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MATH 222 - Calculus II

Geometric, Divergence Test, Integral Test

Instructor: Prof. Cesar Aguilar
Department of Mathematics, SUNY Geneseo
South 325A, aguilar@geneseo.edu

README: In many cases, it is important to properly denote the starting value of the index in a

series, for example
∑

∞

k=0 ak or
∑

∞

n=1 an, etc. However, many theorems hold regardless of where the

index starts and for this reason we sometimes omit the starting of the index and simply write
∑

an or
∑

ak, etc.

Below is the basic theorem regarding the sum, difference, and constant multiples of convergent series.

BASIC THEOREM. Suppose that the series
∑

an and
∑

bn are both convergent, and
that they converge to

∑

an = A and
∑

bn = B. Then

(i) The series
∑

(an + bn) converges to
∑

(an + bn) =
∑

an +
∑

bn = A+B

(ii) The series
∑

(an − bn) converges to
∑

(an − bn) =
∑

an −
∑

bn = A−B

(iii) If c is any constant then the series
∑

can converges to
∑

(can) = c
∑

an = cA

In words, BASIC THEOREM says the following:

BASIC THEOREM in WORDS.

(i) The sum of two convergent series is a convergent series.

(ii) The difference of two convergent series is a convergent series.

(iii) A constant multiple of a convergent series is a convergent series.

The following observation is useful: If the series
∑

∞

n=1 an converges but
∑

∞

n=1 bn diverges then both
∑

∞

n=1(an + bn) and
∑

∞

n=1(an − bn) diverge. Why? Well, if
∑

(an + bn) converges then because
∑

an

also converges then the difference
∑

(an + bn) −
∑

an also converges by BASIC THEOREM. But
∑

(an + bn)−
∑

an =
∑

bn, and we are given that
∑

bn diverges!

Example 1: Suppose that
∑

an = 5,
∑

bn = −11, and
∑

cn = 200. Using the BASIC THEOREM,

the series
∑

(9an + 3bn − 4cn)

is convergent because it is a sum, difference, and constant multiple of convergent series. This series

converges to

∑

(9an + 3bn − 4cn) = 9
∑

an + 3
∑

bn − 4
∑

cn = 9(5) + 3(−11)− 4(200) = −788
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1. The Geometric Series

A very important series is the Geometric series:

∞
∑

n=0

rn = 1 + r + r2 + r3 + r4 + · · ·

We showed that the partial sums of the geometric series are

sn =
1− rn+1

1− r

and therefore if |r| < 1 then

lim
n→∞

sn = lim
n→∞

(

1− rn+1

1− r

)

=
1

1− r

Thus, the Geometric series converges only when |r| < 1 and in this case the series converges to

∞
∑

n=0

rn =
1

1− r
.

When |r| ≥ 1, the Geometric series does not converge.

Example 2: If possible, find the sum of the series

∞
∑

n=1

1

(ln 3)n
=

1

(ln 3)
+

1

(ln 3)2
+

1

(ln 3)3
+ · · ·

Solution: Although this is a Geometric series, the index n begins at n = 1 but the formula
∑

∞

n=0 r
n =

1
1−r

is valid for when n begins at n = 0. To deal with this, we can re-index the series to start at n = 0

as follows:
∞
∑

n=1

1

(ln 3)n
=

∞
∑

n=0

1

(ln 3)n+1

Notice that
∑

∞

n=0
1

(ln 3)n+1 gives the exact same series that we were given:

∞
∑

n=0

1

(ln 3)n+1
=

1

(ln 3)
+

1

(ln 3)2
+

1

(ln 3)3
+ · · ·

Therefore,

∞
∑

n=1

1

(ln 3)n
=

∞
∑

n=0

1

(ln 3)n+1
=

∞
∑

n=0

1

(ln 3)n ln 3

=
1

ln 3

(

∞
∑

n=0

1

(ln 3)n

)

here r = 1
ln 3

< 1

=
1

ln 3

(

1

1− 1
ln 3

)

=
1

ln 3− 1
after simplifying
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Example 3: If possible, find the sum of the series

∞
∑

n=0

(
√
2)n

Solution: This is a Geometric series with r =
√
2. Since

√
2 > 1 the series diverges!

Example 4: Find the sum of the series

∞
∑

n=3

2n

7n
=

2

7
+

4

49
+

8

343
+ · · ·

Solution: This is a Geometric series with n starting at n = 3. We re-index the series to start at n = 0:

∞
∑

n=3

2n

7n
=

∞
∑

n=0

2n+3

7n+3

Now we just pull out 23

73
from the sum and use the formula for the Geometric series:

∞
∑

n=3

2n

7n
=

∞
∑

n=0

2n+3

7n+3
=

∞
∑

n=0

2n23

7n73
=

23

73

∞
∑

n=0

2n

7n
=

23

73

∞
∑

n=0

(

2

7

)n

here r = 2
7
< 1

=
23

73

(

1

1− 2
7

)

=
8

245
after simplifying

Example 5: Determine if the series

∞
∑

n=0

(

2n − 1

3n

)

converges or diverges.

Solution: We can write this series as

∞
∑

n=0

(

2n − 1

3n

)

=
∞
∑

n=0

(

2n

3n
− 1

3n

)

So the series is the difference
∑

∞

n=0(an − bn) where an = 2n

3n
=
(

2
3

)n
and bn = 1

3n
=
(

1
3

)n
. These are

both Geometric series and they converge to

∞
∑

n=0

(

2

3

)n

=
1

1− 2
3

= 3

and
∞
∑

n=0

(

1

3

)n

=
1

1− 1
3

=
3

2
.
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Therefore, by BASIC THEOREM:

∞
∑

n=0

(

2n − 1

3n

)

=
∞
∑

n=0

(

2n

3n
− 1

3n

)

=
∞
∑

n=0

(

2n

3n

)

−
∞
∑

n=0

(

1

3n

)

= 3− 3

2

=
3

2

Example 6: Determine if the series
∞
∑

n=0

(−1)n+1 3

2n
converges or diverges.

Solution: First notice that (−1)n+1 = (−1)n(−1). Therefore,

∞
∑

n=0

(−1)n+1 3

2n
=

∞
∑

n=0

(−1)n(−1)
3

2n

= −3
∞
∑

n=0

(−1)n

2n
take out constant 3(−1)

= −3

∞
∑

n=0

(−1
2
)n here r = − 1

2

= −3
1

1− (−1
2
)

= −2 after simplyfing

2. Testing for Divergence when lim
n→∞

an 6= 0

For a series
∑

∞

n=1 an that converges it must be true that the sequence {an} converges to zero:

lim
n→∞

an = 0.

Another way of saying this is that if lim
n→∞

an does not equal zero then the series
∑

∞

n=1 an

DIVERGES! This is called the Divergence Test.

Example 7: Determine whether the series converges or diverges.

∞
∑

n=1

5n

4n + 3
.
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Solution: Let’s see if limn→∞ an 6= 0:

lim
n→∞

5n

4n + 3
= lim

n→∞

5n ln(5)

4n ln(4)

∞
∞ so use L.H.R

=
ln(5)

ln(4)
lim
n→∞

5n

4n

=
ln(5)

ln(4)
lim
n→∞

(

5

4

)n

= ∞

because limn→∞

(

5
4

)n
= ∞. Therefore, because limn→∞

5n

4n+3
6= 0, the series

∑

∞

n=1
5n

4n+3
diverges.

Example 8: Determine whether the series converges or diverges.

∞
∑

n=1

3n2 + 6n+ 1

11n2 − n + 4

Solution: Let’s see if limn→∞ an 6= 0:

lim
n→∞

(

3n2 + 6n+ 1

11n2 − n+ 4

)

=
3

11

So, because limn→∞ an 6= 0, the series
∑

∞

n=1
3n2+6n+1
11n2−n+4

diverges.

Example 9: Determine whether the series converges or diverges.

∞
∑

k=0

ln
1

3k

Solution: Let’s see if limk→∞ ak 6= 0:

lim
k→∞

ln
1

3k
= ln

(

lim
k→∞

1

3k

)

= −∞

because limk→∞

1
3k

= 0 and limx→0+ ln(x) = −∞. Therefore, the series
∑

∞

k=0 ln
1
3k

diverges because

limk→∞ ak 6= 0.

Example 10: Determine whether the series converges or diverges.

∞
∑

n=1

(

1

n
+

1

2n

)

Solution: Let’s see if limn→∞ an 6= 0:

lim
n→∞

(

1

n
+

1

2n

)

= lim
n→∞

1

n
+ lim

n→∞

1

2n
= 0 + 0 = 0
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So, it is true that lim
n→∞

an = 0 and thus we cannot conclude that the series diverges (we certainly

cannot conclude that it converges). We need to do further analysis. If the series converges then

because
∑

∞

n=1
1
2n

also converges (it is a geometric series with r = 1/2) then the difference

∞
∑

n=1

(

1

n
+

1

2n

)

−
∞
∑

n=1

1

2n

would also converge (by BASIC THEOREM). But the difference is the Harmonic series:

∞
∑

n=1

(

1

n
+

1

2n

)

−
∞
∑

n=1

1

2n
=

∞
∑

n=1

1

n

and we know that the Harmonic series
∑

∞

n=1
1
n

does not converge! Thus, it cannot be true that
∑

∞

n=1

(

1
n
+ 1

2n

)

converges, in other words, it diverges!

3. The Integral Test

The Integral Test says the following.

The Integral Test. Suppose that {an}∞n=1 is a sequence such that for every n it holds
that an ≥ 0 and an = f(n) for some continuous, positive, and decreasing function f on the

interval [1,∞). Then if the improper integral

∫

∞

1

f(x) dx converges (diverges) then the

series
∑

∞

n=1 an also converges (diverges).

It is important to note that you can apply the Integral Test only if you can show that f(x) is a positive

and decreasing function. It most cases, it will be clear that f(x) is positive but to show that f(x) is

decreasing you can use the first derivative test which says that if the derivative f ′(x) < 0 then f(x) is

decreasing.

Example 11: Determine if the sequence converges or diverges.

∞
∑

n=1

n

n2 + 1

Solution: The sequence an = n

n2+1
is positive for all n = 1, 2, 3 . . .. Consider the function f(x) = x

x2+1
.

This function is decreasing for x ≥ 1 because

f ′(x) =
1− x2

(x2 + 1)2
< 0

when x > 1. It is clear that f(x) is positive and continuous for x ≥ 1. So, we can apply the Integral
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test:
∫

∞

1

x

x2 + 1
dx = lim

t→∞

∫

t

1

x

x2 + 1
dx substitution u = x

2 + 1

= lim
t→∞

1

2
ln |x2 + 1|

∣

∣

∣

t

1

= lim
t→∞

[

1

2
ln |t2 + 1| − 1

2
ln |2|

]

= ∞

because limt→∞ ln |t2+1| = ∞. Therefore, because the improper integral
∫

∞

1
x

x2+1
dx diverges then the

series
∑

∞

n=1
n

n2+1
also diverges.

Example 12: Determine if the sequence converges or diverges.

∞
∑

n=2

1

n(lnn)2

Solution: Notice that the index starts at n = 2 and not at n = 1. However, the Integral Test is valid

on any interval [N,∞) where N is the starting point of the series. The sequence an = 1
n(lnn)2

is positive

for all n = 2, 3, . . .. Consider the function f(x) = 1
x(lnx)2

= (x(ln x)2)−1. It is clear that f(x) is positive

and continuous on the interval [2,∞). To see if it is decreasing compute its derivative:

f ′(x) = (−1)(x(ln x)2)−2(ln(x) + 2x ln(x) 1
x
) = −(x(ln x)2)−2(ln(x) + 2 ln(x)) = − 3 ln(x)

(x(ln x)2)2
.

On the interval [2,∞), f ′(x) < 0, and so f(x) is decreasing on the interval [2,∞). So, we can apply

the Integral Test on the interval [2,∞):

∫

∞

2

1

x(ln x)2
dx = lim

t→∞

∫

t

2

1

x(ln x)2
dx substitution u = lnx

= lim
t→∞

−(ln x)−1
∣

∣

∣

t

2

= lim
t→∞

[

− 1

ln t
+

1

ln(2)

]

=
1

ln(2)

Therefore, because the improper integral
∫

∞

2
1

x(lnx)2
converges, the series

∑

∞

n=2
1

n(lnn)2
also converges.

Example 13: Determine if the sequence converges or diverges.

∞
∑

n=1

8 arctan(n)

1 + n2
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Solution: The sequence an = 8 arctan(n)
1+n2 is positive for all n = 1, 2, . . .. Consider the function f(x) =

8 arctan(x)
1+x2 . Clearly, f(x) is positive and continuous for x ≥ 1. To see if it is decreasing, we compute:

f ′(x) =
1− 2x arctan(x)

(1 + x2)2

The sign of f ′(x) depends only on the sign of the numerator 1− 2x arctan(x) because the denominator

(1+x2)2 is clearly positive for all x. The function 2x arctan(x) is an increasing function and when x = 1

we have 2(1) arctan(1) = 2π

4
= π

2
. Therefore the numerator at x = 1 is 1 − π

2
< 0. So, at x = 1, the

numerator is negative. Since the term 2x arctan(x) is increasing, we have 2 arctan(1) ≤ 2x arctan(x)

for every x ≥ 1, and therefore −2 arctan(1) ≥ −2x arctan(x), and therefore

0 > 1− 2 arctan(1) ≥ 1− 2x arctan(x)

So, f ′(x) < 0 for every x ≥ 1, and therefore f(x) is decreasing for x ≥ 1. We can therefore apply the

Integral Test:

∫

∞

1

8 arctan(x)

1 + x2
dx = lim

t→∞

∫

t

1

8 arctan(x)

1 + x2
dx substitution u = arctan(x)

= lim
t→∞

8
1

2
(arctan(x))2

∣

∣

∣

t

1

= lim
t→∞

4
[

(arctan(t))2 − (arctan(1))2
]

= 4

[

(π

2

)2

−
(π

4

)2
]

Therefore, because the improper integral
∫

∞

1
8 arctan(x)

1+x2 dx converges, the series
∑

∞

n=1
8 arctan(n)

1+n2 also con-

verges.
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