skew-symmetric intersection pairing.

The generalized Johnson subgroup J(k) C I'y; is defined to be the kernel of
pe- That is, J(k) is the subgroup of the mapping class group consisting of those
homeomorphisms which induce the identity on F/Fj. The subgroup J(2) = 7, is
more commonly known as the Torelli group, and J(3) = K, is traditionally referred
to as the Johnson subgroup. The Johnson subgroup was originally defined to be the
subgroup of I'j ; generated by all Dehn twists about separating simple closed curves
on X, 1. The fact that these two definitions of Ky ; are equivalent was proved by D.
Johnson in [J5].

The structure of the subgroup J (k) is far from being completely understood. In
the case of ¢ = 2, G. Mess proved in [Me] that J(2) = J(3) and is an infinitely
generated free group. For g > 3, Johnson showed in [J4] that the Torelli group J(2)
is finitely generated. However, it is still not known whether or not J(2) has a finite
presentation for g > 3. It is also not known if J (k) is finitely generated for k& > 3.
And while J(2) and J (3) have very nice generating sets, there is no known generating
set for J (k) for k > 4.

To get a better understanding of the structure of the subgroup J(k), it is natural

to seek good abelian representations for it. That is, we would hope to understand



J (k) better by investigating abelian quotients of it. The first such quotient of the
Torelli group J(2) was given by a homomorphism due to D. Sullivan in [Su]. Johnson
gave another homomorphism for J(2), of which Sullivan’s is a quotient, in [J2]. He
later generalized this homomorphism to J (k) for all £ > 2 in [J3], thus giving a

family of homomorphisms

7k J (k) — Hom (Hl, i) :

Fr

now known as the Johnson homomorphisms. In the case k = 2, the image of 74 is
known to be a submodule Dy(H;) of Hom(Hy, F/Fy) = Hom(H,, Hy). Moreover, the
kernel of 74 is known to be J(3). In general, ker 7, = J(k + 1). However, the image
of 7¢ is not known for k£ > 3, and it is a fundamental problem in the study of the
mapping class group to determine its image.

In [BC] J. Birman and R. Craggs produced a collection of abelian quotients of

J(2) given by homomorphisms onto Z,
p:J(2) — Zs.

These are finite in number and unrelated to Johnson’s homomorphism. However,
Johnson showed in [J6] that the Johnson homomorphism 79 and the totality of these
Birman-Craggs homomorphisms, together, completely determine the abelianization
of the Torelli group J(2) for ¢ > 3. The abelianization of J(k) is not known for

k> 2.



1.2 Summary of Results

For any mapping class f € I'y 1, there is an associated compact, oriented 3-manifold
Ty1 known as the mapping torus of f. That is, Ty, is 3,1 x [0, 1] with 2 x {0} glued
to f(x) x {1}. This association allows us to relate the mapping class group to various
3-dimensional bordism groups and develop interesting invariants of I'; ;. Construct
from T, a closed 3-manifold TJ? by filling in the boundary 97}, = 0%, x S* with

the solid torus 9%, 1 x D2 If f € J(k) there is a canonical epimorphism

Y m(T5) ~ F
nID = ), TR

Let ¢}, : T} — K(F/F,1) be a continuous map inducing this epimorphism, where
K (F/Fy,1) is an Eilenberg-MacLane space.

Let Q3(F'/ F}) be the 3-dimensional oriented bordism group over F//Fy,. An element
of this group is a bordism class (M, ¢) consisting of a closed, oriented 3-manifold M
and a continuous map ¢ : M — K(F/F,1). Two elements (M, ¢,) and (M, ¢,) of
Q3(F/F}y,) are equivalent, or bordant, if there exists a 4-manifold W whose boundary
is OW = Myl —M; and a continuous map ® : W — K(F/Fy, 1) such that ®|,;, = ¢;,.

We may then ask when (T}, ¢} ,) is a trivial bordism class in Q3(F/Fy).
Theorem 5.3 (T;, }k) € Q3(F/ Fy) is trivial if and only if f € J(2k —1).
This allows us to define a new faithful abelian representation of J(k)/J (2k — 1).

Theorem 5.2 The map

defined by or(f) = (T}’, gzﬁ}’k) is a well-defined homomorphism.



Corollary 5.4 The kernel of the homomorphism oy, is J(2k — 1).

This representation contains all of the information given by the Johnson homo-
morphism 7y : J (k) — Hom(H, Fy/Fyy1), however, the kernel of oy is much finer
than the kernel of 74, which is J(k + 1). Moreover, the quotient J(k)/J(2k — 1) is
much closer to the abelianization of J (k) than J(k)/J(k+1) isif k > 2. To achieve
a faithful representation of the quotient 7 (k)/J (2k — 1), one must either consider all
of the homomorphisms {7y, ..., Tox_2} or simply consider o alone.

Another representation is given in terms of spin bordism. The spin bordism group
Q5P (F/Fy) is defined the same way as Q3(F/F},) except that elements are triples
(M, ¢, s), where s is a spin structure on M, and the 4-manifold W is required to have

a spin structure that induces the given spin structure on its boundary components.

Theorem 6.1 Fiz a spin structure on X,1. Let o denote the induced spin structure

on T} for f € J(k), k > 2. Then there is a well-defined homomorphism

spin F
N = I (k) — (Fk)

deﬁned by nk(f) - (T];yu }l,ka U) .

This second representation contains, in addition to the information given by the
Johnson homomorphism, all of the information given by the Birman-Craggs homo-
morphisms p, : J(2) — Zs. In particular, the homomorphism 7, has the desirable
advantage of incorporating all of the information of the Johnson and Birman-Craggs
homomorphisms into a single homomorphism. Moreover, 7, gives evidence of the

existence of more new invariants.



1.3 OQOutline of Thesis

In Chapters 2, 3, and 4 we review some of the well-known representations of the
mapping class group I'; ;. All of the information given in these chapters is documented
elsewhere, so those who are familiar with this information may choose to skip these
chapters. Chapter 2 reviews the Johnson homomorphism, Massey products, and a
refinement of the Johnson homomorphism due to Morita. Chapter 3 reviews the
Birman-Craggs homomorphism, and Chapter 4 discusses the abelianization of the
Torelli group, which is completely determined by the Johnson homomorphism and
the Birman-Craggs homomorphism.

In Chapter 5 we define a new representation of the mapping class group and
give bordism invariants of the generalized Johnson subgroups. We consider the 3-
dimension oriented bordism group over F/Fj, where F' is the fundamental group of
Y41 and Fj, denotes the lower central series of F'. We also investigate the relationship
between this new representation and the Johnson homomorphism.

In Chapter 6 we define another new representation of the mapping class group in
terms of spin bordism. In this case we consider the 3-dimension spin bordism group
over F'/Fy. We give the relationship between these spin bordism invariants and the
oriented bordism invariants and also the relationship between this spin bordism repre-
sentation and the Birman-Craggs homomorphism. We then investigate the possibility

of more new invariants.



Chapter 2

The Johnson Homomorphism

2.1 Johnson’s Original Definition of 7;

In this section we give a description of Johnson’s homomorphisms. Let ¥,; be a
compact, oriented surface of genus g with one boundary component. Then the fun-
damental group F' = m(¥,,) is a free group with 2g generators, and {Fy},, is the
lower central series of F. That is, F} = F and Fyy = [F, Fy] for any £ > 1. Let
the generalized Johnson subgroup J (k) be the subgroup of the mapping class group
consisting of those homeomorphisms that induce the identity on F'/Fy.

Consider any f € J(k). Choose a representative v € m(X,1) = F for any
given element [y] € Hy = H1(3,1;Z) = F/F,, and consider the element f.(y)y*
which belongs to Fy since f € J(k) implies f,. acts trivially on F/F;. Then let

1

[f«(¥)v7!] € F)/Fyy1 denote the equivalence class of f,(v)y~! under the projection

Fy, — Fy/Fk1. Then we define the Johnson homomorphisms

F
7k J (k) — Hom (Hl, —k)
Fri1



by letting 7(f) be the homomorphism [y] — [f.(7)y !]. The skew-symmetric inter-
section pairing on H; defines a canonical isomorphism H; = Hom(H;,Z), and this

induces an isomorphism

F, ) F, F,
Hom | Hy, = Hom(H,,Z) ® =H® .
( Y Fen (H, 2) Fr1 " Fen
Thus we could also write
F
% T(k) — Hy @ =
Fr

This is Johnson’s original definition [J3|, but there are several equivalent defin-
itions of his homomorphism. Also in [J3], one can see a definition in terms of the
intersection ring of the mapping torus of f. There is a definition of 74 in terms of the
Magnus representation of the mapping class group I'y; that may be found in [Ki| or

[M1]. One can also view 7 as the restriction of the representation

F
Pry1 : Lg1 — Aut ( >
Fri

to J (k) = ker p;, via the extension

F F F
0 — Hom (Hl, b > — Aut ( > — Aut (—> — 1.
Fk+1 Fk+1 Fk

For a detailed description of this viewpoint, the reader is encouraged to see the work

of Morita in [M1] or [M2]. The final definition we mention in this paper will be given
in Section 2.3, and it was stated by Johnson in [J3] and verified by Kitano in [Ki.
This definition gives a computable description of 7 in terms of Massey products of

mapping tori.



We complete this section with a few well-known facts about the Johnson homo-

morphisms 7, and the subgroups J (k). It was shown by Morita in [M1] that
(T(k), T CcT(k+1-1).
In particular, the commutator subgroup
(T (k), T (k)] c T2k —1) € J(k+1)

for k > 2. As mentioned in the introduction, ker 7, = J(k+1). Then the image of 7
is isomorphic to the abelian quotient J(k)/J (k+ 1). Thus the information provided
by the £ — 1 homomorphisms 7y, ..., Top_o can be combined to determine the abelian
quotient J(k)/J(2k — 1). Unfortunately this only at most detects the free-abelian
part of the abelianization J(k)/ [T (k), J (k)] = H,(J(k)). For example, the image
of 79 is given by J(2)/J(3) = 751/Ky1, and J(2)/T(3) ® Q = H1(7,1;Q), whereas
the abelianization of the Torelli group Hy(7,;) has 2-torsion. We will discuss this

2-torsion in more detail in Chapter 3.

2.2 Massey Products

Let (X, A) be a pair of topological spaces, and unless otherwise stated we assume
that the coefficients for homology and cohomology groups are always the integers Z.

In this section we will give the definition of the Massey product

HY X, A)®- @ H(X,A) - H*X, A)



10

since these are the only dimensions that we are interested in using, and we will give
a few useful properties of which we wish to take advantage. The general definition
is completely analogous except for various sign conventions, and we refer the reader
to D. Kraines [Kr|. For a more complete description of this specific definition we are
giving and for some useful examples, we refer you to R. Fenn’s book [Fe].

Massey products may be viewed as higher order analogues of cup products and are
defined when certain cup products vanish. Let uy, ...,u,, € H'(X, A) be cohomology
classes with cocycle representatives ay, ..., a,, € C'(X, A), respectively. A defining set

for the Massey product (u1, ..., u,) is a collection of cochains a = (a;;), 1 <i<j<n

and (7, 7) # (1,n), satisfying
(1) a;; = a; for any i € {1, ...,n},
(2) aij € CHX, A),
(3) daiy; = 32)_; @iy Udyiny.

For such a defining set a consider the cocycle u(a) € C?(X, A) given by

n—1
u(a) = Z a1 U apin.
r=1

The Massey product (uq, ..., u,) is defined if a defining set a exists, and it is defined
to be the subset of H?(X, A) consisting of the values u(a) of all such defining sets a.

The length 1 Massey product (u;) is simply defined to be u;, and its defining set
is any cocycle representative of u;. The length 2 Massey product (uy,us) is the cup
product u; Uug. The triple Massey product (uy, ug, us) is defined only when (uy, us)

and (us,u3) are zero. As you may notice from the definition, Massey products of
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length 3 or greater may not be uniquely defined but in fact may be a set of elements.
However, if a sufficient number of smaller Massey products vanish, then (uy, ..., u,) is
uniquely defined. We have the following useful properties.

(2.2.1) Uniqueness. For n > 3, the Massey product (uy, ..., u,) is uniquely defined
if all Massey products of length less than n are defined and vanish. (This hypothesis
is stronger than necessary for uniqueness, but it is sufficient for us. See Fenn [Fe| for
details.)

(2.2.2) Naturality. Let (Y, B) be a pair of topological spaces, and consider a map
of pairs f : (Y,B) — (X, A). If (uq, ..., u,) is defined then so is (f*(u1), ..., f*(un)),
and f* (uy, ..., un) C (f*(u1), ..., f*(uy)). Furthermore, if f* is an isomorphism, then

equality holds.

2.3 Massey Product Description of 7

We are now prepared to describe Johnson’s homomorphisms 7 using Massey products
of mapping tori. For a more complete description, see the work of T. Kitano [Ki]. As
before, ¥, is an oriented surface of genus g with one boundary component 0%, ;.
Consider any homeomorphism f € J(k), and let T} ; denote the mapping torus of f.
That is, Ty, is Xy 1 % [0, 1] with z x {0} glued to f(z) x {1}. Note that the boundary
0T}, is the torus 93, x S'. With the natural orientation on [0, 1], we have a local
orientation on T ; given by the product orientation. Moreover, since f € J(k) acts
trivially on H; = Hy(X,1) as long as & > 2, the mapping torus 7, is an oriented
homology ¥, 1 x St, but the Massey product structure may be different than that of
Y1 x S

First, fix a basis {ay, ..., ag,} for the free group F' = m1(X,1). Then if v represents
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a generator of m1(S'), we get the following presentation of (T} 1):
m(Tr1) = (o, ooy ag, v | [on, 7] fulon)ar?, ., [ang, ] fulozg)ag, ) -

By denoting the homology classes of «; and v by x; and y, respectively, we obtain a
basis for Hy(Ty1):

{xlu ceey x297 y} € Hl(Tfyl)'

Then since H*(T}1) = Hom(H;(T}1),Z), we have a dual basis for H*(T}):

{a:’{, s Tog y*} € Hl(Tfjl).

Let j: (T41,9) — (T1,0T%1) be the inclusion map. The long exact sequence of a
pair shows j, : H1(Ty1) — H1(T}1,0T%1) has kernel generated by y. So we have a
basis for Hy(Ty1,01y1):

{Je(@1), s Ju(w2g) } € Hi(Ty, 0T 1)
And this gives a corresponding basis for Hy(Tf1) = HY(Ty1, 0T} 1):
(X1, oy Xog} € Ho(T}1).

Let € : Z[F] — Z be the augmentation map and let

a .
Oai ’

ZF|—Z[F],1<i<2g

be the Fox’s free derivatives. Here Z [F] is the integral group ring of the free group F.
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Finally, let X denote the ring of formal power series in the noncommutative variables
t1, ..., tag, and let X; denote the submodule of X corresponding to the degree k part.

One can show Fy/Fy; is a submodule of X, where the inclusion map is induced by

0 0

aajl aajk

F,>(+— Z € (C)tjr"tjk € Xk.

Then we have the following theorem.

Theorem 2.1 (Kitano) There is a homomorphism 7y : J (k) — Hom(Hy, X;) de-

fined by letting T4(f) be the homomorphism

A Z <<$;1’ o $;k> ’Xi> bty
Tlyeees Tk
where { , ) is the dual pairing of H*(Ty1) and Ho(Ty1). Moreover, this homomor-

phism is the same as the Johnson homomorphism.

The canonical restriction H*(T1,0T1) — H*(T},1) leads to the following theo-
rem that gives a relation between the algebraic structure of the mapping class group

I'; 1 and the topological structure of the mapping torus 7% ;.

Theorem 2.2 (Kitano) For any f € I'y1, f € J(k+ 1) if and only if all Massey

products of length | of
H Ty, 0Tf1) @ -+ @ HY(T}1,0T1) — H*(Ty1,0Ts) — H*(Ty1)

vanish for any | with 1 <1 < k.
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2.4 Morita’s Refinement of 7,

In this section we point out the work of Morita in [M1], where Johnson’s homomor-
phism 74 was refined so as to narrow the range of 74 to a submodule Dy(H;) of

Hy ® Fy/Fy.1. This enhancement is obtained via a homomorphism

Tr: J(k) — Hs (Fﬂk)
defined below. Recall that the homology of a group G is H;(G) = H;(K(G,1),Z),
where K (G, 1) is an Eilenberg-MacLane space. (We determine the kernel of Morita’s
refinement in Corollary 5.19 below.)

Let ¢ € m(X,1) = F represent the homotopy class of a simple closed curve
on X, parallel to the boundary 0%,;. Now we choose a 2-chain o € Cy(F) such
that do = —(. Since any f € I'y; is required by definition to fix the boundary,
we have 0(c — fu(0)) = —C — (=¢) = 0. Thus 0 — fx(0) is a 2-cycle. Because
H,y(F) is trivial, there is a 3-chain ¢; € C3(F) such that Oc; = 0 — fu(0). Note
that, essentially, this is just a mapping cylinder construction. Let ¢; denote the
image of ¢; in C5(F/Fy). If f € J(k) then fu acts as the identity on F'/Fy. Thus
we have 9¢; = 0 — fu(0) = & — fu(5) = 0, and & is a 3-cycle. Finally define
[¢f] € Hs(F/Fy) to be the corresponding homology class, and we define Morita’s
homomorphism 7 : J (k) — Hs(F/Fy) to be 7¢(f) = [¢f].- It is shown in [M1] that
the homology class [¢;] does not depend on the choices that were made, and we refer

you there for the details.
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Now consider the extension

F, F F
— — — 1,

H
Frovw  Frpr Iy

0—

and let {E;’q} be the Hochschild-Serre spectral sequence for the homology of this

sequence. In particular, we have

F F,
E: =H,|—:H :
= (o (7))

Then we have the differential

F F F, F,
d*: E? = H; | — E? =H,|—: H ~ f )
>0 ’ (Fk> it ! (Fk’ ' (Fk+1>> L Fra

Finally, the refinement of Johnson’s homomorphism is given by the following theorem.

Theorem 2.3 (Morita) The composition d* o 7y, coincides with Johnson’s homo-

morphism Ty so that the following diagram commutes.

7~—k \dQ

F;

J (k) Hy ®—
Tk Fria

Theorem 2.4 (Morita) Let Dy(H;) be the submodule of Hy ® Fy/Fy,1 defined to

be the kernel of the natural surjection

Fy Fr
H

H®
YU P Freo




16

given by the Lie bracket map (w,§) — [w,&]. Then the image of the Johnson ho-
momorphism 1y : J(k) — Hy ® Fy/Fyy1 is contained in Dyg(Hy) so that we can
write

Tk J(k) — Dy(Hy).

A short remark about this theorem is perhaps in order. It is known that the image
of 74 is exactly equal to Dy(H;), and the image of 75 is a submodule of D3(H;) of
index a power of 2. Thus Im 73 and D3(H;) have the same rank. However, for k > 4,
k even, the rank of Im 7y is smaller than the rank of Dy(H;). Please see [M1] for

more details.



Chapter 3

Birman-Craggs Homomorphism

As mentioned at the end of Section 2.1 the Johnson homomorphism 75 only detects the
free abelian part of the abelianization of the Torelli group [J(2), and some 2-torsion
remains undetected. In this chapter we will say a word about this 2-torsion. In [BC]
Birman and Craggs defined a (finite) collection of abelian quotients of [J(2) given by
homomorphisms onto Z,. Here we will give a description of these homomorphisms that
is due to Johnson [J1]. This somewhat more tractable description is different than
(yet equivalent to) Birman and Craggs’ original definition, and it enabled Johnson to
give the number of distinct Birman-Craggs homomorphisms.

Consider the surface ¥, 1, and let f € J(2). The definition of I'; ; requires that f
be the identity on 0%, ;. Thus f can easily be extended to a homeomorphism of the
closed surface 3,. Let h: ¥, — S be a Heegaard embedding of 3, into the 3-sphere
S3, i.e. ¥, bounds handlebodies on both sides in S®. Now cut S® open along h(3,)
and reglue the two pieces using f € J(2). The resulting manifold S}  is a homology
5%, and its Rochlin invariant ;(Sjy ;) € Zs is defined.

In general, any closed, connected 3-manifold M, together with a fixed trivialization

17
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of its tangent bundle over the 2-skeleton, is the boundary of a 4-manifold W whose
tangent bundle can be trivialized in a compatible fashion. If s denotes the choice of
stable trivialization of the tangent bundle of M over the 2-skeleton, then the Rochlin
invariant (M, s) € Zg is defined to be the signature o(W) reduced modulo 16. If
M happens to be a homology S® then s is unique and o (W) is divisible by 8. Thus
1(Sy ;) = u(Sy 5, 5) = o(W) can be considered an element of Zj. For a fixed Heegaard
embedding h : 3, — S® the Birman-Craggs homomorphism py, : J(2) — Zg is
defined by p,(f) = M(Sz,f)-

By relating the Birman-Craggs homomorphisms to a Zs-quadratic form, Johnson
was able to show the dependence of p, on the embedding h : ¥, — S*. We define
the Zo-quadratic form ¢ : Hy(2,; Zy) — Z, as follows. Let (, ) be the Seifert linking
form on H;(X,;Zs) induced by h : 3, — S® defined by letting (z,y) be the linking
number (modulo 2) of h(z) and h(y)" in S3, where h(y)" is the positive push-off of
h(y) in the normal direction determined by the orientations of h(3,) and S3. Define
q(z) = (x,z), then it is a Zy-quadratic form on H;(X,; Z) induced by the embedding
h. Because it is a quadratic form, ¢ satisfies ¢(z +y) = q(z) + q(y) + x - y, where z -y
is the intersection pairing of H;(Xy;Zs). Let {x;, v}, 1 <@ < g, denote the standard

basis for Hy(X,;Zs), and the Arf invariant of 3, with respect to ¢ is defined to be

g
Arf(Sy,q) = Y q(z:)q(y:) (mod 2).
i=1
Johnson’s main results from [J1] are as follows. Suppose hi, hy : ¥, — S® are

both Heegaard embeddings of the surface >,.

Theorem 3.1 (Johnson) The embeddings hy and hy induce the same mod 2 self-

linking form if and only if the Birman-Craggs homomorphisms p,, and py, are equal.
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Therefore the homomorphism p, : J(2) — Z, only depends on the quadratic
form ¢ induced by h, and we replace the notation p, with p, to emphasize this fact.
Moreover, the Zs-quadratic forms ¢ which are induced by a Heegaard embedding h

are exactly those that satisfy Arf(3,, ¢) = 0. Thus we are able to enumerate { pq} .

Corollary 3.2 (Johnson) There are precisely 2971 (29 + 1) distinct Birman-Craggs

homomorphisms p, : J(2) — Zs.
Johnson also provided a means of computing p, in terms of the Arf invariant.

(1) If f € J(2) is a Dehn twist about a bounding simple closed curve C, then

pq(f) = Arf(zla q,E’)a

where Y is a subsurface of ¥, bounded by C.

(2) If f € J(2) is a composition of Dehn twists about cobounding curves C; and
Cs, then
0 if ¢(C1) = ¢q(C2) =1
Arf(Y, qls) if ¢(Ch) = q(C2) =0

P (f) =

where ¥’ is a subsurface of 3, cobounded by C; and Cs.

For genus g = 2 surfaces, the Torelli group J(2) is generated by the collection
of all Dehn twists about bounding simple closed curves. For genus g > 3, J(2) is
generated by the collection of all Dehn twists about genus 1 cobounding pairs of
simple closed curves, i.e. pairs of non-bounding, disjoint, homologous simple closed
curves that together bound a genus 1 subsurface. Thus the list above is sufficient for

computing p,(f) for any f € J(2).



Chapter 4

Abelianization of the Torelli Group

We are now prepared to say something about the abelianization

of the Torelli group J(2). In fact, the main result of Johnson in [J6] is that the
Johnson homomorphism

To j(2) ad DQ(Hl)

and the totality of the Birman-Craggs homomorphisms
g T (2) = Zs

completely determine Hi(J(2);7Z)

On the one hand, we have the composition
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where the first map is the projection given by the fact that [7(2), 7 (2)] € J(3) and
the second map is given by 79. After we tensor with the rationals QQ, Johnson shows

that we obtain an isomorphism

IR 2T 2
ORI O R

~—

Thus we have H1(J(2);Q) = J(2)/J(3) ® Q.
On the other hand, consider the totality of the Birman-Craggs homomorphisms

{pq}, and let
C :ﬂkerpq

q

be the common kernel of all p, for all ¢ which satisfy Arf(3,,¢) = 0. Also let 7(2)?
represent the subgroup generated by all squares in 7 (2), and let O, be the subgroup of
the mapping class group I'y ; which acts trivially on H; (3, 1;Zs). That is, O, consists
of those homeomorphisms which preserve the quadratic form ¢. Then, by using the

theory of Boolean quadratic and cubic forms, Johnson showed that
¢ =702 =[0,7).
Finally he showed that the commutator subgroup of [7(2) is given by
(T(2),TJ(2)]=Cnkerty =CNJT(3).

Thus we can completely determine H,(J(2);Z) = J(2)/[T(2), J(2)] from the ho-

momorphisms {72, pq} .



Chapter 5

A Bordism Representation of the

Mapping Class Group

5.1 The Bordism Group (3(X, A)

Let (X, A) be a pair of topological spaces A C X. The 3-dimension oriented rel-
ative bordism group 23(X, A) is defined to be the set of bordism classes of triples
(M,0M, ¢) consisting of a compact, oriented 3-manifold M with boundary OM and a
continuous map ¢ : (M,0M) — (X, A). The triples (Mo, 0My, ¢) and (My, OM;, ¢,)
are equivalent, or bordant over (X, A), if there exists a triple (W, OW, ®) consisting
of a compact, oriented 4-manifold W with boundary OW = (My IT —M;) Ugp, M and
a continuous map @ : (W, 0W) — (X, A) satisfying ®|y;, = ¢; and (M) C A. We
also require that OM = 0My IT —OM; so that OW is a closed 3-manifold.

A triple (M,0M, ¢) is said to be null-bordant (or trivial) over (X, A) if it bounds
(W, 0W, @), that is, if it is bordant to the empty set @. The set Q3(X, A) forms

a group with the operation of disjoint union and identity element &. In the case
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(X,A)

Figure 5.1: A relative bordism over (X, A)

that A = @, we may write Q3(X) = Q3(X, @) and restrict our definition to pairs

(M, ) = (M, 2, ¢) of closed, oriented 3-manifolds.

5.2 A Bordism Invariant of 7 (k)

The purpose of this section is to analyze J (k) from the point of view of bordism
theory. Let F' = m1(¥,1) as before, and consider the pair (K (F/F,1),(), where
K(F/Fy,1) is an Eilenberg-MacLane space and ( C K (F/Fg, 1) is an S* correspond-
ing to the image of 9%, ; under a continuous map ¥, ; — K (F/Fj, 1) induced by the
canonical projection F' — F/Fy. We denote the bordism group over (K (F/Fy,1),()
by Q3(F/Fg, (). Moreover, we have an isomorphism j, : Q3(F/Fy) — Q3(F/Fg, ()
induced by the inclusion map j : (K(F/F,1),2) — (K(F/Fy,1),¢) . We will make
use of both of these groups in what follows, but our main focus will be on the group

Below, in Theorem 5.2, we define a homomorphism
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whose kernel is ker o, = J(2k — 1). Thus the image is

~  J(k)
T J@2k—1)

image(oy,)

We have already seen that the image of the Johnson homomorphism 7 satisfies

J (k)
Jk+1)

(a2

image(7y)

However, since we know that [T (k), J (k)] C J(2k—1) C J(k+1), the image of this
new homomorphism oy, is, in general, much closer to the abelianization of 7 (k).
Consider a surface homeomorphism f € J(k) for some k& > 2. As before let
Ty, be the mapping torus of f, ie. ¥,1 x [0, 1] with = x {0} glued to f(x) x {1}.
The boundary 0T}, of T}, is the torus 0%, X S1. and the mapping torus T' b1 1S
an (oriented) homology ¥,; x S!. Fixing a basis {a,...,az,} for the free group

F =m(X,1) gives a presentation of (T} ,):

m1(Tr1) = (o, ooy ag, v | fon, 7] fulon)ar, . fong, 7] fulozg)ag, )

where 7 represents a generator of 71(S'). We now wish to obtain a closed 3-manifold
from T} ; by filling in its boundary. Let TJ? = T}/,1 be the result of performing a Dehn
filling along a curve on 07}, represented by the homotopy class . That is, T}’ is
obtained by filling in the torus 0T}, ~ 9%,; x S* with the solid torus 03,; x D?.

Then we also have a presentation for m(7}):

m(T}) = (an, .oy | fulan)ar ™, ., fulogg)ag,')
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Note that if f is isotopic to the identity, then T]? is homeomorphic to the connected
2g
sum # (S x S?).
Now for all m < k we can define ¢, : (T1,07f1) — (K(F/Fn,1),() to be a

continuous map induced by the canonical epimorphism

where the isomorphism requires the fact that f € J(k) C J(m) (see Lemma 5.1
below.) Also, since we kill the homotopy class 7 in our construction of 77/, the map
¢sm extends to a continuous map ¢;,, : T} — K(F/Fy,1), and ¢}, induces the
canonical epimorphism

mi(T}) F

Moreover, we have the following lemma.

Lemma 5.1 The following are equivalent:

(a) [ e T(m),
mTy) N F ™1 (Ty,1) ~ F
() (ﬂl(T}y))m = Fm and <’y,(7T1(Tf,1))m> = Fn’ and

(c) the continuous maps ¢} . and ¢y, evist as defined.

Proof. This is an obvious fact, but we wish to emphasize it because of the important
role it will play later.
(a) <= (b). If f € J(m) then the relations [y, ] f.(c;)a; ! in 71 (T} 1) become triv-

ial modulo (v, (m1(1},1)),,) since f. acts as the identity on F/F,,, and we clearly have
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a homomorphism (in fact, an isomorphism.) On the other hand, no such homomor-
phism exists if f ¢ J(m) because the relations [a;, 7] fi(aw)o; ! = fi(a;)a; * mod(7)
are certainly not trivial modulo (m1(77%,1)), .
(b) <= (c). It is a well-known property of Eilenberg-MacLane spaces that continu-
ous maps into them are in one-to-one correspondence with homomorphisms into their

fundamental group. (See [Wh] Theorem V.4.3.) Thus ¢} (and similarly for ¢,,) is

defined if and only if the homomorphism

exists. ]

Let us now consider the pair (T7,¢},) € Qs(F/Fy) (and analogously the triple
(Ty1, 0T, 04s) € Q3(F/Fi,¢).) We introduce a new homomorphism giving a rep-

resentation of J (k) which is very geometric in nature.

Theorem 5.2 The map

defined by ok (f) = (TJ?, }k) is a well-defined homomorphism.

We also point out that one can similarly define a homomorphism into the rel-
ative bordism group J (k) — Q3(F/Fy, () which sends a mapping class f € J(k)
to (Tm, Ty, by k) However, we will mainly focus on the homomorphism given in

Theorem 5.2.

Proof. Consider two homeomorphisms f, g € J (k) for the oriented surface ¥; with

one boundary component. If f and g are isotopic, i.e. they represent the same map-
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ping class, then of course T} and T} are homeomorphic and (T}’, i ,) and (Tg"’ , By, k)
are bordant. Thus oy is certainly well-defined.

To show oy, is indeed a homomorphism we need to show that (T}’, i o) I (Tg"’ , By, k)
is bordant to (T7,,, ¢}o,x) in Q3(F/Fy) for any mapping classes f,g € J(k). To do
so, we simply construct a bordism, i.e. we build a 4-manifold W and continuous map
¢ : W — K(F/F,1) with boundary given by

(OW, @low) = [(T], &1) T (T3 b5 | T = (Thegs Progie) -

fog?

We begin by first constructing a 4-manifold between the mapping tori T, I1 T,

and T’.41. Recall that
21 X [0, 1]
(,0) ~ (f(x),1)

Moreover, we can also consider T, in "blocks" as follows and as depicted in Figure

Ty1=

0.2

ro o mxby L (Ex[05])u i x [
oot = (@,0) ~ (f (9(2)). 1)~ (2,0) ~ (f(2),1), (z,3) ~ (g9(x), })

Zx1

5,x[0,1] > 'jfog > gg 51‘

ZXO \_/

Tfog,l

Figure 5.2: T}o,1 considered in "blocks"
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We can assume there is a product neighborhood of ¥; x {%} in Ty, i.e. a cylinder

(Z1 x {3}) x .Let V= (T;111T,,) x [0,1]. Then V" has boundary
oV = (Tfl ) {0} U— (Tfl 71) X {1} U (anJ II 8T971) X [0, 1] .

Now consider the piece (11 11T} 1) x {1} of OV and attach a 4-dimensional “strip”
Yy X [—e,e] x[=6,0] to (Ty1 LT, ;1) x {1} by gluing ¥; X [—¢,¢] x {—0} to the neigh-
borhood (% x {l}) X [—¢,¢e] in Ty 1 and gluing ¥ X [—¢, ] x {0} to the neighborhood
(21 X { }) —¢,¢|in T, ;. Let V' be the result of this gluing, then

V' = ((Tra U Ty1) x {0}) U (= (Tregn) x {1}) U (071 L 9T}y 1) x [0, 1])
U (03 x [~¢, €] x [~6,4]).

Tf°g,1
s v spleelxl68] & g
v
leé
¥
f \ g
Ty, T

Figure 5.3: The 4-manifold V'

We now fill in the boundary component (077, I1 0T, ;) x [0, 1] with

((0%1 x D?) 11 (9% x D?)) x [0, 1] (%)
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to obtain a new 4-manifold WW. At one end, this has the effect of filling in the boundary
of (Ty1 T T, 1) x {0}, thus creating (T; TI ;) x {0} . At the other end, we had already
filled in some of the boundary of 77, x {1} with (9%, x [~¢,¢] x [~d, d]) above, and
the filling by (%) has the effect of filling in the rest of the boundary of T'yo,1 x {1}.

Thus we have actually created T} x {1} . Therefore we have created a 4-manifold

Jog
W with boundary

oW = (T} L T}) 11 T,

fog-

Also, the continuous map ¢, Il¢, ;. clearly extends over V' = (T, 1T}, 1) x[0,1]. It is
also easy to see that it extends over V’ as well since ¥; x [—¢, €] x [—0, 0] deformation
retracts to ¥;. Finally it extends to a continuous map ® : W — K(F/F, 1) in a
similar way that ¢, extends to ¢} ,. Therefore (T7, ¢} ,) II (T}, ¢, ) is bordant to

(TJ:/og’ }og,k

) in Q3(F/Fy), and we have completed the proof of Theorem 5.2. O

Notice that if a surface homeomorphism f is isotopic to the identity then its
mapping class is in J (k) for all &k, and (Tf)l,an,1,¢f7k.) = (Tid,l,ﬁTidJ,@d,k) and
(T7,67,) = (T, #1ys,) are null-bordant in Qs(F/Fy, ¢) and Q(F/Fy), respectively,
since they each bound X,; x D? and the respective maps clearly extend. (The defi-
nition of relative bordism requires an “extra” boundary piece so that the boundary
of the 4-manifold is a closed 3-manifold. In the case of (Tj41,0T;41), the extra piece
is simply the solid torus 9%,; x D? used to construct 77,.) It seems logical to ask
when (Ty1,0T}1, ¢54) € Q3(F/Fy, ¢) and (T}, 67 ,) € Q3(F/Fy) are null-bordant for
more general f € J (k). That is, what is the kernel of o4? This is answered by the

following theorem.

Theorem 5.3 (Ty1, 0711, ¢;) € Q3(F/Fy,¢) and (T}, ¢} ,) € Qa(F/Fy) are trivial
if and only if f € J(2k —1).



30
Corollary 5.4 The kernel of the homomorphism oy, is J(2k — 1). O

We also have the following generalization of Theorem 5.3 which is a corollary to

the proof of Theorem 5.2.

Corollary 5.5 Consider f,g € J (k). Then the following are equivalent:

(a) fog™t €T(2k—1),
(b) (T7,9}) is bordant to (T, ¢} ) in Qs(F/Fy),

(¢) (Tp1,0Ts1,b5y) is bordant to (Ty1, 0Ty, ¢,,) in Qs(F/Fr, ().

Proof. Suppose we have (T}’, i w) = (T, N ») in Qs (F/Fy). This is equivalent to hav-

ing (TJ?, }k)H (Tg_l, Go k) = (17, ¢Z,k>ﬂ (Tg_l, Go k) . However, we showed in the
‘s : Y v _ (7 v

proof of Theorem 5.2 that this is equivalent to (Tfog,l, fog,l’k) = (Tgog—la %09717,9).

The latter is just (77, b, 1), which is nullbordant. Thus Theorem 5.3 says that this

is equivalent to f o g™ € J(2k — 1). The equivalence of (c) is proved similarly.  [J

Proof of Theorem 5.3.  We prove the theorem for the pair (TJY, }k) € Q3(F/Fy),
and the proof for the triple (T v, 0T}, qﬁf’k) € Q3(F/Fy, C) is completely analogous.
Suppose f € J(m), then for | < m let 7, : K(F/F,,1) — K(F/F,1) be the
projection map such that ¢}, =m0 ¢} .

(<=). Let us first suppose that f € J(2k—1). Then the pair (77, ¢} ,,_,) is defined
and is an element of Q3(F/Fy; 1). The following lemma is due to K. Igusa and K.
Orr ([I0], Theorem 6.7.)

Lemma 5.6 (Igusa-Orr) Let (m,,), be the induced map on Hs. Let x € Hs(F/F,,).

Then x € ker (1, ), of and only if x € Image (mop_1,n), for k < m < 2k —1. In
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particular, the homomorphism

15 trivial.
We have the following corollary.

Corollary 5.7 The homomorphism

F F
_ : Q) Qs | —
(7T2/€ l,k)* 3 <F2k1) — 343 (Fk)

is trivial. Moreover, a bordism class is in ker (1, 1), if and only if it lies in the image

of (Mok—1,m), for k <m <2k —1.

Proof. In general, €,(X, A) is the n-dimensional bordism group, and it is an extra-
ordinary homology theory. Using the Atiyah-Hirzebruch spectral sequence, (see G.
Whitehead [Wh] for details,) one can express §2,,(X, A) in terms of ordinary homology
with coefficient group €2, where €2, = €,(+) is the bordism group of a single point. In
particular, E2 = H,(X, A;Q,) and the boundary operator is d2 , : E2 — EZ_, .,
and €,,(X, A) is built using H,(X, A; Q,) with p+¢ = n. Now Q = Z and €y, (s, and
)3 are all trivial. So in the case n = 3 we have Q3(X, A) = H3(X, A; Q) = H3(X, A).
In fact, the isomorphism is given by (M,dM,¢) — ¢, ([M,0M]) where [M,0M]
denotes the fundamental class in Hs(M,0M). Of course it follows directly that

Q3(F/F) & Hs(F/Fy) (and Q3(F/Fy, () = Hs(F/Fy,(),) and we have the follow-
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ing commutative diagram:

F (Tok_1 m) F (7Tm k) F
H S Hy (— ) 2 g (=
’ (F%l) ’ (Fm) ’ (Fk)

~

Qs (F;:_1> (Tor—1,m), Q (}%) (Tm.k), 0 (%)

Since the map (7a,_1,), on Hj is the zero-homomorphism, the conclusion of the first

Il

part of the corollary is proved. The proof of the latter part is also immediate. O

The image of (T}, ¢} 5_,) under (mox 1), : Q3(F/For—1) — Q3(F/Fy) is

(T2r—1,8), (T}/a ¢},2k_1) = (T}/, T2k—1,k © ¢},2k—1) - (TJ’J’ ¢}k) ’

and Corollary 5.7 tells us that this image is trivial in {23(F/F}). Thus the condition

f € J(2k — 1) is certainly sufficient.

(= ). The proof of the necessity of f € J(2k — 1) is much more subtle. If we
assume that (77, ¢} ) is trivial in Q3(F/F}), then Corollary 5.7 tells us that there is a
pair (M, ¢) € Q3(F/Fy,_1) that gets sent to (TJY, }k), but we do not know anything
more than that. We want to show that gb}’%fl is defined, and by Lemma 5.1 we may

achieve the desired conclusion f € J(2k — 1).

Lemma 5.8 (Cochran-Gerges-Orr) Let M be any oriented manifold such that
w1 (M) = G, and suppose F is a free group. Then for k > 1, G/Gy = F/Fy if
and only if Hy(M) is torsion-free and all Massey products for H (M) of length less

than k wvanish. Under the latter conditions, any isomorphism G/Gr_1 = F/Fy_1
extends to G/Gy = F/F,.



33

Proof. If G/Gy = F/F} then there is a continuous map ¢ : M — K(F/F, 1) that
induces an isomorphism ¢* : H'(M) — H'(F/Fy) and Hy(M) is clearly torsion-free.
In [Or] (Lemma 16) it is shown that Massey products for H'(F/F},) of length less than
k vanish and length k Massey products generate H2(F/F},). Consider z; € H(F/Fy),
then (z1,...,z,) = 0 for all n < k. Also, the naturality of Massey products (see
(2.2.2)) tells us that ¢* (x1,...,x,) C (¢*21,...,¢0"x,) . Thus for n < k we certainly
have 0 € (¢*xy, ..., ¢*x,) . However, the uniqueness of Massey products given in (2.2.1)
tells us that the first nonzero Massey product is uniquely defined, and we conclude
that 0 = (¢*x1, ..., ¢"w,) for n < k. Therefore all Massey products for H'(M) of
length less than k are zero.

On the other hand, if H,(M) is torsion-free and all Massey products for H!(M)
of length less than &k vanish then we easily see that Hy(M) = G /Gy = F/F,. Now
assume by induction that G/Gy 1 = F/Fy_1, and let ¢ : F' — G be a homomorphism

that induces this isomorphism. We will extend this isomorphism to G/Gj = F/Fy.

It is sufficient to show that G /Gy = Fy,_1/F). We have the following commutative

diagram
F = Fi_4
00— H 0
2 (Fk—1> Fy,
=\, Y,
T G Gr
H, (G) — H. 0
2 (C) ’ (GH) G

in which the horizontal maps are exact sequences. The fact that the sequences are
exact is a result of J. Stallings [St]. This diagram shows us that it is sufficient to show
that 7, : Hy(G) — Ho(G/Gj—1) is trivial. However, since Ho(M) — H(G) is onto,

we need only show that 7, : Ho(M) — Hy(G/Gy_1) is trivial. As mentioned above,
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length k& — 1 Massey products (zy,...,x5_1) generate H*(G/Gr_1) = H*(F/Fy_1).
Then 7* (21, ..., x5 1) = (7*21,...,7*x)_1) = 0 since length k — 1 Massey products
vanish for M. Therefore 7* and 7, are trivial homomorphisms, and the conclusion

follows. O

A slightly more general version of the following lemma is proved in [CGO] (The-

orem 4.2), and we include a proof here for your convenience.

Lemma 5.9 (Cochran-Gerges-Orr) Suppose My and M, are closed, oriented 3-
manifolds with m (M) = Gy and w1 (M) = G. Also suppose there is an epimorphism
Y1 Gi — Go/(Go)x- Let ¢ : My — K(Go/(Go)x, 1) and ¢ : My — K(Go/(Go), 1)
be continuous maps so that (¢,), = ¥ and (Mo, ¢g) = (M, ¢1) in Q3(Go/(Go)k)-
Then (Mo, ¢y) and (M, ¢,) are bordant over K(Go/(Go)k, 1) via a 4-manifold with

only 2-handles (rel My) whose attaching circles lie in (Go)y.

Proof. Since (My, ¢,) and (M, ¢,) are bordant in Q3(Go/(Go)r), we know there exists
a compact, oriented 4-manifold W and a continuous map ® : W — K (Go/(Go)k, 1)
such that (W, ®) = (Mo, ¢) 11 (=M, ¢;) . @, is already a surjection on 7y, and we
can make it an injection by performing surgery on loops in W. Thus we may assume
®, is an isomorphism. Now we choose a handlebody structure for W relative to M,
with no O-handles or 4-handles. We then get rid of the 1-handles by trading them for
2-handles, i.e. we perform a surgery along a loop ¢ passing over the 1-handles in the
interior of W. In a similar manner, we can get rid of the 3-handles by thinking of
them as 1-handles relative to M;. Let V' be the result of this handle swapping. We
want to make sure ® extends to V', so because @, is an isomorphism it is necessary to

make sure ¢ was null-homotopic in W since it is null-homotopic in V. However, since
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(¢g), is surjective and c is in the interior of W, we can alter ¢ by a loop in M so
that the altered c is null-homotopic in W. Thus we may assume that the 2-handles

are attached along loops ¢ in (Gy)y. O

Lemma 5.10 Let M; and G; (i = 0,1) be as in Lemma 5.9. For some free group
F suppose that ¢y : My — K(F/Fy,1) and ¢y : My — K(F/F, 1) are continu-
ous maps such that ¢, induces an isomorphism Go/(Go)r = F/Fy and ¢, extends
to a continuous map ¢, : My — K(F/Fyi1,1) inducing G1/(G1)gr1 = F/Fryq. If
(Mo, ¢g) is bordant to (My, ¢y) in Q3(F/Fy), then ¢q also extends so that it induces

Go/(Go)rs1 = F/Fryq.

Proof. Lemma 5.9 tells us there exists a bordism (W, ®) between (M, ¢,) and (M7, ¢;)

over K (F/Fg,1) such that W contains only 2-handles with attaching circles in Fj and

m (W) = F/Fy. Let j; : M; — W be inclusion maps so that ® o j; = ¢,, i =0, 1.
M;
Ji &

W —— K (F/F,1)

Consider any collection {z1,...,7} € H'(Mjy) of cohomology classes. Then choose
yi € HY(F/F}) so that ¢j(y;) = x;. Since w1 (W) = F/Fy and Go/(Go)r & F/Fy,
Lemma 5.8 says that Massey products of length less than & vanish. Thus each of the

following Massey products are uniquely defined:

(1, ) = (Do (y1), - G0 lye)) = Jo (D" (y1), -, D" (yr)) -
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If we can actually show that these Massey products vanish then we can use Lemma
5.8 to show that ¢, also induces Go/(Go)gr1 = F/Fii1, thus completing the proof.
We will show (®*(y1), ..., D*(yx)) = 0. Since G1/(G1)k+1 = F/Fy41, Lemma 5.8 says
Massey products for H(M;) of length less than k + 1 vanish. In particular, length k

Massey products are zero, thus

JA® (Y1), D (yr)) = (P1(%1), -, D1 (Yr)) = 0.

Now consider the following short exact sequence

0— Hg(Ml) — HQ(W) — HQ(VV, Ml) — 0.

Since we can view W as M; x [0, 1] with 2-handles attached along circles in Fj, we
see that Hy(W, M;) is a free abelian group generated by the cores of the 2-handles
(rel M;). Thus this sequence splits and we can write Hy(W) = Hyo(M,) & Ho(W, My).
Because the attaching circles of the 2-handles lie in Fj, the images of the genera-
tors of the latter summand are clearly spheres in K (F/Fy, 1). But since K(F/Fj,1)
has trivial higher homotopy groups, they must vanish in Hy(F/F). Then by con-
sidering the dual splitting H*(W) = H?*(M;) & H*(W, M;) we know that the im-
age of H?(F/Fy) must be contained in the summand H?(M;) of H*(W). Therefore
gt H*(W) — H?*(M;) must be injective on the image of H*(F/F}), and we are able

to conclude that (®*(y1), ..., ®*(yx)) = 0. O

Consider the following result of V. Turaev [Tul.

Lemma 5.11 (Turaev) Let G be a finitely generated nilpotent group of nilpotency

class at most k > 1, and let « € H3(G). Then there ezists a closed, connected, oriented
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3-manifold M and a continuous map 1 : M — K(G,1) such that ¢, ([M]) = a and
such that ¢ induces an isomorphism m (M) /(w1 (M) = G if and only if

(a) the homomorphism on torsion subgroups Torsion(H?(G)) — Torsion(H,(G))

defined by x — x N« is an isomorphism, and

(b) for any h € Ho(G), there exists y € H'(G) such that

- e (@) 1, ().

Corollary 5.12 For any bordism class o € Q3(F/Fy) there exists a closed, con-
nected, oriented 3-manifold M and a continuous map 1) : M — K(F/F,1) such that
(M) =« in Q3(F/Fy) and 1 induces an isomorphism 7w (M)/(7w1(M))r = F/ Fy.

Proof. We simply use the fact proved earlier that Qg(F/Fy) = H3(F/F}) and apply
the lemma in the case that G = F/F},. The group F/F}, is nilpotent with nilpotency
k—1. The groups H*(F/F},) and H,(F/F) are each torsion-free. Thus condition (a)
of Lemma 5.11 is satisfied trivially. Using Stallings’ exact sequence given in [St], we

have the following commutative diagram

F = F,
Hy(F)=0— Hy | — 0
2(F) ’ (Fk) Fia
0 — map
F = Fra
Hy(F)=0— H. 0
2(F) ? (Fk—1> Fy

which shows us that the map Hy(F/Fy) — Ho(F/F)_1) is the zero homomorphism.

Thus condition (b) of Lemma 5.11 is also satisfied trivially. O
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Lemma 5.13 Let M be any closed, oriented 3-manifold with w (M) = G, and sup-
pose there is a continuous map ¢, : M — K(F/F, 1) inducing an isomorphism
G/Gy = F/Fy for some free group F. For m > k, (M,¢,) is in the image of
(Tmk), : B(F/EFn) — Q3(F/Fy) if and only if the isomorphism G/Gj = F/F
can be extended to an isomorphism G/G,, = F/F,, induced by a continuous map

by s M — K(F/Fy, 1) such that (mm ), (M, ¢,,) = (M, ¢,,) -

Proof. Suppose (M, ¢,) = (mmi), (o), for some a € Q3(F/F,,). By Corollary 5.12
there exists a closed, connected, oriented 3-manifold M’ along with a continuous map
Y M' — K(F/F,,1) that induces an isomorphism 71 (M")/(m(M"))m = F/F,
such that (M’,1) = o in Q3(F/Fy,). But (M, ¢p) = (i), (@) = (T, (M, ) =
(M, 7t 01), so (M,¢,) and (M', 7y, 0 1)) are bordant in Q3(F/Fy). In the case
m =k + 1, Lemma 5.10 gives the desired result. The case m > k + 1 is achieved via

induction. The converse is clear. |

We are now ready to continue our proof of Theorem 5.3. First, we are assuming
that qﬁ}’k exists, so Lemma 5.1 tells us that at the very least f € J(k). We also
assume that (77, ¢} ,) is trivial in Qg(F/Fy). In particular, (T7,¢7},) = (Tr, ¢7.)

in Q3(F/Fy). Also, we have

Wl(Tf;) F
—x— =~ for all m, and
(m(T),,  Fm
T’Y
mly) L F o aim<k

(m(T7)),  Fm
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Then by Lemma 5.10 we can extend the latter isomorphism to

T (T}Y) ~ F
(m1 (TJ?))ICJrl Frr

By Lemma 5.1 we are able to conclude that f € J(k + 1) and that the continuous
map ¢, exists, allowing us to consider (T I 1) € Q3(F/Fit1). Moreover, since

we are assuming that (77, ¢} ) is trivial in Qg(F/Fy), we have

F O\ (meve), o [ F
1770 e (o (55) o (5) ).

and by Corollary 5.7

F (7r2k—1,k+1)* F
(T?a ¢},k+1) € Image <Q3 <F2k1) — 73 (Fk+1)> .

Thus Lemma 5.13 implies that the isomorphism

T (T}/) ~ F
(m1 (T}Y))k-i-l Fia

extends to an isomorphism

7T1(T}Y) ~ F
(7?1(T]7))2k_1 Forq

Therefore, by Lemma 5.1, we are able to conclude that f € J(2k—1). This completes

the proof of Theorem 5.3. O
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5.3 Relating 0, to the Johnson Homomorphism

The goal of this section is to describe how the homomorphism oy, : J (k) — Q3(F/ Fy)

relates to Johnson’s homomorphism

F
7o+ J(k) — Dy(H,) C Hom (Hl, k > .
Fri1

It turns out that 7, factors through Qs(F/Fy). To see this, we will use Kitano’s
definition of 74 in terms of Massey products, which we reviewed in Section 2.3.

Let X denote the ring of formal power series in the noncommutative variables
t1, ..., tag, and let X; denote the submodule of X corresponding to the degree k part.

Because Fy/Fj1 is a submodule of X, we can consider the homomorphism
Tk J (k) — Hom(Hy, X)

defined in Theorem 2.1. Recall from Section 2.3 that we are considering the following

dual bases:

{xlu "'7x297y} € Hl(Tf71)7
{-%2{7 ---7$;gay*} € Hl(Tfal)’ and
(X1, ..., Xog} € Hyo(T} ).

Define W' : Q3(F/Fy, () — Hom(H;, X) to be the map that sends the bordism class

(T b1,0T1, ¢ f’k) to the homomorphism

w3 (@ @) Xt by
J

15e-5Jk
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Let i, : Q3(F/Fy) — Q3(F/Fg, () be the homomorphism induced by inclusion which
sends (T;, }k) to (Tf)l,an71,¢f,k>. Then we define ¥ : Q3(F/Fy,) — Hom(Hy, X)

to be the composition ¥ = ¥ o 7,.

Theorem 5.14 The map V is a well-defined homomorphism. Moreover, the com-
position ¥ o g corresponds to the Johnson homomorphism T so that we have the

following commutative diagram.

Ok )]

J (k) —— Hom(Hy, Xy)
Tk
Proof. We only need to show that W' : Qs(F/Fy, () — Hom(H;, X;) is a well-defined
homomorphism, and the rest of the theorem clearly follows. We will need the following

lemma.

Lemma 5.15 Suppose (Mo, ¢y) and (M, ¢;) are closed, oriented 3-manifolds with
m1(M;) = G; and continuous maps ¢; : M; — K(Go/(Go)k,1). Further suppose ¢,
induces an isomorphism G1/(G1)r = Go/(Go)k. If (Mo, ¢g) is bordant to (M, ¢,) in
Q3(Go/(Go)x) and all Massey products for H'(My) of length less than k vanish, then
¢ = (¢o). o(¢y), : Hi(My) — Hy(My) is an isomorphism such that for z; € H' (M),
E; € Hyo(My) Poincaré dual to x;, and F; € Hy(M,) Poincaré dual to ¢*(x;) € HY (M)
we have

<<xj17 ) xjk> 181> = <<¢*(xj1)v EE ¢*(x]k)> 7}_1>

where (, ) is the dual pairing of H*(M;) and Hy(M;).



42

Proof. Since (My, ¢,) is bordant to (M, ¢;) in Q3(Go/(Go)x), we must also have
(do), ([Mo]) = (¢1), ([Mi]) in H3(Go/(Go)x) where [M;] is the fundamental class in
Hs3(M;). The bordism (W, ®) between (M, ¢y) and (M, ¢;) can be chosen so that
® induces an isomorphism 71 (W) = Go/(Go)r and the inclusion maps j; : M; — W

induce isomorphisms
(W)
(Gi)y,  (m(W)),

W. Dwyer proves in [Dw| (Corollary 2.5) that for cohomology classes o; € H' (W)

we have (ay, ..., @) = 0 if and only if j§ (a1, ...,amm) = 0 for m < k. However, by
naturality of Massey products given in (2.2.2), ji (aq, ..., am) C (Gi(ar), -, jo(am)) ,
and the latter is 0 since Massey products of length less than k vanish for H!(Mp).
Thus {(ay, ..., ) = 0 for all o; € HY(W). Moreover, ji : H' (W) — H'(M;) is an
isomorphism. Then for any y; € H'(M;) there exists an «; € H'(W) such that

Ji(a;) = y;. Thus for m < k we have

<y1, R3] ym) = <jik(a1)7 7];‘(0[”1))

= <a17 7am>

= 0

where the second equality follows from naturality. So then we have shown that all
Massey products of length less than k vanish also for H'(W) and H'(M;). Thus
Massey products for H'(My), H' (M), and H*(W) of length k are uniquely defined.

Consider x; € H'(M,) with Poincaré dual & € Ho(My). Let F; € Hy(M;) be

Poincaré dual to ¢*(x;) € H'(My), where ¢ is the isomorphism given by the compo-
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sition ¢ = (¢), " © (¢;), : Hi(M;) — Hy(Mj). Then we have

(¢0). (&) = (&), (w: N [Mo])
= (60) " (2:) N (o). ([Mo))
= ((¢7) "0 9¢") (z:) N (41), ((M1])
= (81, (¢"(z:) N [M])
= (¢1). (F),

where the second and fourth equalities follow from the naturality of cap products.

Now choose 3; € HY(Go/(Gy)x) such that ¢g(5;) = x;. Then

(@05 &) = ((B5(B)): -+ 00(By,)) » €
= ((Bjrr B4+ (). (&)
= ((Bj B3 (00). (F2))
= (($1(81,), - 91(8,,)) , Fi)
= (((¢" 0 65) (B1,); s (&7 2 67) (8,,)) » Fi)
= (&% (x1), 0 ¢ (23,)), F)

This completes the proof of the lemma. U

Consider the mapping classes f,h € J(k). We have the dual bases mentioned
above for specific homology and cohomology groups of 7% ;. Consider the following

dual bases defined in the same manner for 7}, ;:

{wl, ceny ’LUQQ, Z} € Hl(Th,l)a
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{w},...,wy, 2"} € H(Ty,), and
{Wl, ceey ng} < HQ(Th,l).

Recall that T’ J? was constructed from 7' ; by filling the boundary 971 = 9%, 1 x S*
with a solid torus 9%, x D?. Let ¢ riTp— T]? be the inclusion map, and then we
have a basis

{af, ... a3,} € Hl(TJ?)

where a7 = ((¢;), (2;))" . Since 7 is the Hom dual of @;, by definition we have that
the dual pairing is (7, x;) = 6;;. Similarly o} is the Hom dual of (1) (;), and thus
(Y3(ap), z;) = (ay, (f), (x:)) = di;. Note that this implies that ¢} (a}) = x}. Letting

A; denote the Poincaré dual of a} gives a basis for Hy(T}):
{A1, ..., Aoy} € Ho(T7).

By carefully examining the following commutative diagram, we see (1 f)* (X;) = A,

H, (Tf,{:an,l) Homgdual H' Ty, 0Ty,1) (5, 0T H (Tya)
J J7
H, (T3) —— H' (T} (),
(vy), oy
) = () — I (1)

Finally, let A; € Hy(T}) denote the Poincaré dual to ¢*(a}), where ¢ is the iso-

K3
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morphism guaranteed by the following corollary. Then for 7} ; we similarly have
Uy (9" (af)) = wi and (v,), (W;) = A;. We have the following immediate corollary to

Lemma 5.15.
Corollary 5.16 If (T}, ¢},) = (T}, é) ) in Qs(F/Fy), then
0= (¢0)," ©(¢1), : Hi(T]) — Hy(T})

18 an 1somorphism such that

<<a;1, s a;‘k> , Ai> = <<¢*(a;‘1), s (Ib*(a;‘k» ,Ai>
where A; is Poincaré dual to ¢*(a}).

Lemma 5.17 If (Tf,17an,17¢f,k> = (Th,luaTh,17¢h,k) n Q3(F/F/€7C)7 then
(@5 Xi) = ((ufys ey ) W)

Proof. Since f,h € J(k), Theorem 2.2 says that the Massey products for (71,97}1)

and (T, 0Th,1) of length less than k vanish. Thus <x;f1, . xjk> and <w;‘1, s wj*k> are

uniquely defined. By Corollary 5.5, we know that (77, ¢} ) = (T}, ¢ ;) in Qs(F/Fy).
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So we let ¢ be the isomorphism guaranteed by Corollary 5.16. Then we have

(@25 ) Xa) = ((W3(d],), 03 (a5,)) . X3)
= (@), a5) (¥y), (X))
= ({(a},,...a; ), Ai)
= ((¢"(a}), - 6" (a},))  As)
= ((¢"(a}), . 6" (a3)) , (1), (W)
= (Vi (¢"(a},), . "(a},)) , Wi)
= (U@ (@), - ¥i(0"(a},) , Wi)

= (W 0} ) Wi).

O

This proves that V' : Q3(F/Fy, () — Hom(H;, X;) is a well-defined homomor-

phism and completes the proof of Theorem 5.14. U

5.4 Relating o), to Morita’s Homomorphism

As we have already seen in the proof of Corollary 5.7, there exists an isomorphism
O : Q3(F/Fy) — Hs(F/Fy) given by (M, ¢) — ¢,([M]), where [M] is the fundamental
class in H3(M). Because of this, one may guess that there is a relationship between
ok : J(k) — Q3(F/Fy) and Morita’s refinement 7 : J (k) — Hs(F/Fy) discussed in
Section 2.4. This assumption turns out to be correct, and the two homomorphisms are
in fact equivalent. However, o, gives a representation that is much more geometric,

and as we will see in Chapter 6, o leads to interesting questions that 7, does not.
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Theorem 5.18 The homomorphism oy, : J (k) — Q3(F/Fy) coincides with Morita’s

refinement of the Johnson homomorphism so that we have a commutative diagram.

(%)

O o
F
70— 1 (7)

Corollary 5.19 The kernel of Morita’s refinement 7, is J(2k — 1).

Proof. This is an immediate consequence of Theorem 5.18 and Corollary 5.4. U

Proof of Theorem 5.18. Consider a genus ¢ punctured surface ¥ = £, and f € J (k).
Let r: ¥ x [0,1] — ¥ be a retraction, ¢ : ¥ — K (F/F}, 1) be a continuous map that
induces the canonical epimorphism F — F/Fy, and i : K(F/Fy, 1) — (K(F/Fy, 1),()
be the inclusion map. Also let G : ¥ x [0,1] — (T1,0T}1) be the composition of
the “gluing map” ¥ x [0, 1] — T, and the inclusion Ty; — (1, 07}1). Recall that
the maps ¢, and ¢}7 . defined at the beginning of Section 5.2 are defined only up to

homotopy. We choose them so that the following diagram commutes.

T
2 x [0,1] 5
G
L Dhk
G 17 K (F/F,1)
i
¢f,k
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That is, we have ¢y, oG =1io01or.

Consider the fundamental class [Ty1,07}1] € H3(Ty1,01y,1), and suppose that
(ty,0ty) € C3(Ty1,0T},) is a corresponding relative 3-cycle. Now we choose a 2-chain
o € Cy(X %[0, 1]) so that do is in the homotopy class of a simple closed curve on ¥ x {0}
parallel to the boundary 90X x {0} . Let ¢ also denote rx (o) € Cy(X), and choose a
3-chain p € C3(Xx[0,1]) so that G4 (p) = (ty,0ty) and 9p = 0 — f4(0)+ (00 x [0,1]).

Consider the restriction 7|syxjo,1)- Then r4(00 x [0,1]) = € € C3(9%), and

Ora(p) = r40(p)
= r4(0 — fu(0) + (80 x [0,1]))
= 14(0) = 13(f£(0)) +74(90 x [0,1])

= O'—f#(O')+8

Since f is the identity on the boundary, we must have 0o — fx(do) = 0, and therefore
0=0(0ry(p)) =0(c — fu(o)+e) = 0o — fu(do) + 0 = Oe. Since Hy(0X) is trivial,
there must be a 3-chain n € C5(9%) such that Onp = €. Let j : ¥ — X x [0,1] be
the inclusion map, and consider ju(n) € C5(9X x [0,1]) — C3(X x [0, 1]). Define

cy € C5(3) to be

cy = ralp—Jjr))
= r4(p) —ryix(n)

= ry(p) —n.

Then Ocy = Ory(p) — On = (0 = fx(0) +¢) —e =0 — fy(0).
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Also, since ju(n) € Cs5(X x [0,1]) is carried by the subcomplex 0% x [0,1],
G4 (jx(n)) must be carried by 0T ;. Thus Gx(jz(n)) =0, and

Gyulp—ge) = Gulp) — Gu(ix))

= (tf,0ty).

Let ¢y = ¢4(cy) € C3(F/Fy). Then ¢ is a 3-cycle since f € J (k) induces the identity

on F/Fy. Let [¢f] € Hs(F/Fy) denote the corresponding homology class, and

inller]) = [iwlep)
= [Gow), (er)]
= [ioven), (p—jun)]
— (07406, (0= ju(m)]
= _(Qbf,k)#(tfuatf)}

= (bp4), (T11,0Ty4))

On the other hand, we also have i.((¢},)«([T7])) = (¢7x), ([Tf.1,0T}1]), and since
ix 2 Hy(F'/Fy) — H3(F/Fy, () is an isomorphism, we must have [¢;] = (¢}, ) ([T7]).
Finally, notice that our choices of ¢ € Cy(X) and ¢; € C3(X) certainly qual-
ify as choices for 0 € Cy(F) and ¢; € C3(F'), respectively, in the construction of
Morita’s homomorphism in Section 2.4. Thus we have (® o oy) (f) = ®(T}, ¢},) =

(¢} 1)+([T}]) = [¢s] = Tx(f), and the theorem is proved. O

Now that we see that oy : J(k) — Q3(F/F;) and Morita’s homomorphism are

indeed equivalent, we can describe in a different way how o relates to Johnson’s
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homomorphism 7 : J (k) — H; ® Fy,/Fyy1. Recall the differential

F F},
d*: Hy | — H
3(Fk) - 1®Fk+1

discussed in Section 2.4. Then 7} factors through Q3(F/F) so that the following

diagram commutes.

Ok




Chapter 6

A Spin Bordism Representation of

the Mapping Class Group

We introduced in Chapter 5 a new representation oy : J (k) — Q3(F/F)) which we
then showed was equivalent to Morita’s homomorphism 7y, : J (k) — Hs(F/Fy). Be-
cause of the range of the latter homomorphism, it may seem preferable to the reader.
However, o has its advantages. First, it simply has a much more geometric nature to
it. Second, and perhaps most importantly, it naturally leads to an interesting ques-
tion that 7, does not. What happens when we add more structure to the bordism
group? More specifically, what is the result of replacing the bordism group Q3(F/ Fy)

with the spin bordism group Q5" (F/F},)?

6.1 A Spin Bordism Invariant of 7 (k)

Recall that a spin structure can be thought of as a trivialization of the stable tangent

bundle restricted to the 2-skeleton, and every oriented 3-manifold has a spin structure.

ol
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Since a spin structure on a manifold induces a spin structure on its boundary, we can
define the 3-dimensional spin bordism group Q"™ (X) in exactly the same way as the
oriented bordism group Q3(X) with the additional requirement that spin structures
on spin bordant 3-manifolds must extend to a spin structure on the 4-dimensional
bordism between them. That is, elements of Q" (X) are equivalence classes of
triples (M, ¢, o) consisting of a closed, spin 3-manifold M with spin structure o and
a continuous map ¢ : M — X. We say two elements (M, ¢, 00) and (M, ¢y, 01)
are equivalent, or spin bordant over X, if there is a triple (W, ®, o) consisting of a
compact, spin 4-manifold (W, ¢) with boundary o(W, o) = (M, 0¢) I — (M7, 1) and
a continuous map ¢ : W — X satisfying |5, = ¢;.

Further recall that the spin structures for a spin manifold M are enumerated by
H'(M;Zs). Thus, for example, the number of possible spin structures on a punctured,
oriented surface ;1 of genus g is [H(Sy1;Z:)| = |Z37] = 2%. If we fix a spin
structure on X, 1, then we can extend it to the product ¥,; x [0,1]. Now consider
the mapping class f € J(k) for ¥,;. For £k > 2, f acts trivially on Hy(X,1;Zs)
and on the set of spin structures. Thus the spin structure on ¥,; x [0,1] can be
extended to the mapping torus T ;. The number of possible spin structures for 7% is
|HY(Ty15Zo)| = |Z37+"| = 229+, where the extra factor of 2 corresponds to the extra
generator v € 71(7},1). Remember that we construct T} from Ty, by performing a
Dehn filling along -, i.e. filling the boundary 97y; = 9%,; x S* with 9%,; x D?.
Then, as long as we choose the spin structure for v which extends over a disk, we
can extend the spin structure on 7 ; to a spin structure o on TJY. Again, the number
of possible spin structures for 77 is ’H yr 7 Zg)’ = }Zgg ’ = 2% and these exactly

correspond to the spin structures on X ;.
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Theorem 6.1 Let ¥, be a punctured surface of genus g with a fized spin structure.
Let o denote the corresponding spin structure on T; forall f € J(k), k > 2. Then

there is a well-defined homomorphism

defined by n,(f) = (T}’, ¢}’7k,0).

Proof. This follows directly from the proof that oy : J(k) — Q3(F/Fy) is a well-
defined homomorphism since the spin structure on T’ J? IT 7} naturally extends over
the product (T}’ 11 7;') x [0,1] and the spin structure on X, naturally extends over

the product ¥, x [—¢,¢] x [-4,9]. O

First, we point out that if we compose this homomorphism with a “forgetful”
map which ignores the spin structure then we obtain our original homomorphism
0. Second, recall the proof of Corollary 5.7 where we pointed out that, by us-
ing the Atiyah-Hirzebruch spectral sequence, one could build the n-dimensional bor-
dism group 2,(X, A) using H,(X, A;€,) with p + ¢ = n as building blocks. In the
same way, the n-dimensional spin bordism group Q" (X, A) is constructed out of
Hy (X, A; QP with p+ q = n, where Q"™ = Q2"(.) is the spin bordism group of a
single point. Unlike the previous case for n = 3, all but one of the coefficient groups

are nontrivial. In particular, since Q" = Z, Q""" = Q" =2 7, and Q" = {e},
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we have that Q" (F/Fy,) is built out of

Hy(F/F Q™) =~ Hy(F/F) = Q3(F/F),

Il

(
Hy(F/ Fy; Q" Hy(F/Fy)®@Zy = FyfFyi1 @ Lo,
(
(

~ H(F/FR)®Zy = 75 and

)
)
H1 )
)

|7

Hy F/Fk,st’m 0.

And so at the very least we see that there is potential for 7, to give much more

information about the structure of the group J (k).

6.2 A Closer Look at 7,

We will now investigate the specific case when k£ = 2 and see what information
ny 2 J(2) — QF"(F/F,) gives us about the Torelli group J(2). We have already
seen that the original Johnson homomorphism 75 factors through Q7"(F/F,) (see
Theorem 5.14.) In this section we will see that, in fact, the Birman-Craggs homo-
morphisms {p, } also factor through Q5" ""(F/Fy). Therefore, this new homomorphism
7, in a certain sense combines the Johnson homomorphism and the Birman-Craggs
homomorphisms into a single homomorphism.

Consider any mapping class f € J(2) and fix a spin structure on X, ;. Let o be
the corresponding spin structure on 7. Finally let ¢} = ¢}, : T} — K(F/F3, 1) be
a continuous map which induces the canonical epimorphism 7(7T}) — F/Fy = Z*9.
Then the image under 7, of f is (T}Y, o7, U) .

Let a € H'(T};Z) denote a primitive cohomology class. The group [T]}’, S1] of ho-
motopy classes of maps T — S' is in one-to-one correspondence with Hom (7 (T7}), Z).

In fact, there is an isomorphism [T}, S'| = H'(T};Z). So there is a continuous map
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Y, : T — S* corresponding to a € H'(T};Z). There is a connected surface S em-
bedded in TJ? which represents a class in HQ(TJ?) Poincaré dual to a, and this surface
S represents the same homology class in Hy(T7) as Y. (p) does, where p € S is a
regular value of 1. (If p € S is a regular value of 1,,, then ¥ (p) is an embedded,

codimension 1 submanifold of 7. That is, ¥ (p) is an embedded surface in T 7)

Figure 6.1: Embedding of S into Ty, < T and the map ¢,

Let m, : K(F/F,1) — S be a continuous map such that 1, is homotopic
to M o ¢}, and let (ma), : QF"(F/Fy) — QF"(S') denote the induced bordism

homomorphism. Then we can define a homomorphism
wa = (Ta), 015+ T (2) = QF"(S")

by sending f € J(2) to the bordism class (T;,lpa,a) e QF™(SY). Again, using
the Atiyah-Hirzebruch spectral sequence, we see that Q" (S?) 2 Q™ =~ 7, The
specific isomorphism is given by (M, ¢,0) — (¢_1(p),0|¢71(p)), where p € S! is a
regular value of ¢. We can see by this isomorphism that the spin structure on TJ?

restricts to a spin structure on S = 1 (p).
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Theorem 6.2 The fized spin structure on X1 has a canonically associated quadratic
form q : Hi(31;Zy) — Zy. If Arf(X,1,q) = 0, then there is a primitive cohomol-
ogy class o € H'(T};Z) such that the homomorphisms wa : J(2) — QP(SY) s

equivalent to the Birman-Craggs homomorphism p, : J(2) — Zs.

We note that the hypothesis Arf(X,;,¢) = 0 is necessary for the Birman-Craggs
homomorphism p, : J(2) — Z to be defined. See Chapter 3 for details.

We have a surface S = v (p) embedded in TfV. To determine whether the image
of f under the homomorphism w, : J(2) — QP (S") is trivial or not, we simply need
to determine (S, o|s) € Q™. However, this is just the well-known Arf invariant of S
with respect to o|s. We defined the Arf invariant Arf(3, ¢) for a closed surface ¥ and
Zo-quadratic form ¢ : Hy(3;Zs) — Zs in Chapter 3. Now for the spin structure o|g
on S let q, : H(S;Zs) — Zs be the corresponding Z,-quadratic form. Namely, ¢, is
defined to be the quadratic form given by ¢,(x) = 0 if ¢|, is the spin structure that
extends over a disk and ¢,(x) = 1 if o, does not extend over a disk. It is the work of
Johnson in [J1] that tells us this quadratic form is equivalent to the quadratic form

discussed in Chapter 3. Then we have
AxE(S, 45) = ATE(S, 0l5) = (S, 0ls) € 95"

We will also need a more general definition of the Arf invariant which includes
surfaces with boundary. The definition is the same except for a small change to the

Zo-quadratic form q. In particular we have a Zs-quadratic form

H1(E;Z2)

: — 7
(05 Z))
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where i, is induced by inclusion i : 9% — 3. Then for a symplectic basis {z;,y;} of
the quotient H;(3;Zs)/i.(H1(0%;Zs)), the Arf invariant of 3 with respect to ¢ is
defined to be

g

Arf(S,q) =Y q(z:)g(y:) (mod 2).

i=1
Notice that if the surface ¥ happens to be embedded in S? then this definition is
the same as the definition of the Arf invariant Arf(L) of an oriented link L in
S3 with components {L;} and satisfying the property that the linking number is
Ik (L;, L — L;) = 0 modulo 2. The surface ¥ would be a Seifert surface for the link,
and ¢ would be the mod 2 Seifert self-linking form on H,(X; Zs) /i.(H1(0%; Zs)), where
the self-linking is computed with respect to a push-off in a direction normal to the
surface. See the W. Lickorish text [Li] for more details.

Now consider the surface S = ' (p) embedded in T}, and suppose that S has
genus k. There exists a symplectic basis {z;, y;}, 1 < i < k, of H,(S;Zs) such that x,
is homologous to the homology class [] corresponding to v in T}’ and gy is homologous
to the homology class of 3 = SNY¥,; C T ]? But v was required to have the spin
structure that extends over a disk (so the spin structure on 7y; may be extended to

a spin structure on 77.) Thus ¢, (k) = ¢-([7]) = 0, and

Al”f S C]g an .73'2 C]g yz an JZZ 4o yl

If we cut S open along a simple closed curve parallel to 8 = SN, ; then the result
deformation retracts to a surface S’ with boundary 05’ = SII— f(3) and with symplec-
tic basis {Jﬁi, yz} 5 1 S 1 S k— 1, of Hl(S/, Zg) If qg . Hl(Sl, Zg)/z*(Hl(OS’, Zg)) — ZQ
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Figure 6.2: S cut open along /3

is the induced Zs-quadratic form, then

k—1 k—1
D o(w)a0(yi) = ATE(S, ) = Arf(S, q5) = Y af (2., (4:)-
i=1 =1

According to Johnson in [J1], the quadratic form ¢ (in the statement of Theorem
6.2) corresponds to a Heegaard embedding of ¥, ; into S?. Thus we get an induced
embedding of 3, 1 X [0, 1] and then S’ into S?, and the quadratic form ¢/, is precisely the
same as the mod 2 Seifert self-linking form. Thus we see that to calculate Arf(S, ¢,),
we really only need to calculate the Arf invariant of the link {3, f(3)} with Seifert
surface 5.

Since there is an isomorphism H'(T};Z) = H'(Xy1;Z), o € H'(T};Z) has a
corresponding class in H'(X,1;Z) which we will also call a. The homology class of
B =SN%¥y; in H(T}) also has a corresponding class in H;(X,;) which we denote by
[6] . Since the homology class of S is Poincaré dual to a € HY(T};Z), [8] € Hi(%,,)

must be Poincaré¢ dual to a € H'(X, 1;7Z).

Proof of Theorem 6.2. We have a fixed spin structure on 3, ;. Let ¢ be the associated
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Zy-quadratic form. Recall from Chapter 3 that the hypothesis Arf(¥,;,¢) = 0 was
necessary for the Birman-Craggs homomorphism p, : J(2) — Z; to be defined.
We have already seen that the spin structure on Y, ; induces a spin structure o on
T} which in turn induces a spin structure o[s on the surface S defined above. To
prove the theorem, we need to find a primitive cohomology class a € HY(T ;;Z)
such that w.(f) = p,(f). To accomplish this we need to find a surface S such that
Arf(S, q,) = Arf(S', q,) = p,(f). To do so, we will construct a simple closed curve j3
on Y, and calculate the Arf invariant Arf(/, f(3)) with Seifert surface S’

Recall that for genus g = 2 surfaces, the Torelli group J(2) is generated by the
collection of all Dehn twists about bounding simple closed curves, and for genus g > 3,
J(2) is generated by the collection of all Dehn twists about genus 1 cobounding pairs
of simple closed curves, i.e. pairs of non-bounding, disjoint, homologous simple closed
curves that together bound a genus 1 subsurface. Thus it is sufficient to prove the
claim for such elements of J(2).

First assume that ¢ = 2 and C is a genus 1 bounding simple closed curve on
¥91. Let f be a Dehn twist about C. Then C splits ¥, ; into two genus 1 surfaces
Y, and ¥, Let {4, y,} and {xp, yp} be symplectic bases of Hy(%,)/i.(H1(0%,)) and

Hi (%) /ix(H1(0%)), respectively. Then we have two cases:
(1) po(f) = Arf(Sa, qls,) = Arf(5, ql5,) =1
< q(ra) = 4(Ya) = q(xe) = g(yp) = 1, or

(i) p,(f) = Arf(Zq, qls,) = Arf(5, qls,) =0

<= at least one of {q(z,),q(y.)} is 0 and at least one of {q(xs), q(ys)} is 0.

Without loss of generality, let us assume in case (i) that ¢(z,) = ¢(zp) = 0. In
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either case let 8 be a simple closed curve on ¥9; — T ]? which intersects C' exactly
twice and such that [5] € H;(X2;) is homologous to z, + x,. Then we also have
the simple closed curve f(3) on f(¥y:) < T}. Near C' the picture will always be
as in Figure 6.3, and we choose S’ to be this particular surface pictured in Figure

6.3 with boundary 05" = 511 —f(5). This surface S” has spin structure o|g and a

8 . e,

Figure 6.3: Surface S” in T} with boundary g 11 —f (8) (for g = 2)
corresponding quadratic form
Gy + Hi(S'sZ2) /1.(H1(0S" Zs)) — Zs

given by the mod 2 self-linking form. Notice that {x,, [C]} is a symplectic basis for
the quotient H(S';Zs)/i«(H1(0S"; Zs)). Then we have

de

~

wa(f) = Arf(S', ;) = Arf(B, f(B)) = ¢5(2a) g5 ([C))-
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Note that, while C' is a product of commutators on ¥, it is not a product of
commutators on S’". But it is easy to see from Figure 6.3 that ¢/ ([C]) =1k (C,C*) =1

modulo 2. Tt is also clear that ¢/ (z,) = ¢(x,). Thus

wa(f) = 4o (2a) 4o ([C]) = q(a) = Arf(Za, ql5,) = py(f)-

Now assume that ¢ > 3 and C and Cy are genus 1 cobounding pairs of simple
closed curves on Y, ;. Let f be a composition of Dehn twists about € and C5. Then
C7 and Cy cobound a genus 1 subsurface >'. Let {z,y} be a symplectic basis of

H,(X")/i.(H,(0%)). There are two cases:
(1) ¢(Cy) = q(C2) =1 and
(2) ¢(Cy) =q(Cy) =0.

For case (1), we simply let 3 be a simple closed curve on %,; < T} which does
not intersect C; or Cy. Then f will not affect 5, and we can choose S’ to be a
straight cylinder between § and f(5) so that Hi(S';Zs)/i.(H1(0S';Z2)) is trivial.
Thus w,(f) = Arf(S’, ¢,) = 0. We also know from the end of Chapter 3 that in this

case p,(f) = 0.

For case (2), we have two subcases:
(i) po(f) =Arf(X qlsy) =1 <= q(z) =q(y) =1, or
(ii) p,(f) = Arf(¥', qlsv) =0 <= at least one of {q(z),q(y)} is 0.

Again without loss of generality, let us assume in case (i) that ¢(z) = 0. In

both cases let 8 be a simple closed curve on X,; — T' }’ which intersects each of Cy
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and C exactly once and such that [5] € Hy(X,1) is homologous to x + z, where
2’ is any nontrivial homology class in Hy(X,; — X’). Then we also have the simple
closed curve f(3) on f(¥,1) = T}. Near C; and Cy the picture will always be as
in Figure 6.4, and we choose S’ to be this particular surface pictured in Figure 6.4

with boundary 95" = S II —f(/3). Again this surface S’ has spin structure o|g and a

..... 2 I
i R

Figure 6.4: Surface S" in T} with boundary 811 —f (8) (for g > 3)

corresponding quadratic form ¢/, : Hy(S"; Zs)/i.(H1(05"; Zs)) — Zs given by the mod
2 self-linking form. Let y’ be any homology class such that {z,4'} is a symplectic

basis for Hy(S";Zs)/1.(H1(0S"; Zs)). Then we have

de

~

CAf(B, £(B)) = ¢, (2)d, (¥).

wa(f) = Arf(S', ;)

Notice that {x,y'} is also a basis for Hy(X'; Zs) /i.(H1(0Y'; Zs)) and that ¢, (x) = q(z)
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and ¢, () = q(y/'). Thus we see that

walf) = a5 (2)q, (v') = q(x)q(y) = Arf (X', qlsr) = p,(f)-

This completes the proof of Theorem 6.2. 0

As a result of this theorem and Theorem 5.14, we see that 7, contains the nec-
essary information for determining both the Johnson homomorphism 74, and the
Birman-Craggs homomorphisms {pq}. Recall from Chapter 4 that the abelianiza-
tion H1(J(2);Z) = J(2)/ [T (2), T (2)] of the Torelli group is completely determined
by {7'2, pq} since the commutator subgroup of the Torelli group is given by the kernels
of {73, p,} . Namely, we have [J(2), J(2)] = C N J(3), where C = M, ker p,. Suppose
we take a mapping class f € kern,. Certainly it is true that f € C N J(3) since 79
and { pq} factor through 7,. Of course it would be nice to know if the converse is also

true.

Problem 6.3 What is kern,? Is it true that kern, =CN J(3) = [TJ(2),T(2)]?

6.3 Analysis of 7,

In this section we shift our focus to the homomorphism 1, : J (k) — Q™ (F/F},) for
arbitrary values of k. We already know that kern, C J(2k — 1) = ker oy, since the
original bordism homomorphism oy, : J (k) — Q3(F/Fy) factors through Q" (F/Fy).
However, the additional structure on the bordism given by the spin structures may

potentially refine the kernel of 7,..

Problem 6.4 What is the kernel of n;, ¢
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Problem 6.5 Does 1, give a faithful representation of the abelianization of J(k)?
In other words, is Imn, = J(k)/ [T (k), T (k)]?

A sufficient condition for f € kern, is given in the following theorem, but it is
most likely not necessary. Consider the entire collection {w,} of the homomorphisms

We : J(2) — QF™(S1) defined in Section 6.2, and let
B = ﬂ ker w,,

be the common kernel of all w, for all « € H'(T};Z).
Theorem 6.6 If f € BN J(2k + 1), then f € kern,.

Note that the hypothesis requires f € J(2k + 1), not just f € J(2k — 1). The
purpose of this will be revealed in the proof of the theorem, but it is probably not
necessary. However, since the kernel of o is J(2k — 1), it is certainly necessary that
feJk-1).

Before we give the proof of this theorem, let us first set up some necessary notation.
For a more complete discussion, we refer the reader to Whitehead’s book [Wh|. We

will be using the Atiyah-Hirzebruch spectral sequence. In particular, let

. )SPiT F ) )SPin F
J;fq = Image | (ip,), : Qp]iq (F—m> — pr_’m (F_m> ) (%)

Here (F/F,,)® denotes the p-skeleton of K(F/Fy,,1), (i,,), is induced by the in-
clusion map (F/F,,)® — K(F/F,,1), and Q%"(F/F,,) denotes the reduced spin
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bordism group defined by

' F - F
Qspin [ ) o2 spin oy QP [ 2 )
O

Note that if (M, ¢, 0) € J)*, then for [ < m the triple (M, 7y, 0 ¢,0) is in J} ,, where

Ty : K(F/Fn, 1) — K(F/F;, 1) is the projection map. Let E; = H,(F/F,,; Qirin),

and the boundary operator is 2, : E2  — E>_, .. The groups E> may be thought

of as the building blocks for Q#"(F/F,,) with p + ¢ = n. In actuality, the building

blocks are the groups ngq = lim £ . where for r > 3

P9’

ker d" !

oo D.q r—1 . r—1 r—1
Ep,q T Imd ! and dp,q : Ep,q - Epfr+1,q+rf2'
p+r—1,q—r+2
We also have an isomorphism
0~y M m
Ep,q - ‘]p,q/‘]pfl,qﬂ' (**)

Since Q" = 0, we then have Q" (F/F,,) = Q7" (F/F,,) and
Qgpm(F/Fm) = Jg,lo 2 5,11 2 Jfé 2 J(7)7,13 = 0.
Then one can show that the relevant E]‘i‘; are as follows.

ESy = Ej,=kerd;, C H3(F/F,) = Hy(F/F,)
E3y = Ej, =cokerd;y = Hy(F/F; Q™) /Imdj,
EYy, = Ef,=cokerd;,= Hy(F/F,;Q"™)/Imd;,

Egy = 0
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We can now begin our proof of Theorem 6.6.

Proof of Theorem 6.6. We assume that f € BN J(2k + 1), and we want to show
that (77, ¢} ,,0) =0 in QF"(F/F}). Since QF™(F/F,) = J¥,, we may perturb any
(M, ¢,0) € QP™(F/F}) to ensure that ¢(M) is contained in the 3-skeleton (F/F)®
of K(F/Fy,1). That is, by the definition of J5, given in () we can choose ¢' homo-
topic to ¢ so that (M,¢',0) € QF"((F/F)®) and (iz0), (M, ¢, 0) = (M, ¢,0) in
Q" (F/ Fy).

So we start with (T;,gb}’kﬂ,o) € J?'f,gl. Since f € J(2k + 1), Theorem 5.3
says that the pair (T7,¢},.,) = 0 in Qs(F/Fyy1). Thus (¢} ,,)«([T7]) = 0 in
H3(F/Fry1) & B35, and we therefore know from (xx) that (TJ?, ¢}7,€+1,a) must be
in J§1'. Thus by (%) there exists a triple (M, ¢',0") € Q" ((F/Fj+1)?) such that

(ig1), (M, ¢, 0") = (T;, OF ki1 o) in QP (F/Fy41) as indicated in the following di-

agram.
Q" ((F/F re1)®)
(M',¢',0)
" (F/ Fagy1) G (F/F k41)
(T;, }/,2k+17 o)t (T}’, }/,k+17 o)

Lemma 6.7 The homomorphism

5Tt (mern), JE

k+1 k
Jis JT2

1S the zero map.
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Proof. By (xx) we have J5{'/Ji41 & E$9 2 Hy(F/Fyr; ™)/ Imd? . Similarly,

we have J§ | /Jfy = Hy(F/F; QF )/ Im d3 5. So this homomorphism is equivalent to

Hy(F/ Fy1; ™) . Hy(F/Fy; ™)

Im dj Im dj '
In the proof of Corollary 5.12 we showed that Ho(F/Fyy1) — Ho(F/Fy) is the zero
map. Thus Ho(F/Fy,q; Qipm) — Hy(F/Fy; Qipm) is also trivial, and the conclusion

follows. O

Now let us consider the image of (T}, ¢}, ,0) in Q3 "(F/F,) under the ho-
momorphism (7414), @ QF"(F/Fiy1) — QF"(F/Fy). This image is of course
(T}, ¢} 4 0), and since (T}, ¢},,,,0) € J51' Lemma 6.7 tells us that we must have
(T}, ¢} 4, 0) € JE,. Then by () there exists a triple (M", ¢",0") € Q™ ((F/F)W)
such that (i1), (M",¢",0") = (T}, ¢}, 0) in Q™ (F/F) as indicated in the follow-

ing diagram.

G ((F/Fr)D)
le’)pm((F/FkJrl) (2)) (M”7 ¢”7 Oﬂ)
(M/, ¢/’ 0_/)
Q" (F/ Fapyr) — QP (F/F 1) — Q" (F/F )

(T}Yv ¢’},2k+17 U) I (Tflv ¢}/,k+17 U) I (T}lv }/,kv U)
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Now we use the fact that f € B, the common kernel of all w,, for alla € H'(T}; Z).
Recall that wy, = (m4), 07y : J(2) — QF"(SY) and (m,), : QF"(F/Fy) — QF™(SY).
Since the 1-skeleton (F/F;)™) is homotopy equivalent to the wedge of 2g circles, we

have

QP(F/F)Y) = oSty v S

Il

2 .
DO (SY)
and the following commutative diagram.

day (1)

Qgpin (Sl>

(42.1), (Ta),

Ty e 5y T2 g

There is a basis of H* (T};Z) such that for each basis element a; the range of the ho-
momorphism w,, corresponds to a summand of QP ((F/F,)") 259‘;}’ "(S1). Since
feB, (M ¢" o") e UF"(F/F,)D) is trivial in each summand of %Qgpm(sl), and
thus it is trivial in QP ((F/F;)V). Therefore 0 = (i15), (M",¢",0") = (T}, 6} 4,0)
in QP (F/Fy). O
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