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Preliminaries

In this short chapter, we will briefly review some basic set notation,

proof methods, functions, and countability. The presentation of these

topics is intentionally brief for two reasons: (1) the reader is likely

familar with these topics, and (2) we include only the necessary material

needed to start doing real analysis.

1.1 Sets, Numbers, and Proofs

Let S be a set. If x is an element of S then we write x ∈ S, otherwise

we write that x /∈ S. A set A is called a subset of S if each element of

A is also an element of S, that is, if a ∈ A then also a ∈ S. To denote

that A is a subset of S we write A ⊂ S.

Now let A and B be subsets of S. If A ⊂ B and B ⊂ A then A and

B are said to be equal and we write that A = B. The union of A and

B is the set

A ∪ B = {x ∈ S | x ∈ A or x ∈ B}

and the intersection of A and B is the set

A ∩B = {x ∈ S | x ∈ A and x ∈ B}.

1



1.1. SETS, NUMBERS, AND PROOFS

A B
A∩B

S

A B

A∪B

S

Figure 1.1: Set intersection A ∩ B and union A ∪B

A graphical representation of set unions and intersections are shown in

Figure 1.1.

The empty set is the set that does not contain any elements and

is denoted by ∅. We note that ∅ ⊂ S for any set S. The sets A and B

are disjoint if A ∩B = ∅. The complement of A in S is the set

S\A = {x ∈ S | x /∈ A},

in other words, S\A consists of the elements in S not contained in A.

We sometimes use the shorter notation Ac for S\A when it is clear that

it is the complement of A relative to S.

The Cartesian product of A and B, denoted by A×B, is the set

of ordered pairs (a, b) where a ∈ A and b ∈ B, in other words,

A× B = {(a, b) | a ∈ A, b ∈ B}.

A partition of a set S is a set Π whose elements are subsets of S

such that Π does not contain the empty set, the union of the elements

of Π equals S, and any two distinct elements of Π are disjoint.

Lastly, for any set S, the power set of S is the set of all subsets of

S, and is denoted by P(S).
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1.1. SETS, NUMBERS, AND PROOFS

Example 1.1.1. Let A and B be subsets of a set S. Show that

(A ∪B)c = Ac ∩ Bc.

Solution. We first show that (A∪B)c ⊂ Ac ∩Bc. If x ∈ (A∪B)c then

by definition x /∈ (A∪B) and therefore x /∈ A and x /∈ B. Thus, x ∈ Ac

and x ∈ Bc, that is, x ∈ Ac ∩Bc.

Now suppose that x ∈ Ac ∩ Bc, that is, suppose that x ∈ Ac and

x ∈ Bc. Thus, x /∈ A and x /∈ B and thus x /∈ (A ∪ B). By definition,

x ∈ (A ∪ B)c and this proves that Ac ∩Bc ⊂ (A ∪ B)c.

We use the symbol N to denote the set of natural numbers, that

is,

N = {1, 2, 3, 4, . . .}.

The set of integers is denoted by Z so that

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

The set of rational numbers is denoted by

Q =

{
p

q
| p, q ∈ Z, q 6= 0

}

.

Notice that we have the following chain of set inclusions:

N ⊂ Z ⊂ Q.

We now review the most commonly used methods of proof. To that

end, recall that a logical statement is a declarative sentence that can

be unambiguously decided to be either true or false. A theorem is

a logical statement that has been proved to be true using a sequence

of true statements and deductive reasoning. Many theorems are usu-

ally written as a conditional statement of the form “if P then Q” or

3



1.1. SETS, NUMBERS, AND PROOFS

symbolically “P ⇒ Q”. The statement P is called the hypothesis

or assumption and Q is called the conclusion. Below are the main

techniques used to prove the statement “P ⇒ Q”:

• Direct Proof : To prove the statement “P ⇒ Q”, assume that

the statement P is true and show by combining axioms, defini-

tions, and earlier theorems that Q is true. This should be the

first method you attempt.

• Mathematical Induction: Covered in Section 1.2.

• By Contraposition: Proving the statement “P ⇒ Q” by prov-

ing the logically equivalent statement “not Q⇒ not P”. Do not

confuse this with proof by contradiction.

• By Contradiction: To prove the statement “P ⇒ Q” by con-

tradiction, one assumes that “P ⇒ Q” is false and then show that

some contradiction results. Assuming that “P ⇒ Q” is false is

to assume that P is true and Q is false. Using these to latter as-

sumptions, one attempts to derive at a contradiction of the form

“R and not R”, where R is some statement. One disadvantage

with proof by contradiction is that the logical contradiction that

one is seeking “R and not R” is not known in advance so that

the goal of the proof is unclear. Proof by contradiction frequently

gets confused with proof by contraposition in the following way

(do not do this): To prove that “P ⇒ Q”, assume that P is true

and suppose that Q is not true. After some work using only the

assumption that Q is not true you show that P is not true and

thus you say that there is a contradiction because you assumed

that P is true. What you have really done is proved the contra-

positive statement. Thus, if you believe that you are proving a

4



1.1. SETS, NUMBERS, AND PROOFS

statement by contradiction, take a close look at your proof to see

if what you have is a proof by contraposition.

In the following example, we use both proof by contradiction and

proof by contraposition.

Example 1.1.2. Prove that if x and y are consecutive integers then

x+ y is odd.

Solution. Assume that x and y are consecutive integers (i.e. assume

P ) and assume that x+ y is not odd (i.e. assume not Q). Since x + y

is not odd then x+ y 6= 2n+ 1 for all integers n. However, since x and

y are consecutive, and assuming without loss of generality that x < y,

we have that x+ y = 2x+1. Thus, we have that x+ y 6= 2n+1 for all

integers n and also that x+ y = 2x+ 1. Since x is an integer we have

reached a contradiction. Hence, if x and y are consecutive integers then

x+ y is odd.

Now we prove the statement by contraposition. Without loss of

generality, suppose that x < y. Assume that x+ y is even. Then there

exists an integer n such that x + y = 2n and therefore x = 2n − y.

Consequently,

y − x = y − (2n− y) = 2(y − n).

Hence, since (y − n) is an integer, y − x 6= 1 and consequently x and y

are not consecutive integers.

In general, if the statement “P ⇒ Q” is true then the converse

conditional statement “Q ⇒ P” is not necessarily true. For example,

the converse conditional statement in Example 1.1.2 is “if x + y is

odd then x and y are consecutive integers” is easily shown to be false

(e.g., x = 2 and y = 5). The conjoined statement “P ⇒ Q and

Q ⇒ P”, alternatively written as “P if and only if Q” or symbolically
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1.1. SETS, NUMBERS, AND PROOFS

“P ⇔ Q”, is called a biconditional statement. Thus, to prove that

the biconditional statement “P ⇔ Q” is true one must prove that both

“P ⇒ Q” and “Q⇒ P” are true.

Example 1.1.3. Let A, B, and C be subsets of a set S. Prove that

(A ∪B) ⊂ C if and only if A ⊂ C and B ⊂ C.

6



1.1. SETS, NUMBERS, AND PROOFS

Exercises

Exercise 1.1.1. Let A and B be subsets of a set S. Show that A ⊂ B

if and only if Bc ⊂ Ac

Exercise 1.1.2. Find the power set of S = {x, y, z, w}.

Exercise 1.1.3. Let A = {α1, α2, α3} and let B = {β1, β2}. Find

A× B.

Exercise 1.1.4. Let x ∈ Z. Prove that if x2 is even then x is even. Do

not use proof by contradiction.

Exercise 1.1.5. Prove that if x and y are even natural numbers then

xy is even. Do not use proof by contradiction.

Exercise 1.1.6. Prove that if x and y are rational numbers then x+ y

is a rational number. Do not use proof by contradiction.

Exercise 1.1.7. Let x and y be natural numbers. Prove that x and y

are odd if and only if xy is odd. Do not use proof by contradiction.

7



1.2. MATHEMATICAL INDUCTION

1.2 Mathematical Induction

Mathematical induction is a powerful proof technique that relies on the

following property of N.

Axiom 1.2.1: Well-Ordering Principle

Every non-empty subset of N contains a smallest element.

In other words, if S is a non-empty subset of N then there exists a ∈ S

such that a ≤ x for all x ∈ S. The smallest element of S is denoted

by min(S). Thus, min(S) ∈ S and min(S) ≤ x for all x ∈ S. We now

state and prove the principle of Mathematical Induction.

Theorem 1.2.2: Mathematical Induction

Suppose that S is a subset of N with the following properties:

(i) 1 ∈ S

(ii) If k ∈ S then also k + 1 ∈ S.

Then S = N.

Proof. Suppose that S is a subset of N with properties (i) and (ii) and

let T = N\S. Proving that S = N is equivalent to proving that T is

the empty set. Suppose then by contradiction that T is non-empty.

By the well-ordering principle of N, T has a smallest element, say it

is a ∈ T . Because S satisfies property (i) we know that 1 /∈ T and

therefore a > 1. Now since a is the least element of T , then a− 1 ∈ S

(we know that a− 1 > 0 because a > 1). But since S satisfies property

(ii) then (a−1)+1 ∈ S, that is, a ∈ S. This is a contradiction because

we cannot have both a ∈ T and a ∈ S. Thus, T is the empty set, and
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1.2. MATHEMATICAL INDUCTION

therefore S = N.

Mathematical induction is frequently used to prove formulas or in-

equalities involving the natural numbers. For example, consider the

validity of the formula

1 + 2 + 3 + · · ·+ n = 1
2n(n+ 1) (1.1)

where n ∈ N. In words, the identity (1.1) says that the sum of all the

integers from 1 to n equals 1
2n(n+ 1). We use induction to show that

this formula is true for all n ∈ N. Let S be the subset of N consisting

of the natural numbers that satisfy (1.1), that is,

S = {n ∈ N | 1 + 2 + 3 + · · ·+ n = 1
2n(n+ 1)}.

If n = 1 then
1
2n(n+ 1) = 1

2(1 + 1) = 1.

Thus, 1
2n(n+1) is equal to the sum of all the integers from 1 to n = 1.

Hence, (1.1) is true when n = 1 and thus 1 ∈ S. Now suppose that

some k ∈ N satisfies (1.1), that is, suppose that k ∈ S. Then we may

write that

1 + 2 + · · ·+ k = 1
2
k(k + 1). (1.2)

We will prove that the integer k + 1 also satisfies (1.1). To that end,

adding k + 1 to both sides of (1.2) we obtain

1 + 2 + · · ·+ k + (k + 1) = 1
2k(k + 1) + (k + 1).

Now notice that we can factor (k + 1) from the right-hand side and

through some algebraic steps we obtain that

1 + 2 + · · ·+ k + (k + 1) = 1
2k(k + 1) + (k + 1)

= (k + 1)[12k + 1]

= 1
2(k + 1)(k + 2).

9



1.2. MATHEMATICAL INDUCTION

Hence, (1.1) also holds for n = k + 1 and thus k + 1 ∈ S. We have

therefore proved that S satisfies properties (i) and (ii), and therefore

by mathematical induction S = N, or equivalently that (1.1) holds for

all n ∈ N.

Example 1.2.3. Use mathematical induction to show that 2n ≤ (n+1)!

holds for all n ∈ N.

Example 1.2.4. Let r 6= 1 be a constant. Use mathematical induction

to show that

1 + r + r2 + · · · + rn =
1− rn+1

1− r

holds for all n ∈ N.

Example 1.2.5 (Bernoulli’s inequality). Prove that if x > −1 then

(1 + x)n ≥ 1 + nx for all n ∈ N.

Proof. The statement is trivial for n = 1. Assume that for some k ∈ N

it holds that (1 + x)k ≥ 1 + kx. Since x > −1 then x + 1 > 0 and

therefore

(1 + x)k(1 + x) ≥ (1 + kx)(1 + x)

= 1 + (k + 1)x+ kx2

≥ 1 + (k + 1)x.

Therefore, (1 + x)k+1 ≥ 1 + (k + 1)x, and the proof is complete by

induction.

There is another version of mathematical induction called the Prin-

ciple of Strong Induction which we now state.
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1.2. MATHEMATICAL INDUCTION

Theorem 1.2.6: Strong Induction

Suppose that S is a subset of N with the following properties:

(i) 1 ∈ S

(ii) If {1, 2, . . . , k} ⊂ S then also k + 1 ∈ S.

Then S = N.

Do you notice the difference between induction and strong induction?

It turns out that the two statements are equivalent, in other words, if S

satisies either one of properties (i)-(ii) of induction or strong induction

then we may conclude that S = N. The upshot with strong induction

is that one is able to use the stronger condition that {1, 2, . . . , k} ⊂ S

to prove that k + 1 ∈ S.

11
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Exercises

Exercise 1.2.1. Prove that n < 2n for all n ∈ N.

Exercise 1.2.2. Prove that 2n < n! for all n ≥ 4, n ∈ N.

Exercise 1.2.3. Use induction to prove that if S has n elements then

P(S) has 2n elements. Hint: If S is a set with n + 1 elements, for

instance S = {x1, x2, . . . , xn, xn+1}, then argue that P(S) = P(S̃) ∪ T
where S̃ = S\{xn+1} and T consists of subsets of S that contain xn+1.

How many sets are in P(S̃) and how many are in T ? And what is

P(S̃) ∩ T ? Explain carefully.
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1.3. FUNCTIONS

1.3 Functions

Let A and B be sets. A function from A to B is a rule that assigns

to each element x ∈ A one element y ∈ B. The set A is called the

domain of f and B is called the co-domain of f . We usually denote

a function with the notation f : A → B, and the assignment of x to y

is written as y = f(x). We also say that f is a mapping from A to B,

or that f maps A into B. The element y assigned to x is called the

image of x under f . The range of f , denoted by f(A), is the set

f(A) = {y ∈ B | ∃ x ∈ A, y = f(x)}.

In the above definition of f(A), we use the symbol ∃ as a short-hand for

“there exsits”. By definition, f(A) ⊂ B but in general we do not have

that f(A) = B, in other words, the range of a function is generally a

strict subset of the function’s co-domain.

Example 1.3.1. Consider the mapping f : Q → Z defined by

f(x) =

{

1, x ≥ 0

−1, x < 0.

The image of x = 1/2 under f is f(1/2) = 1. The range of f is

f(Q) = {1,−1}.

Example 1.3.2. Consider the function f : N → P(N) defined by

f(n) = {1, 2, . . . , n}.

The set S = {2, 4, 6, 8, . . . , } of even numbers is an element of the co-

domain P(N) but is not in the range of f . As another example, the set

N ∈ P(N) itself is not in the range of f .

Function’s whose range is equal to it’s co-domain are given a special

name.

13



1.3. FUNCTIONS

Definition 1.3.3: Surjection

A function f : A → B is said to be a surjection if for any y ∈ B

there exists x ∈ A such that f(x) = y.

In other words, f : A→ B is a surjection if f(A) = B.

Example 1.3.4. The function f : Q → Q defined by f(x) = x2 is not

a surjection. For example, y = −1 is clearly not in the range of f since

f(x) = x2 6= −1 for all x ∈ Q. On the other hand, y = 121
64 is in the

range of f since f(11/8) = 121
64
. Is y = 2 in the range of f?

Example 1.3.5. Consider the function f : P(N) → N defined by

f(S) = min(S).

Prove that f is a surjection.

Solution. To prove that f is a surjection, we must show that for any

element y ∈ N (the co-domain), there exists S ∈ P(N) (the domain)

such that f(S) = y. Consider then an arbitrary y ∈ N. Let S = {y}
and thus clearly S ∈ P(N). Moreover, it is clear that min(S) = y and

thus f(S) = min(S) = y. This proves that f is a surjection.

Notice that in Example 1.3.5, given any y ∈ N there are many sets

S ∈ P(N) such that f(S) = y. This leads us to the following definition.

Definition 1.3.6: Injection

A function f : A → B is said to be an injection if no two distinct

elements of A are mapped to the same element in B, in other words,

for any x1, x2 ∈ A, if x1 6= x2 then f(x1) 6= f(x2).

14



1.3. FUNCTIONS

In other words, f is an injection if whenever f(x1) = f(x2) then neces-

sarily x1 = x2.

Example 1.3.7. The function f : Q → Q defined by f(x) = x2 is not

an injection. For example, f(−2) = f(2) = 4.

Example 1.3.8. Consider again the function f : N → P(N) defined

by

f(n) = {1, 2, . . . , n}.
This function is an injection. Indeed, if f(n) = f(m) then {1, 2, . . . , n} =

{1, 2, . . . , m} and therefore n = m. Hence, whenever f(n) = f(m) then

necessarily n = m and this proves that f is an injection.

Example 1.3.9. Consider the function f : P(N) → N defined by

f(S) = min(S)

Is f an injection?

Example 1.3.10. Consider the function f : N → N× N defined by

f(n) = (2n2, n+ 1)

Show that f is an injection.

Definition 1.3.11: Bijection

A function f : A → B is said to be a bijection if it is a surjection

and an injection.

Example 1.3.12. Suppose that f : P → Q is an injection. Prove that

the function f̃ : P → f(P ) defined by f̃(x) = f(x) for x ∈ P is a

bijection.

15



1.3. FUNCTIONS

Solution. By construction, f̃ is a surjection. If f̃(x) = f̃(y) then f(x) =

f(y) and then x = y since f is an injection. Thus, f̃ is an injection and

this proves that f̃ is a bijection.

Example 1.3.13. Prove that f : Q\{0} → Q\{0} defined by f(pq) =
q
p

is a bijection, where gcd(p, q) = 1.

Suppose that f : A → B is a bijection and define the function g :

B → A as follows: for b ∈ B let g(b) be the (necessarily unique) element

in A such that f(g(b)) = b. Notice that by definition, g(f(a)) = a. The

function g is called the inverse of f and we write instead g = f−1. It

is not hard to show that g is a bijection and that g−1 = f .

Given functions f : A → B and g : B → C, the composition of g

and f is the function (g ◦ f) : A→ C defined as (g ◦ f)(a) = g(f(a)).

Theorem 1.3.14

If f : A → B and g : B → C are injections (surjections) then the

composition (g ◦ f) : A→ C is an injection (surjection).

Proof. Assume that f : A → B and g : B → C are injections. To

prove that (g ◦f) is an injection, suppose that (g ◦f)(x1) = (g ◦f)(x2).
Then by definition of (g ◦ f), it follows that g(f(x1)) = g(f(x2)). Now

since g is an injection then necessarily f(x1) = f(x2) and since f is an

injection then necessarily x1 = x2. Thus if (g ◦ f)(x1) = (g ◦ f)(x2)
then x1 = x2 and this proves that (g ◦ f) is an injection.

Now suppose that f and g are surjections. To prove that (g ◦ f) :
A → C is a surjection, let z ∈ C be arbitrary. Since g is a surjection,

there exists y ∈ B such that g(y) = z. Since f is a surjection, there

exists x ∈ A such that y = f(x). Thus, for x ∈ A we have that

(g ◦ f)(x) = g(f(x)) = g(y) = z. Hence, for arbitrary z ∈ C there

16
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exists x ∈ A such that (g ◦ f)(x) = z and this proves that (g ◦ f) is a
surjection.

The following result is then an immediate application of Theorem 1.3.14

and the definition of a bijection.

Corollary 1.3.15

The composition of two bijections is a bijection.

17
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Exercises

Exercise 1.3.1. Consider the function f : N → Q defined as f(n) = 1
n.

Is f an injection? Is f a surjection?

Exercise 1.3.2. Consider the function f : N × N → N defined as

f(n,m) = nm. Is f an injection? Is f a surjection?

Exercise 1.3.3. Consider the function f : Q → Q defined as f(x) =

(x− 2)(x− 6). Is f an injection? If f a surjection?

Exercise 1.3.4. Let f : N → Z be the function defined as

f(n) =

{
n
2 , if n is even,

− (n−1)
2 , if n is odd.

Prove that f is a bijection.

Exercise 1.3.5. The sign of a rational number x ∈ Q is defined as

sgn(x) = x/|x| if x 6= 0, where |x| is the absolute value of x, and

sgn(0) = 1. For example, sgn(−3) = −1 and sgn(2) = 1. Prove that

the function f : Z → {−1, 1} × N defined as

f(x) = (sgn(x), |x|+ 1)

is a bijection.

18
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1.4 Countability

A non-empty set S is said to be finite if there is a bijection from

{1, 2, . . . , n} onto S for some n ∈ N. In this case, we say that S

contains n elements and we write |S| = n. If S is not finite then we say

that S is infinite.

Example 1.4.1. Let f : P → Q be an injection. If P is an infinite set

then f(P ) is an infinite set.

Solution. The proof is by contraposition. Suppose that f(P ) is a

finite set containing n elements. Then there exists a bijection g :

{1, 2, . . . , n} → f(P ). The function f̃ : P → f(P ) defined as f̃(x) =

f(x) for x ∈ P is a bijection (Example 1.3.12) and therefore (f̃−1 ◦ g) :
{1, 2, . . . , n} → P is a bijection. Thus P is a finite set and completes

the proof.

We now introduce the notion of a countable set.

Definition 1.4.2: Countability

Let S be a set.

(i) The set S is countably infinite if there is a bijection from

N onto S.

(ii) The set S is countable if S is either finite or countably infi-

nite.

(iii) The set S is uncountable if S is not countable.

Roughly speaking, a set S is countable if the elements of S can be

listed or enumerated in a systematic manner. To see how, suppose
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that S is countably infinite and let f : N → S be a bijection. Then the

elements of S can be listed as

S = {f(1), f(2), f(3), f(4), . . .}.

Hence, although sets have no predetermined order, the elements of a

countable set can be ordered.

Example 1.4.3. The set S of odd natural numbers is countable. Recall

that n ∈ N is an odd positive integer if n = 2k − 1 for some k ∈ N. A

bijection f : N → S from N to S is f(k) = 2k − 1. The function f can

be interpreted as a listing of the odd natural numbers in the natural

way:

S = {f(1), f(2), f(3), . . .} = {1, 3, 5, . . .}.

Example 1.4.4. The natural numbers S = N are countable. A bijec-

tion f : N → S is f(n) = n, i.e., the identity mapping.

Example 1.4.5. The set of integers Z is countable. A bijection f from

N to Z can be defined by listing the elements of Z as follows:

N : 1 2 3 4 5 6 7 . . .
↓ ↓ ↓ ↓ ↓ ↓ ↓ . . .

Z : 0 1 −1 2 −2 3 −3 . . .

To be more precise, f is the function

f(n) =

{
n
2 , if n is even,

− (n−1)
2 , if n is odd.

It is left as an exercise to show that f is indeed a bijection.

Example 1.4.6. The set N×N is countable. There are many bijections

from N to N×N but a particularly interesting one is the function defined

as follows. Consider the family of lines

Lk = {(x, y) ∈ N× N | y = −x+ k + 1}
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for k ∈ N. There are k points on the line Lk, namely (j, k + 1− j) for

1 ≤ j ≤ k, and we say that (j, k+1− j) is the jth point on the line Lk.

The point (x, y) ∈ N×N is contained in the line Lk where k = x+y−1.

Thus, one way to enumerate the points in N × N is to assign to each

(x, y) ∈ Lk the number ρ(x, y) obtained by adding all points on the

lines L1, . . . , Lk−1 and adding the position of (x, y) on line Lk, namely

x. Thus,

ρ(x, y) = 1 + 2 + . . .+ (k − 1) + x

=
1

2
(k − 1)k + x

=
1

2
(x+ y − 2)(x+ y − 1) + x.

The function ρ is called the Cantor pairing function. Alternatively,

we use a modified version of ρ which we call τ : N×N → N and defined

as

τ(x, y) =

{

ρ(x, y), if (x+ y − 1) is odd,

ρ(y, x), if (x+ y − 1) is even.

We now find a formula for the inverse of τ which we call the Cantor

snake. To write down the formula for τ−1, we first let for each n ∈ N

m = floor

(

−1 +
√

1 + 8(n− 1)

2

)

and we note thatm ≥ 0 is the smallest integer such that 1
2m(m+1) < n.

We then set p(n) = n− 1
2
m(m+ 1) a then

τ−1(n) =

{

(p(n),−p(n) +m+ 2), if m is even

(−p(n) +m+ 2, p(n)), if m is odd.

We note that the point (x, y) = τ−1(n) is on the line Lk with k = m+1.

The range of τ−1 is

τ−1(N) = {(1, 1), (2, 1), (1, 2), (1, 3), (2, 2), (3, 1), . . .}.
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Figure 1.2: The image of the Cantor snake

The sequence of pairs (x, y) ∈ N× N generated by τ−1 for 1 ≤ n ≤ 55

are shown in Figure 1.2.

Example 1.4.7. Suppose that f : T → S is a bijection. Prove that T

is countable if and only if S is countable.

Solution. Suppose that T is countable. Then by definition there exists

a bijection g : N → T . Since g and f are bijections, the composite

function (f ◦ g) : N → S is a bijection. Hence, S is countable.

Now suppose that S is countable. Then by definition there exists

a bijection h : N → S. Since f is a bijection then the inverse function

f−1 : S → T is also a bijection. Therefore, the composite function

(f−1 ◦ h) : N → T is a bijection. Thus, T is countable.

As the following theorem states, countability, or lack thereof, can
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be inherited via set inclusion.

Theorem 1.4.8: Inheriting Countability

Let S and T be sets and suppose that T ⊂ S.

(i) If S is countable then T is also countable.

(ii) If T is uncountable then S is also uncountable.

Proof. To prove (i), let S be a countable set and let f : S → N be

a bijection. Define the mapping f̃ : T → f(T ) by f̃(x) = f(x). By

Example 1.3.12, f̃ is a bijection. Therefore, since f(T ) is a subset of

N, and thus countable, then T is countable. The proof of (ii) is left as

an exercise.

Example 1.4.9. Let S be the set of odd natural numbers. In Exam-

ple 1.4.3, we proved that the odd natural numbers are countable by

explicitly constructing a bijection from N to S. Alternatively, since N

is countable and S ⊂ N then by Theorem 1.4.8 S is countable. More

generally, any subset of N is countable.

If S is known to be a finite set then by Definition 1.4.2 S is countable,

while if S is infinite then S may or may not be countable (we have yet to

encounter an uncountable set but soon we will). To prove that a given

infinite set S is countable we could use Theorem 1.4.8 if it is applicable

but otherwise we must use Definition 1.4.2, that is, we must show that

there is a bijection from S to N, or equivalently from N to S. However,

suppose that we can only prove the existence of a surjection f from N

to S. The problem might be that f is not an injection and thus not a

bijection. However, the fact that f is a surjection from N to S somehow

says that S is no “larger” than N and gives evidence that perhaps S is
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countable. Could we use a surjection f : N → S to construct a bijection

g : N → S? Or, what if instead we had an injection g : S → N; could

we use g to construct a bijection f : S → N? The following theorem

says that it is indeed possible to do both.

Theorem 1.4.10: Countability Relaxations

Let S be a set.

(i) If there exists an injection g : S → N then S is countable.

(ii) If there exists a surjection f : N → S then S is countable.

Proof. (i) Let g : S → N be an injection. Then the function g̃ : S →
g(S) defined by g̃(s) = g(s) for s ∈ S is a bijection. Since g(S) ⊂ N

then g(S) is countable. Therefore, S is countable also.

(ii) Now let f : N → S be a surjection. For s ∈ S let f−1(s) = {n ∈
N | f(n) = s}. Since f is a surjection, f−1(s) is non-empty for each

s ∈ S. Consider the function h : S → N defined by h(s) = min f−1(s).

Then f(h(s)) = s for each s ∈ S. We claim that h is an injection.

Indeed, if h(s) = h(t) then f(h(s)) = f(h(t)) and thus s = t, and the

claim is proved. Thus, h is an injection and then by (i) we conclude

that S is countable.

We must be careful when using Theorem 1.4.10; if f : N → S is

known to be an injection then we cannot conclude that S is countable

and similarly if f : S → N is known to be a surjection then we cannot

conclude that S is countable.

Example 1.4.11. In this example we will prove that the union of

countable sets is countable. Hence, suppose that A and B are count-

able. By definition, there exist bijections f : N → A and g : N → B.
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Consider the function h : N → A ∪ B defined as follows:

h(n) =

{

f((n+ 1)/2), if n is odd,

g(n/2), if n is even.

We claim that h is a surjection (Loosely speaking, if A = {a1, a2, . . . , }
and B = {b1, b2, . . . , }, then the function h lists the elements of A ∪ B
as A ∪ B = {a1, b1, a2, b2, a3, b3, . . . , }.). To see this, let x ∈ A ∪ B. If

x ∈ A then x = f(k) for some k ∈ N. Then h(2k − 1) = f(k) = x. If

on the other hand x ∈ B then x = g(k) for some k ∈ N. Then h(2k) =

g(k) = x. In either case, there exists n ∈ N such that h(n) = x, and

thus h is a surjection. By Theorem 1.4.10, the set A ∪B is countable.

This example can be generalized as follows. Let A1, A2, A3, . . . , be

countable sets and let S =
⋃∞

k=1Ak. Then S is countable. To prove

this, we first enumerate the elements of each Ak as follows:

A1 = {a1,1, a1,2, a1,3, . . .}
A2 = {a2,1, a2,2, a2,3, . . .}
A3 = {a3,1, a3,2, a3,3, . . .}
· · · · · · · · ·

Formally, we have surjections fk : N → Ak for each k ∈ N. Consider

the mapping ϕ : N× N → S defined by

ϕ(m, n) = am,n = fm(n).

It is clear that ϕ is a surjection. Since N × N is countable, there is a

surjection φ : N → N×N, and therefore the composition (ϕ◦φ) : N → S

is a surjection. Therefore, S is countable.

The following theorem is perhaps surprising.
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Theorem 1.4.12

The set of rational numbers Q is countable.

Proof. LetQ>0 be the set of all positive rational numbers and letQ<0 be

the set of all negative rational numbers. Clearly, Q = Q<0∪{0}∪Q>0,

and thus it is enough to show that Q<0 and Q>0 are countable. In fact,

we have the bijection h : Q>0 → Q<0 given by h(x) = −x, and thus if

we can show that Q>0 is countable then this implies that Q<0 is also

countable. In summary, to show that Q is countable it is enough to

show that Q>0 is countable. To show that Q>0 is countable, consider

the function f : N× N → Q>0 defined as

f(p, q) =
p

q
.

By definition, any rational number x ∈ Q>0 can be written as x = p
q

for some p, q ∈ N. Hence, x = f(p, q) and thus x is in the range of f .

This shows that f is a surjection. Now, because N × N is countable,

there is a surjection g : N → N × N and thus (f ◦ g) : N → Q>0 is a

surjection. By Theorem 1.4.10, this proves that Q>0 is countable and

therefore Q is countable.

We end this section with Cantor’s theorem named after mathemati-

cian Georg Cantor (1845-1918). Cantor is considered as the creator

of set theory. Originally interested in analytical problems having as

their root problems in physics, and in particular in characterizing solu-

tions to equations describing heat conduction, Cantor discovered that

infinite sets come in many possible sizes. One of Cantor’s fascinating

discoveries, which initially were very controversial at the time, led to

the following theorem [1].
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Theorem 1.4.13: Cantor’s Theorem (1891)

For any set S, there is no surjection of S onto the power set P(S).

Proof. Suppose by contradiction that f : S → P(S) is a surjection. By

definition, for each a ∈ S, f(a) is a subset of S. Consider the set

C = {a ∈ S | a /∈ f(a)}.

Since C is a subset of S then C ∈ P(S). Since f is a surjection, there

exists x ∈ S such that C = f(x). One of the following must be true:

either x ∈ C or x /∈ C. If x ∈ C then x /∈ f(x) by definition of C. But

C = f(x) and thus we reach contradiction. If x /∈ C then by definition

of C we have x ∈ f(x). But C = f(x) and thus we reach a contradiction.

Hence, neither of the possibilities are true, and thus we have reached an

absurdity. Hence, we conclude that there is no such surjection f .

Cantor’s theorem implies that P(N) is uncountable. Indeed, if we

take S = N in Cantor’s Theorem then there is no surjection from N to

P(N), and thus certainly no bijection from N to P(N). In summary:

Corollary 1.4.14

The set P(N) is uncountable.
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Exercises

Exercise 1.4.1. Let P and Q be infinite sets. Prove that if f : Q→ P

is a bijection then Q is uncountable if and only if P is uncountable. Do

not use proof by contradiction.

Exercise 1.4.2. In this exercise you will provide another proof that

N× N is countable.

(a) Prove that 3n is odd for each n ∈ N.

(b) Consider the function f : N × N → N defined as f(p, q) = 2p3q.

Prove that f is an injection. Hint: Use part (a) in some way.

(c) Explain how part (b) proves that N× N is countable.

Exercise 1.4.3. Prove that if A and B are countably infinite then

A× B is countable.

Exercise 1.4.4. Recall that a sequence a = {ak}∞k=1 of numbers is an

infinite list

a = (a1, a2, a3, a4, . . .)

where each element ak is a number (We will cover sequences in detail

but you are already familiar with them from calculus.). Let Q be the

set of sequences whose elements are either 0 or 1, in other words,

Q = {{ak}∞k=1 | ak = 0 or ak = 1} .

For example, the following sequences are elements of the set Q:

a = (0, 0, 0, 0, 0, 0, . . .) ∈ Q

b = (1, 0, 1, 0, 1, 0, . . .) ∈ Q

c = (0, 0, 1, 1, 0, 0, . . .) ∈ Q

d = (1, 1, 1, 1, 1, 1, . . .) ∈ Q
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(a) Give two non-trivial examples of functions from N to Q.

(b) Consider the function f : Q→ P(N) defined as

f(a) = {k ∈ N | ak = 1}

where P(N) is the power set of N. Hence, f takes a sequence

a ∈ Q and outputs the indices where a is equal to 1. For example:

f(0, 0, 0, 0, 0, 0, 0, 0, . . .) = ∅

f(1, 0, 1, 0, 1, 0, 1, 0, . . .) = {1, 3, 5, 7, . . .}

f(0, 0, 1, 1, 0, 0, 0, 0, . . .) = {3, 4}

f(1, 1, 1, 1, 1, 1, 1, 1, . . .) = {1, 2, 3, 4, 5, 6, . . .} = N

Prove that f : Q→ P(N) is a bijection.

(c) Combine part (b), Exercise 1.4.1, and Cantor’s theorem to thor-

oughly explain whether Q is countable or uncountable.
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2

The Real Numbers

2.1 Introduction

Recall that a rational number is a number x that can be written in

the form x = p
q
where p, q are integers with q 6= 0. The rational

number system is all you need to accomplish most everyday tasks. For

instance, to measure distances when building a house it suffices to use

a tape measure with an accuracy of about 1
16 of an inch. However, to

do mathematical analysis the rational numbers have some very serious

shortcomings; here is a an example.

Theorem 2.1.1

If x2 = 2 then x is not a rational number.

Proof. Suppose by contradiction that there exists x ∈ Q such that

x2 = 2. We may write x = p
q for some integers p, q, and we can assume

that p and q have no common factor other than 1 (that is, p and q are

relatively prime). Now, since x2 = 2 then p2 = 2q2 and thus p2 is an

even number. This implies that p is also even. Since p is even, we may

write p = 2k for some k ∈ N and therefore (2k)2 = 2q2, from which

it follows that 2k2 = q2. Hence, q2 is even and thus q is also even.
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Thus, both p and q are even, which contradicts the fact that p and q

are relatively prime.

The previous theorem highlights that the set of rational numbers are in

some sense incomplete, or that there are gaps in Q, and that a larger

number system is needed to enlarge the set of math problems that

can be analyzed and solved. Although mathematicians in the 1700s

were using the real number system and resorting to limiting processes

to analyze problems in physics, it was not until the late 1800s that

mathematicians gave a rigorous construction of the real number system.

Motivated by Theorem 2.1.1, we might be tempted to define the real

numbers as the set of solutions of all polynomial equations with integer

coefficients. As it turns out, however, this definition of the reals would

actually leave out almost all the real numbers, including some of our

favorites like π and e. In fact, the set of all numbers that are solutions

to polynomial equations with rational coefficients is countable!

There are two standard ways to construct the set of real numbers.

One standard method to construct R uses the notion of Cauchy se-

quences of rational numbers and is attributed to Georg Cantor [2].

We will cover Cauchy sequences in Section 3.6 and therefore postpone

describing some of the details of the construction until then. The sec-

ond standard method to construct the reals relies on the notion of a

Dedekind cut and is attributed to Richard Dedekind (1831-1916). A

Dedekind cut is a partition {A,B} of Q such that both A and B are

non-empty and

(i) if b ∈ A and a < b then a ∈ A, and

(ii) for any a ∈ A there exists b ∈ A such that a < b.

The set of real numbers R is then defined to be the set of all Dedekind

cuts. For example, let A = {x ∈ Q | x2 < 2 or x < 0} and thus
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B = Q\A. Then one can show that {A,B} is a Dedekind cut of Q

and the idea is that x = {A,B} represents the real number x such that

x2 = 2, that is, the irrational number
√
2. Having defined R as the set

of Dedekind cuts we then proceed to define all the usual operations of

arithmetic and arrive at the familiar model of R [2]. Additionally, if

x = {A,B} and y = {C,D} then we write that x ≤ y if A ⊂ C and

write x < y if A ⊂ C and A 6= C. Refer to [2] for further details.

In this book, we instead adopt the familiar viewpoint that the real

numbers R are in a one-to-one correspondence with the points on an

infinite line:

-4 -3 -2 -1 0 1 2 3 4

ℝ

⋯ ⋯

Figure 2.1: The real numbers are in a one-to-one correspondence with
points on an infinite line

The essential feature that we want to capture with this view of R is that

there are no “holes” in the real number system. This view of R allows us

to quickly start learning the properties of R instead of focusing on the

details of constructing a model for R. Naturally, the rational numbers

Q are a subset of R and we say that a real number x ∈ R is irrational

if it is not rational. As we saw in Thereom 2.1.1, the positive number

x ∈ R such that x2 = 2 is irrational.
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Exercises

Exercise 2.1.1. Let x ∈ Q be fixed. Prove the following statements

without using proof by contradiction.

(a) Prove that if y ∈ R\Q then x+ y ∈ R\Q.

(b) Suppose in addition that x > 0. Prove that if y ∈ R\Q then

xy ∈ R\Q.

Exercise 2.1.2. Prove that if 0 < x < 1 then xn < x for all natural

numbers n ≥ 2. Do not assume that x is rational.
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2.2 Algebraic and Order Properties

We will soon see the main difference between Q and R from an analysis

point of view but in this section we will discuss one important thing

that Q and R have in common, namely, both are ordered fields. We

begin then with the definition of a field.

Definition 2.2.1

A field is a set F with two binary operations + : F × F → F

and × : F × F → F, the former called addition and the latter

multiplication, satisfying the following properties:

(i) a+ b = b+ a for all a, b ∈ F

(ii) (a+ b) + c = a+ (b+ c) for all a, b, c ∈ F

(iii) a× (b+ c) = a× b+ a× c

(iv) There exists an element 1 ∈ F such that a× 1 = 1× a = a for

all a ∈ F

(v) There exists an element 0 ∈ F such that a+0 = 0+ a = a for

all a ∈ F

(vi) For each a ∈ F, there exists an element −a ∈ F such that

a+ (−a) = (−a) + a = 0.

(vii) For each a ∈ F, there exists an element a−1 ∈ F such that

a× a−1 = a−1 × a = 1.

Example 2.2.2. It is not hard to see that N and Z are not fields. In

each case, what property of a field fails to hold?
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Example 2.2.3. Both Q and R are fields.

Besides being fields, both Q and R are totally ordered sets. By

totally ordered we mean that for any a, b ∈ R either a = b, a < b, or

b < a. This property of R is referred to as the Law of Trichotomy. For

a, b ∈ R, the relation a ≤ b means that either a < b or a = b. Similarly,

a ≥ b means that b ≤ a. From our number line viewpoint of R, if a < b

then a is on the left of b.

We now present some very important rules of inequalities that we

will use frequently in this book.

Theorem 2.2.4

Let a, b, c ∈ R.

(i) If a < b and b < c then a < c. (transitivity)

(ii) If a < b then a+ c < b+ c.

(iii) If a < b and c > 0 then ac < bc.

(iv) If a < b and c < 0 then ac > bc.

(v) If ab > 0 then either a, b > 0 or a, b < 0.

(vi) If a 6= 0 then a2 > 0.

The two inequalities a ≤ b and b ≤ c as sometimes combined as

a ≤ b ≤ c.

Example 2.2.5. Suppose that a > 0 and b > 0, or written more

compactly as a, b > 0. Prove that if a < b then 1
b <

1
a.
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Example 2.2.6. Suppose that a ≤ x and b ≤ y. Prove that a + b ≤
x+ y. Deduce that if a ≤ x ≤ ξ and b ≤ y ≤ ζ then

a+ b ≤ x+ y ≤ ζ + ξ.

We will encounter situations where we will need to prove that if two

numbers a, b ∈ R satisfy a certain property then a = b. Proving that

a = b is equivalent to proving that x = a − b = 0. In such situations,

the following theorem will be very useful.

Theorem 2.2.7

Let x ∈ R be non-negative, that is, x ≥ 0. If for every ε > 0 it

holds that x < ε then x = 0.

Proof. We prove the contrapositive, that is, we prove that if x > 0 then

there exists ε > 0 such that ε < x. Assume then that x > 0 and let

ε = x
2 . Then ε > 0 and clearly ε < x.

The next few examples will give us practice with working with in-

equalities.

Example 2.2.8. Let ε = 0.0001. Find a natural number n ∈ N such

that
1

n+ 1
< ε

Example 2.2.9. Let ε = 0.0001. Find analytically a natural number

n ∈ N such that
n+ 2

n2 + 3
< ε

Example 2.2.10. Let ε = 0.001. Find analytically a natural number

n ∈ N such that
5n− 4

2n3 − n
< ε
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Exercises

Exercise 2.2.1. Let ε = 0.0001 and find analytically a natural number

n ∈ N such that
3n− 2

n3 + 2n
< ε.

Exercise 2.2.2. Let ε = 0.0001 and find analytically a natural number

n ∈ N such that
3n+ 2

4n3 − n
< ε.

Exercise 2.2.3. Let ε = 0.0001 and find analytically a natural number

n ∈ N such that
cos2(3n) + 1

arctan(n) + n
< ε.

38



2.3. THE ABSOLUTE VALUE

2.3 The Absolute Value

To solve problems in calculus you need to master differentiation and

integration. To solve problems in analysis you need to master inequali-

ties. The content of this section, mostly on inequalities, is fundamental

to everything else that follows in this book.

Given any a ∈ R, we define the absolute value of a as the number

|a| :=
{

a, if a ≥ 0

−a, if a < 0.

Clearly, |a| = 0 if and only if a = 0, and 0 ≤ |a| for all a ∈ R. Below

we record some important properties of the absolute value function.

Theorem 2.3.1

Let a, b ∈ R and c ≥ 0.

(i) |ab| = |a| · |b|

(ii) |a|2 = a2

(iii) |a| ≤ c if and only if −c ≤ a ≤ c

(iv) −|a| ≤ a ≤ |a|

Proof. Statements (i) and (ii) are trivial. To prove (iii), first suppose

that |a| ≤ c. If a > 0 then a ≤ c. Hence, −a ≥ −c and since a > 0

then a > −a ≥ −c. Hence, −c ≤ a ≤ c. If a < 0 then −a ≤ c, and

thus a ≥ −c. Since a < 0 then a < −a ≤ c. Thus, −c ≤ a ≤ c. Now

suppose that −c ≤ a ≤ c. If 0 < a ≤ c then |a| = a ≤ c. If a < 0

then from multiplying the inequality by (−1) we have c ≥ −a ≥ −c
and thus |a| = −a ≤ c.
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To prove part (iv), notice that |a| ≤ |a| and thus applying (iii) we

get −|a| ≤ a ≤ |a|.

Example 2.3.2. If b 6= 0 prove that
∣
∣a
b

∣
∣ = |a|

|b| .

Example 2.3.3. From Theorem 2.3.1 part (i), we have that |a2| =

|a · a| = |a| · |a| = |a|2. Therefore, |a2| = |a|2. Similarly, one can show

that |a3| = |a|3. By induction, for each n ∈ N it holds that |an| = |a|n.

Below is the most important inequality in this book.

Theorem 2.3.4: Triangle Inequality

For any x, y ∈ R it holds that

|x+ y| ≤ |x|+ |y|.

Proof. We have that

−|x| ≤ x ≤ |x|
−|y| ≤ y ≤ |y|

from which it follows that

−(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|

and thus

|x + y| ≤ |x|+ |y|.

By induction, one can prove the following corollary to the Triangle

inequality.
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Corollary 2.3.5

For any x1, x2, . . . , xn ∈ R it holds that

|x1 + x2 + · · ·+ xn| ≤ |x1|+ |x2|+ · · ·+ |xn|.

A compact way to write the triangle inequality using summation nota-

tion is ∣
∣
∣
∣
∣

n∑

i=1

xi

∣
∣
∣
∣
∣
≤

n∑

i=1

|xi|.

Here is another consequence of the Triangle inequality.

Corollary 2.3.6

For x, y ∈ R it holds that

(i) |x− y| ≤ |x|+ |y|

(ii) ||x| − |y|| ≤ |x− y|

Proof. For part (i), we have

|x− y| = |x + (−y)|
≤ |x|+ | − y|
= |x|+ |y|.

For part (ii), consider

|x| = |x− y + y| ≤ |x− y|+ |y|

and therefore |x| − |y| ≤ |x − y|. Switching the role of x and y we

obtain |y| − |x| ≤ |y − x| = |x− y|, and therefore multiplying this last

inequality by −1 yields −|x− y| ≤ |x| − |y|. Therefore,

−|x− y| ≤ |x| − |y| ≤ |x− y|
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which is the stated inequality.

Example 2.3.7. For a, b ∈ R prove that |a+ b| ≥ |a| − |b|.

Example 2.3.8. Let f(x) = 2x2 − 3x + 7 for x ∈ [−2, 2]. Find a

number M > 0 such that |f(x)| ≤M for all −2 ≤ x ≤ 2.

Solution. Clearly, if −2 ≤ x ≤ 2 then |x| ≤ 2. Apply the triangle

inequality and the properties of the absolute value:

|f(x)| = |2x2 − 3x+ 7|
≤ |2x2|+ |3x|+ |7|
= 2|x|2 + 3|x|+ 7

≤ 2(2)2 + 3(2) + 7

= 21.

Therefore, if M = 21 then |f(x)| ≤ M for all x ∈ [−2, 2].

Example 2.3.9. Let f(x) = 2x2+3x+1
1−2x . Find a numberM > 0 such that

|f(x)| ≤M for all 2 ≤ x ≤ 3.

Solution. It is clear that if 2 ≤ x ≤ 3 then |x| ≤ 3. Using the proper-

ties of the absolute value and the triangle inequality repeatedly on the
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numerator:

|f(x)| =
∣
∣
∣
∣

2x2 + 3x+ 1

1− 2x

∣
∣
∣
∣

=
|2x2 + 3x+ 1|

|1− 2x|

≤ |2x2|+ |3x|+ |1|
|1− 2x|

=
2|x|2 + 3|x|+ 1|

|1− 2x|

≤ 2 · 32 + 3 · 3 + 1

|1− 2x|

=
28

|2x− 1| .

Now, for 2 ≤ x ≤ 3 we have that −5 ≤ 1 − 2x ≤ −3 and therefore

3 ≤ |1− 2x| ≤ 5 and then 1
|2x−1| ≤ 1

3
. Therefore,

|f(x)| ≤ 28

|1− 2x| ≤
28

3
.

Hence, we can take M = 28
3 .

Example 2.3.10. Let f(x) = sin(2x)−3
x2+1

. Find a number M > 0 such

that |f(x)| ≤M for all −3 ≤ x ≤ 2.

In analysis, the absolute value is used to measure distance between

points in R. For any a ∈ R, the absolute value |a| is the distance

from a to 0. This interpretation of the absolute value can be used to

measure the difference (in magnitude) between two points. That is,
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xy

|x− y| = |y− x|
ℝ

Figure 2.2: The number |x− y| is the distance between x and y.

given x, y ∈ R, the distance between x and y is |x − y|. From the

properties of the absolute value, this distance is also |y − x|.
We will often be concerned with how close a given number x is

to a fixed number a ∈ R. To do this, we introduce the notion of

neighborhoods based at a.

Definition 2.3.11: Neighborhoods

Let a ∈ R and let ε > 0. The ε-neighborhood of a of radius is

the set

Bε(a) = {x ∈ R | |x− a| < ε} = (a− ε, a+ ε)

Notice that if ε1 < ε2 then Bε1(a) ⊂ Bε2(a).

Example 2.3.12. Let f(n) = 3n+1
2n+3 and let ε = 0.0001. From calculus,

we know that lim
n→∞

f(n) = 3
2 . Find a natural number N such that

|f(n)− 3
2
| < ε for every n ≥ N .

Solution. The inequality |f(n)− 3
2| < ε means that f(n) is within ε of

3
2. That is,

3

2
− ε < f(n) <

3

2
+ ε.

This inequality does not hold for all n, but it will eventually hold for

some N ∈ N and for all n ≥ N . For example, f(1) = 4
5
= 0.8 and

|f(1)− 3
2| = 0.7 > ε, and similarly for f(2) = 7

7 = 1 and |f(2)− 3
2| = 0.5.
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In fact, |f(20) − 3
2 | = 0.081 > ε. However, because we know that

limn→∞ f(n) = 3
2 , eventually |f(n)− 3

2 | < ε for large enough n. To find

out how large, let’s analyze the magnitude |f(n)− 3
2
|:

|f(n)− 3
2
| =

∣
∣
∣
∣

3n+ 1

2n+ 3
− 3

2

∣
∣
∣
∣

=

∣
∣
∣
∣

6n+ 2− 6n− 9

2(2n+ 3)

∣
∣
∣
∣

=
7

2(2n+ 3)

Hence, |f(n)− 3
2 | < ε if and only if

7

2(2n+ 3)
< ε

which after re-arranging can be written as

n >
7

4ε
− 3

2
.

With ε = 0.0001 we obtain

n > 17, 498.5.

Hence, if N = 17, 499 then if n ≥ N then |f(n)− 3
2 | < ε.

Example 2.3.13. Let ε1 > 0 and ε2 > 0, and let a ∈ R. Show that

Bε1(a) ∩ Bε2(a) and Bε1(a) ∪Bε2(a) are ε-neighborhoods of a for some

appropriate value of ε.
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Exercises

Exercise 2.3.1. Prove that if a < x < b and a < y < b then |x− y| <
b−a. Draw a number line with points a, b, x, y satisfying the inequalities

and graphically interpret the inequality |x− y| < b− a.

Exercise 2.3.2. Let a0, a1, a2, . . . , an be positive real numbers and

consider the polynomial

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n.

Prove that

|f(x)| ≤ f(|x|)
for all x ∈ R. Hint: For example, if say f(x) = 2 + 3x2 + 7x3 then you are asked
to prove that

|2 + 3x2 + 7x3|
︸ ︷︷ ︸

|f(x)|

≤ 2 + 3|x|2 + 7|x|3
︸ ︷︷ ︸

f(|x|)

.

However, prove the claim for a general polynomial f(x) = a0+a1x+a2x
2+ · · ·+anxn

with ai > 0.

Exercise 2.3.3. Let f(x) = 3x2 − 7x + 11 for x ∈ [−4, 2]. Find

analytically a number M > 0 such that |f(x)| ≤ M for all x ∈ [−4, 2].

Do not use calculus to find M .

Exercise 2.3.4. Let f(x) =
x− 1

x2 + 7
for x ∈ [0, 10]. Find analytically

a number M > 0 such that |f(x)| ≤ M for all x ∈ [0, 10]. Do not use

calculus to find M .

Exercise 2.3.5. Let f(x) =
3 cos(πx)

x2 − 2x+ 3
for x ∈ [0, 2]. Find analyti-

cally a number M > 0 such that |f(x)| ≤ M for all x ∈ [0, 2]. Do not

use calculus to find M . (Hint: Complete the square.)

Exercise 2.3.6. Let a, b ∈ R be distinct points. Show that there exists

neighborhoods Bε(a) and Bδ(b) such that Bǫ(a) ∩ Bδ(b) 6= ∅.
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2.4 The Completeness Axiom

In this section, we introduce the Completeness Axiom of R. Recall

that an axiom is a statement or proposition that is accepted as true

without justification. In mathematics, axioms are the first principles

that are accepted as truths and are used to build mathematical theories;

in this case real analysis. Roughly speaking, the Completeness Axiom

is a way to say that the real numbers have “no gaps” or “no holes”,

contrary to the case of the rational numbers. As you will see below,

the Completeness Axiom is centered around the notions of bounded

sets and least upper bounds; let us begin then with some definitions.

Definition 2.4.1: Boundedness

Let S ⊂ R be a non-empty set.

(i) We say that S is bounded above if there exists u ∈ R such

that x ≤ u for all x ∈ S. We then say that u is an upper

bound of S.

(ii) We say that S is bounded below if there exists w ∈ R such

that w ≤ x for all x ∈ S. We then say that w is a lower

bound of S.

(iii) We say that S is bounded if it is both bounded above and

bounded below.

(iv) We say that S is unbounded if it is not bounded.

Example 2.4.2. For each case, determine if S is bounded above, bounded

below, bounded, or unbounded. If the set is bounded below, determine

the set of lower bounds, and similarly if it is bounded above.
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(i) S = [0, 1]

(ii) S = (−∞, 3)

(iii) N = {1, 2, 3, . . . , }

(iv) S = { 1
x2+1 | −∞ < x <∞}

(v) S = {x ∈ R | x2 < 2}

Example 2.4.3. Let A and B be sets and suppose that A ⊂ B.

(a) Prove that if B is bounded above (below) then A is bounded

above (below).

(b) Give an example of sets A and B such that A is bounded below

but B is not bounded below.

We now come to an important notion that will be at the root of

what we do from now.

Definition 2.4.4: Supremum and Infimum

Let S ⊂ R be non-empty.

(i) Let S be bounded above. An upper bound u of S is said to

be a least upper bound of S if u ≤ u′ for any upper bound

u′ of S. In this case we also say that u is a supremum of S

and write u = sup(S).

(ii) Let S be bounded below. A lower bound w of S is said to be

a greatest lower bound of S if w′ ≤ w for any lower bound

w′ of S. In this case we also say that w is an infimum of S

and write w = inf(S).
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It is straightforward to show that a set that is bounded above (bounded

below) can have at most one supremum (infimum). At the risk of being

repetitive, when it exists, sup(S) is a number that is an upper bound of

S and is the smallest possible upper bound of S. Therefore, x ≤ sup(S)

for all x ∈ S, and any number less than sup(S) is not an upper bound

of S (because sup(S) is the least upper bound!). Similarly, when it

exists, inf(S) is a number that is a lower bound of S and is the largest

possible lower bound of S. Therefore, inf(S) ≤ x for all x ∈ S and any

number greater than inf(S) is not a lower bound of S (because inf(S)

is the greatest lower bound of S!).

Remark 2.4.5. In some analysis texts, sup(S) is written as lub(S)

and inf(S) is written as glb(S). In other words, sup(S) = lub(S) and

inf(S) = glb(S).

Does every non-empty bounded set S have a supremum/infimum?

You might say “Yes, of course!!” and add that “It is a self-evident

principle and needs no justification!”. Is not that what an axiom is?

Axiom 2.4.6: Completeness Axiom

Every non-empty subset of R that is bounded above has a least

upper bound (a supremum) in R. Similarly, every non-empty subset

of R that is bounded below has a greatest lower bound (an infimum)

in R.

As you will see in the pages that follow, The Completeness Axiom is

the key notion upon which the theory of real analysis depends on.

Example 2.4.7. Determine sup(S) and inf(S), if they exist.

(a) S = {−5,−9, 2,−1, 11, 0, 4}
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(b) S = [0,∞)

(c) S = (−∞, 3)

The Completeness Axiom is sometimes called the supremum prop-

erty of R or the least upper bound property of R. The Complete-

ness property makes R into a complete ordered field. The following

example shows that Q does not have the completeness property.

Example 2.4.8. The set of rational numbers is an ordered field but it

is not complete. Consider the set S = {x ∈ Q | x2 < 2}. By definition,

S ⊂ Q. Clearly, S is bounded above, for example u = 10 is an upper

bound of S, but the least upper bound of S is u =
√
2 which is not

a rational number. Therefore S ⊂ Q does not have a supremum in Q

and therefore Q does not have the Completeness property. From the

point of view of analysis, this is the main distinction between Q and R

(note that both are ordered fields).

In some cases, it is obvious what sup and inf are, however, to do

analysis rigorously, we need systematic ways to determine sup(S) and

inf(S). To start with, we first need to be a bit more rigorous about

what it means to be the least upper bound, or at least have a more

concrete description that we can work with, i.e., using inequalities.

The following lemma does that and, as you will observe, it is simply a

direct consequence of the definition of the supremum.

Lemma 2.4.9

Let S ⊂ R be non-empty and suppose that u ∈ R is an upper bound

of S. Then u is the least upper bound of S if and only if for any

ε > 0 there exists x ∈ S such that

u− ε < x ≤ u.
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Proof. Suppose that u is the supremum of S, that is, u is the least

upper bound of S. Since u − ε < u then u − ε is not an upper bound

of S. Thus, there exists x ∈ S such that u− ε < x.

Now suppose that for any ε > 0 there exists x ∈ S such that

u − ε < x ≤ u. Now let v ∈ R be such that v < u. Then there exists

ε > 0 such that v = u− ε, and thus by assumption, there exists x ∈ S

such that v < x. Hence, v is not an upper bound of S and this shows

that u is the least upper bound of S, that is, u = sup(S).

Example 2.4.10. If A ⊂ B ⊂ R, and B is bounded above, prove that

A is bounded above and that sup(A) ≤ sup(B).

Solution. Since B is bounded above, sup(B) exists by the Completeness

property of R. Let x ∈ A. Then x ∈ B and therefore x ≤ sup(B). This

proves that A is bounded above by sup(B) and therefore sup(A) exists.

Since sup(A) is the least upper bound of A we must have sup(A) ≤
sup(B). For example, if say B = [1, 3] and A = [1, 2] then sup(A) <

sup(B), while if A = [2, 3] then sup(A) = sup(B).

Example 2.4.11. Let A ⊂ R be non-empty and bounded above. Let

c ∈ R and define the set

cA = {y ∈ R | ∃ x ∈ A s.t. y = cx}.

Prove that if c > 0 then cA is bounded above and sup(cA) = c sup(A).

Show by example that if c < 0 then cA need not be bounded above

even if A is bounded above.

Proof. Let y ∈ cA be arbitrary. Then there exists x ∈ A such that

y = cx. By the Completeness property, sup(A) exists and x ≤ sup(A).

If c > 0 then cx ≤ c sup(A) which is equivalent to y ≤ c sup(A). Since

y is arbitrary, this shows that c sup(A) is an upper bound of the set
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cA and thus cA is bounded above and thus sup(cA) exists. Because

sup(cA) is the least upper bound of cA then

sup(cA) ≤ c sup(A). (2.1)

Now, by definition, y ≤ sup(cA) for all y ∈ cA. Thus, cx ≤ sup(cA)

for all x ∈ A and therefore x ≤ 1
c sup(cA) for all x ∈ A. Therefore,

1
c
sup(cA) is an upper bound of A and consequently sup(A) ≤ 1

c
sup(cA)

because sup(A) is the least upper bound of A. We have therefore proved

that

c sup(A) ≤ sup(cA). (2.2)

Combining (2.1) and (2.2) we conclude that

sup(cA) = c sup(A).

Example 2.4.12. Suppose that A and B are non-empty and bounded

above. Prove that A ∪B is bounded above and that

sup(A ∪B) = sup{sup(A), sup(B)}.

Proof. Let u = sup{sup(A), sup(B)}. Then clearly sup(A) ≤ u and

sup(B) ≤ u. We first show that A ∪ B is bounded above by showing

that u is an upper bound of A ∪B. Let x ∈ A∪B. Then either z ∈ A

or x ∈ B (or both). If z ∈ A then z ≤ sup(A) ≤ u and if z ∈ B then

z ≤ sup(B) ≤ u. Hence, A ∪ B is bounded above and u is an upper

bound of A∪B. Consequently, sup(A∪B) exists by the Completeness

axiom and moreover sup(A ∪B) ≤ u, that is,

sup(A ∪B) ≤ sup{sup(A), sup(B)}. (2.3)
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Now, by definition of the supremum, z ≤ sup(A∪B) for all z ∈ A∪B.

Now since A ⊂ A ∪ B this implies that x ≤ sup(A ∪ B) for all x ∈ A

and y ≤ sup(A ∪ B) for all y ∈ B. In other words, sup(A ∪ B) is an

upper bound of both A and B and thus sup(A) ≤ sup(A ∪ B) and

sup(B) ≤ sup(A ∪B). Then clearly

sup{sup(A), sup(B)}} ≤ sup(A ∪B) (2.4)

and combining (2.3) and (2.4) we have proved that sup(A ∪ B) =

sup{sup(A), sup(B)}.

Example 2.4.13. Suppose that A and B are non-empty and bounded

below, and suppose that A ∩ B is non-empty. Prove that A ∩ B is

bounded below and that

sup{inf(A), inf(B)} ≤ inf(A ∩B).

Proof. If x ∈ A ∩ B then x ∈ A and therefore inf(A) ≤ x, and also

x ∈ B and thus inf(B) ≤ x. Therefore, both inf(A) and inf(B)

are lower bounds of A ∩ B, and by definition of inf(A ∩ B) we have

that inf(A) ≤ inf(A ∩ B) and inf(B) ≤ inf(A ∩ B), and consequently

sup{inf(A), inf(B)} ≤ inf(A ∩ B).

Example 2.4.14. For any set A define the set

−A = {y ∈ R | ∃ x ∈ A s.t. y = −x}.

Prove that if A ⊂ R is non-empty and bounded then sup(−A) =

− inf(A).

Proof. It holds that inf(A) ≤ x for all x ∈ A and therefore, − inf(A) ≥
−x for all x ∈ A, which is equivalent to − inf(A) ≥ y for all y ∈ −A.
Therefore, − inf(A) is an upper bound of the set −A and therefore
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sup(−A) ≤ − inf(A). Now, y ≤ sup(−A) for all y ∈ −A, or equiv-

alently −x ≤ sup(−A) for all x ∈ A. Hence, x ≥ − sup(−A) for all

x ∈ A. This proves that − sup(−A) is a lower bound of A and there-

fore − sup(−A) ≤ inf(A), or sup(−A) ≥ − inf(A). This proves that

sup(−A) = − inf(A).

Example 2.4.15. Let A ⊂ R be non-empty and bounded below. Let

c ∈ R and define the set

c+ A = {y ∈ R | ∃ x ∈ A s.t. y = c+ x}.

Prove that c+A is bounded below and that inf(c+A) = c+ inf(A).

Proof. For all x ∈ A it holds that inf(A) ≤ x and therefore c+inf(A) ≤
c + x. This proves that c + inf(A) is a lower bound of the set c + A,

and therefore c + inf(A) ≤ inf(c + A). Now, inf(c + A) ≤ y for all

y ∈ c+A and thus inf(c+A) ≤ c+ x for all x ∈ A, which is the same

as inf(c+ A)− c ≤ x for all x ∈ A. Hence, inf(c + A)− c ≤ inf(A) or

equivalently inf(c+ A) ≤ c+ inf(A). This proves the claim.

Example 2.4.16. Let A and B be non-empty subsets of R>0 = {x ∈
R : x > 0}, and suppose that A and B are bounded below. Define the

set AB = {xy : x ∈ A, y ∈ B}.

(a) Prove that AB is bounded below.

(b) Prove that inf(AB) = inf(A) · inf(B). Hint: Consider two cases,

when say inf(A) inf(B) = 0 and when inf(A) inf(B) 6= 0.

(c) How do things change if we do not assume A and B are subsets

of R>0.

Example 2.4.17. Give an example of a non-empty set A ⊂ R>0 such

that inf(A) = 0.
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Example 2.4.18. For any two non-empty sets P and Q of R let us

write that P ≤ Q if, for each x ∈ P , there exists y ∈ Q such that

x ≤ y.

(a) Prove that if P ≤ Q then sup(P ) ≤ sup(Q).

(b) Show via an example that if P ≤ Q then it is not necessarily true

that inf(P ) ≤ inf(Q).

Example 2.4.19. Let A and B be non-empty bounded sets of positive

real numbers. Define the set

A

B
=
{

z ∈ R | ∃ x ∈ A, ∃ y ∈ B s.t. z = x
y

}

.

Assume that inf(B) > 0. Prove that

sup
(
A
B

)
=

sup(A)

inf(B)
.

Proof. Since A is bounded above, sup(A) exists and x ≤ sup(A) for all

x ∈ A. Since B is bounded below, inf(B) exists and inf(B) ≤ y for all

y ∈ B. Let z = x/y be an arbitrary point in A
B . Then since inf(B) ≤ y

and y > 0 and inf(B) > 0 we obtain that

1

y
≤ 1

inf(B)
.

Since x ≤ sup(A) and x > 0 (and then clearly sup(A) > 0) we obtain

x

y
≤ x

inf(B)
≤ sup(A)

inf(B)
.

This proves that z ≤ sup(A)
inf(B) and since z ∈ A

B was arbitrary we have

proved that sup(A)
inf(B) is an upper bound of the set A

B . This proves that
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sup(AB ) exists. Moreover, by the definition of the supremum, we also

have that

sup
(
A
B

)
≤ sup(A)

inf(B)
. (2.5)

Now, z ≤ sup(A
B
) for all z ∈ A

B
and thus x

y
≤ sup(A

B
) for all x ∈ A and

all y ∈ B. If y is held fixed then x ≤ y · sup(AB ) for all x ∈ A and thus

sup(A) ≤ y · sup(AB ). Therefore, sup(A)/ sup(AB) ≤ y, which holds for

all y ∈ B. Therefore, sup(A)/ sup(AB) ≤ inf(B) and consequently

sup(A)

inf(B)
≤ sup

(
A
B

)
. (2.6)

Combining (2.5) and (2.6) completes the proof.
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Exercises

Exercise 2.4.1. Let S ⊂ R be a non-empty set and suppose that u is

an upper bound of S. Prove that if u ∈ S then necessarily u = supS.

Exercise 2.4.2. Let A and B be non-empty subsets of R, and suppose

that A ⊂ B. Prove that if B is bounded below then inf B ≤ inf A.

Exercise 2.4.3. If P and Q are non-empty subsets of R such that

supP = supQ and inf P = infQ does it follow that P = Q? Support

your answer with either a proof or a counterexample.

Exercise 2.4.4. Let A ⊂ R be a bounded set, let x ∈ R be fixed, and

define the set

x +A = {y ∈ R | ∃ a ∈ A s.t. y = x+ a}.

Prove that sup(x+A) = x+ supA.

Exercise 2.4.5. Let A,B ⊂ R be bounded above. Let

A+B = {z ∈ R | ∃ x ∈ A, ∃ y ∈ B s.t. z = x+ y}.

Prove thatA+B is bounded above and that sup(A+B) = supA+supB.

Exercise 2.4.6. Let R>0 denote the set of all positive real numbers

and let A,B ⊂ R>0 be bounded. Assume that inf(B) > 0. Define the

set
A

B
=
{

z ∈ R | ∃ x ∈ A, ∃ y ∈ B s.t. z = x
y

}

.

Prove that

sup
(
A
B

)
=

sup(A)

inf(B)
.
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2.5 Applications of the Supremum

Having defined the notion of boundedness for a set, we can define a

notion of boundedness for a function.

Definition 2.5.1: Bounded Functions

Let D ⊂ R be a non-empty set and let f : D → R be a function.

(i) f is bounded below if the range f(D) = {f(x) | x ∈ D} is

bounded below.

(ii) f is bounded above if the range f(D) = {f(x) | x ∈ D} is

bounded above.

(iii) f is bounded if the range f(D) = {f(x) | x ∈ D} is bounded.

Hence, boundedness of a function f is boundedness of its range.

Example 2.5.2. Suppose f, g : D → R are bounded functions and

f(x) ≤ g(x) for all x ∈ D. Show that sup(f(D)) ≤ sup(g(D)).

Solution. Since g is bounded, sup(g(D)) exists and is by definition an

upper bound for the set g(D), that is, g(x) ≤ sup(g(D)) for all x ∈ D.

Now, by assumption, for all x ∈ D it holds that f(x) ≤ g(x) and

therefore f(x) ≤ sup(g(D)). This shows that sup(g(D)) is an upper

bound of the set f(D), and therefore by definition of the supremum,

sup(f(D)) ≤ sup(g(D)).

Example 2.5.3. Let f, g : D → R be bounded functions and suppose

that f(x) ≤ g(y) for all x, y ∈ D. Show that sup(f(D)) ≤ inf(g(D)).
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Solution. Fix x∗ ∈ D. Then, f(x∗) ≤ g(y) for all y ∈ D. Therefore,

f(x∗) is a lower bound of g(D), and thus f(x∗) ≤ inf(g(D)) by definition

of the infimum. Since x∗ ∈ D was arbitrary, we have proved that

f(x) ≤ inf(g(D)) for all x ∈ D. Hence, inf(g(D)) is an upper bound of

f(D) and thus by definition of the supremum we have that sup(f(D)) ≤
inf(g(D)).

The following sequence of results will be used to prove an im-

portant property of the rational numbers Q as seen from within R.

Theorem 2.5.4: Archimedean Property

If x ∈ R then there exists n ∈ N such that x ≤ n.

Proof. Suppose not. Hence, n ≤ x for all n ∈ N, and thus x is an

upper bound for N, and therefore N is bounded. Let u = sup(N). By

definition of u, u − 1 is not an upper bound of N and therefore there

exists m ∈ N such that u − 1 < m. But then u < m + 1 and this

contradicts the definition of u.

Corollary 2.5.5

If S = { 1
n | n ∈ N} then inf(S) = 0.

Proof. Since 0 < 1
n for all n then 0 is a lower bound of S. Now suppose

that 0 < y. By the Archimedean Property, there exists n ∈ N such that
1
y
< n and thus 1

n
< y. Hence, y is not a lower bound of S. Therefore

0 is the greatest lower bound of S, that is, inf(S) = 0.
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Corollary 2.5.6

For any y > 0 there exists n ∈ N such that 1
n < y.

Corollary 2.5.7

Given y > 0 there exists n ∈ N such that n− 1 ≤ y < n.

Proof. Let E = {k ∈ R | y < k}. By the Archimedean property, E is

non-empty. By the Well-Ordering Principle of N, E has a least element,

say that it is m. Hence, m− 1 /∈ E and thus m− 1 ≤ y < m.

We now come to an important result that we will use frequently.

Theorem 2.5.8: Density of the Rationals

If x, y ∈ R and x < y then there exists r ∈ Q such that x < r < y.

Proof. We first prove the claim for the case that 0 < x < y. Suppose

that y − x > 1 and thus x + 1 < y. There exists m ∈ N such that

m− 1 ≤ x < m and thus m ≤ x+ 1. Therefore,

x < m ≤ x+ 1 < y

and thus x < m < y and we may take r = m. In general, if y − x > 0

then there exists n ∈ N such that 1
n < y − x and thus 1 + nx < ny.

Since ny − nx > 1 there exists m ∈ N such that 1 + nx < m < ny and

thus

nx < 1 + nx < m < ny

and dividing by n yields x < m
n
< y and thus we may take r = m

n
.

This proves the claim when both x and y are positive. If x < 0 < y
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then take r = 0 and if x < y < 0 then apply the previous arguments to

0 < −y < −x.

Hence, between any two distinct real numbers there is a rational num-

ber. This implies that any irrational number can be approximated by

a rational number to within any degree of accuracy.

Example 2.5.9. Let ζ ∈ R\Q be an irrational number and let ε > 0

be arbitrary. Prove that there exists a rational number x ∈ Q such

that ζ − ε < x < ζ + ε, that is, x is in the ε-neighborhood of ζ.

Corollary 2.5.10: Density of the Irrationals

If x, y ∈ R and x < y then there exists ξ ∈ R\Q such that x < ξ < y.

Proof. We have that
√
2x <

√
2y. By the Density Theorem,

√
2x <

r <
√
2y for some r ∈ Q. Then ξ = r/

√
2.
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Exercises

Exercise 2.5.1. Let D ⊂ R be non-empty and let f, g : D → R be

functions. Let f + g denote the function defined by

(f + g)(x) = f(x) + g(x)

for any x ∈ D. If f(D) and g(D) are bounded above prove that (f +

g)(D) is also bounded above and that

sup(f + g)(D) ≤ sup f(D) + sup g(D)

Exercise 2.5.2. If y > 0 prove that there exists n ∈ N such that
1
2n < y. (Note: If you begin with 1

2n < y and solve for n then you are

assuming that such an n exists. You are not asked to find an n, you

are asked to prove that such an n exists.)
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2.6 Nested Interval Theorem

If a, b ∈ R and a < b define

(a, b) := {x ∈ R | a < x < b}.

The set (a, b) is called an open interval from a to b. Define also

[a, b] := {x ∈ R | a ≤ x ≤ b}

which we call the closed interval from a to b. The following are called

half-open (or half-closed) intervals:

[a, b) := {x ∈ R | a ≤ x < b}

(a, b] := {x ∈ R | a < x ≤ b}.

If a = b then (a, a) = ∅ and [a, a] = {a}. Infinite intervals are

(a,∞) = {x ∈ R | x > a}
(−∞, b) = {x ∈ R | x < b}
[a,∞) = {x ∈ R | x ≥ a}

(−∞, b] = {x ∈ R | x ≤ b}.

Below is a characterization of intervals, we will omit the proof.

Theorem 2.6.1

Let S ⊂ R contain at least two points. Suppose that if x, y ∈ S and

x < y then [x, y] ⊂ S. Then S is an interval.

A sequence I1, I2, I3, I4, . . . of intervals is nested if

I1 ⊇ I2 ⊇ I3 ⊇ I4 ⊇ · · ·
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As an example, consider In = [0, 1n] where n ∈ N. Then I1, I2, I3, . . . is

nested:

[0, 1] ⊇ [0, 1
2
] ⊇ [0, 1

3
] ⊇ [0, 1

4
] · · ·

Notice that since 0 ∈ In for each n ∈ N then

0 ∈
∞⋂

n=1

In.

Is there another point in
⋂∞

n=1 In? Suppose that x 6= 0 and x ∈ ⋂∞
n=1 In.

Then necessarily x > 0. Then there exists m ∈ N such that 1
m
< x.

Thus, x /∈ [0, 1
m ] and therefore x /∈ ⋂∞

n=1 In. Therefore,

∞⋂

n=1

In = {0}.

In general, we have the following.

Theorem 2.6.2: Nested Interval Property

Let I1, I2, I3, . . . be a sequence of nested closed bounded intervals.

Then there exists ξ ∈ R such that ξ ∈ In for all n ∈ N, that

is, ξ ∈ ⋂∞
n=1 In. In particular, if In = [an, bn] for n ∈ N, and

a = sup{a1, a2, a3, . . .} and b = inf{b1, b2, b3, . . .} then

{a, b} ⊂
∞⋂

n=1

In.

Proof. Since In is a closed interval, we can write In = [an, bn] for some

an, bn ∈ R and an ≤ bn for all n ∈ N. The nested property can be

written as

[a1, b1] ⊇ [a2, b2] ⊇ [a3, b3] ⊇ [a4, b4] ⊇ · · ·
Since [an, bn] ⊆ [a1, b1] for all n ∈ N then an ≤ b1 for all n ∈ N.

Therefore, the set S = {an | n ∈ N} is bounded above. Let ξ = sup(S)

64



2.6. NESTED INTERVAL THEOREM

and thus an ≤ ξ for all n ∈ N. We will show that ξ ≤ bn for all n ∈ N

also. Let n ∈ N be arbitrary. If k ≤ n then [an, bn] ⊆ [ak, bk] and

therefore ak ≤ an ≤ bn. On the other hand, if n < k then [ak, bk] ⊂
[an, bn] and therefore an ≤ ak ≤ bn. In any case, ak ≤ bn for all

k ∈ N. Hence, bn is an upper bound of S, and thus ξ ≤ bn. Since

n ∈ N was arbitrary, we have that ξ ≤ bn for all n ∈ N. Therefore,

an ≤ ξ ≤ bn for all n ∈ N, that is ξ ∈ ⋂∞
n=1[an, bn]. The proof that

inf{b1, b2, b3, . . .} ∈ ⋂∞
n=1 In is similar.

The following theorem gives a condition when
⋂∞

n=1 In contains a single

point.

Theorem 2.6.3

Let In = [an, bn] be a sequence of nested closed bounded intervals.

If

inf{bn − an | n ∈ N} = 0

then
⋂n

n=1 In is a singleton set.

Example 2.6.4. Let In =
[
1− 1

n
, 1 + 1

n

]
for n ∈ N.

(a) Prove that I1, I2, I3, . . . is a sequence of nested intervals.

(b) Find
⋂∞

n=1 In.

Using the Nested Interval property of R, we give a proof that R is

uncountable

Theorem 2.6.5: Reals Uncountable

The real numbers R are uncountable.

Proof. We will prove that the interval [0, 1] is uncountable. Suppose by

contradiction that I = [0, 1] is countable, and let I = {x1, x2, x3, . . . , }
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be an enumeration of I (formally this means we have a bijection f :

N → [0, 1] and f(n) = xn). Since x1 ∈ I = [0, 1], there exists a closed

and bounded interval I1 ⊂ [0, 1] such that x1 /∈ I1. Next, consider x2.

There exists a closed and bounded interval I2 ⊂ I1 such that x2 /∈ I2.

Next, consider x3. There exists a closed and bounded interval I3 ⊂ I2

such that x3 /∈ I3. By induction, there exists a sequence I1, I2, I3, . . . of

closed and bounded intervals such that xn /∈ In for all n ∈ N. Moreover,

by construction the sequence In is nested and therefore
⋂∞

n=1 In is non-

empty, say it contains ξ. Clearly, since ξ ∈ In ⊂ [0, 1] for all n ∈ N

then ξ ∈ [0, 1]. Now, since xn /∈ In for each n ∈ N then xn /∈ ⋂∞
n=1 In.

Therefore, ξ 6= xn for all n ∈ N and thus ξ /∈ I = {x1, x2, . . .} = [0, 1],

which is a contradiction since ξ ∈ [0, 1]. Therefore, [0, 1] is uncountable

and this implies that R is also uncountable.

We now give an alternative proof that R is uncountable. To that

end, consider the following subset S ⊂ R:

S = {0.a1a2a3a4 · · · ∈ R | ak = 0 or ak = 1, k ∈ N}.

In other words, S consists of numbers x ∈ [0, 1) whose decimal ex-

pansion consists of only 0’s and 1’s. For example, some elements of S

are

x = 0.000000 . . .

x = 0.101010 . . .

x = 0.100000 . . .

x = 0.010100 . . .

If we can construct a bijection f : S → P(N), then since P(N) is

uncountable then by Example 1.4.7 this would show that S is uncount-

able. Since S ⊂ R then this would show that R is uncountable (by
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Theorem 1.4.8). To construct f , given x = 0.a1a2a3 . . . in S define

f(x) ∈ P(N) as

f(0.a1a2a3 · · · ) = {k ∈ N | ak = 1}.

In other words, f(x) consists of the decimal places in the decimal ex-

pansion of x that have a value of 1. For example,

f(0.000000 . . .) = ∅
f(0.101010 . . .) = {1, 3, 5, 7, . . .}
f(0.100100 . . .) = {1, 4}
f(0.011000 . . .) = {2, 3}

It is left as an exercise to show that f is a bijection (see Exercise 1.4.4).
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Exercises

Exercise 2.6.1. Let In =
[
0, 1n
]
for n ∈ N. Prove that

⋂∞
n=1 In = {0}.
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3

Sequences

In the tool box used to build analysis, if the Completeness property of

the real numbers is the hammer then sequences are the nails. Almost

everything that can be said in analysis can be, and is, done using se-

quences. For this reason, the study of sequences will occupy us for the

next foreseeable future.

3.1 Limits of Sequences

A sequence of real numbers is a function X : N → R. Informally,

the sequence X can be written as an infinite list of real numbers as

X = (x1, x2, x3, . . .), where xn = X(n). Other notations for sequences

are (xn) or {xn}∞n=1; we will use (xn).

Some sequences can be written explicitly with a formula such as

xn = 1
n , xn = 1

2n , or

xn = (−1)n cos(n2 + 1),

or we could be given the first few terms of the sequence, such as

X = (3, 3.1, 3.14, 3.141, 3.1415, . . .).
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Some sequences may be given recursively. For example,

x1 = 1, xn+1 =
xn
n+ 1

, n ≥ 1.

Using the definition of xn+1 and the initial value x1 we can in principle

find all the terms:

x2 =
1

2
, x3 =

1/2

3
, x4 =

1/6

4
, . . .

A famous sequence given recursively is the Fibonacci sequence which

is defined as x1 = 1, x2 = 1, and

xn+1 = xn−1 + xn, n ≥ 2.

Then

x3 = 2, x4 = 3, x5 = 5, . . .

The range of a sequence (xn) is the set

{xn | n ∈ N},

that is, the usual range of a function. However, the range of a sequence

is not the actual sequence (the range is a set and a sequence is a func-

tion). For example, if X = (1, 2, 3, 1, 2, 3, . . .) then the range of X is

{1, 2, 3}. If xn = sin(nπ2 ) then the range of (xn) is {1, 0,−1}.
Many concepts in analysis can be described using the long-term or

limiting behavior of sequences. In calculus, you undoubtedly developed

techniques to compute the limit of basic sequences (and hence show

convergence) but you might have omitted the rigorous definition of the

convergence of a sequence. Perhaps you were told that a given sequence

(xn) converges to L if as n→ ∞ the values xn get closer to L. Although

this is intuitively sound, we need a more precise way to describe the

meaning of the convergence of a sequence. Before we give the precise

definition, we will consider an example.
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Example 3.1.1. Consider the sequence (xn) whose nth term is given

by xn = 3n+2
n+1 . The values of (xn) for several values of n are displayed

in Table 3.1.

n xn
1 2.50000000
2 2.66666667
3 2.75000000
4 2.80000000
5 2.83333333
50 2.98039216
101 2.99019608

10,000 2.99990001
1,000,000 2.99999900
2,000,000 2.99999950

Table 3.1: Values of the sequence xn = 3n+2
n+1

The above data suggests that the values of the sequence (xn) become

closer and closer to the number L = 3. For example, suppose that

ε = 0.005 and consider the ε-neighborhood of L = 3, that is, the

interval (3−ε, 3+ε) = (2.995, 3.005). Not all the terms of the sequence

(xn) are in the ε-neighborhood, however, it seems that all the terms of

the sequence from x101 and onward are inside the ε-neighborhood. In

other words, IF n ≥ 101 then 3 − ε < xn < 3 + ε, or equivalently

|xn − 3| < ε. Suppose now that ε = 0.00001 and thus the new ε-

neighborhood is (3−ε, 3+ε) = (2.99999, 3.000001). Then it is no longer

true that |xn − 3| < ε for all n ≥ 101. However, it seems that all the

terms of the sequence from x1000000 and onward are inside the smaller

ε-neighborhood, in other words, |xn − 3| < ε for all n ≥ 1, 000, 000.

We can extrapolate these findings and make the following hypothesis:

For any given ε > 0 there exists a natural number K ∈ N such that if

n ≥ K then |xn − L| < ε.
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The above example and our analysis motivates the following defini-

tion.

Definition 3.1.2: Convergence of Sequences

The sequence (xn) is said to converge if there exists a number

L ∈ R such that for any given ε > 0 there exists K ∈ N such that

|xn − L| < ε for all n ≥ K. In this case, we say that (xn) has limit

L and we write

lim
n→∞

xn = L.

If (xn) is not convergent then we say that it is divergent.

Hence, xn converges to L if for any given ε > 0 (no matter how small),

there exists a point in the sequence xK such that |xK −L| < ε, |xK+1−
L| < ε, |xK+2 −L| < ε, . . ., that is, |xn −L| < ε for all n ≥ K. We will

sometimes write lim
n→∞

xn = L simply as limxn = L or (xn) → L.

Example 3.1.3. Using the definition of the limit of a sequence, prove

that limn→∞
1
n = 0.

Proof. Let ε > 0 be arbitrary but fixed. By the Archimedean property

of R, there exists K ∈ N such that 1
K < ε. Then, if n ≥ K then

1
n
≤ 1

K
< ε. Therefore, if n ≥ K then

|xn − 0| =
∣
∣ 1
n
− 0
∣
∣

=
1

n

≤ 1

K
< ε.

This proves, by definition, that limn→∞
1
n = 0.
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Example 3.1.4. Using the definition of the limit of a sequence, prove

that limn→∞
3n+2
n+1 = 3.

Proof. Given an arbitrary ε > 0, we want to prove that there exists

K ∈ N such that
∣
∣
∣
∣

3n+ 2

n+ 1
− 3

∣
∣
∣
∣
< ε, ∀ n ≥ K.

Start by analyzing |xn − L|:

|xn − L| =
∣
∣
∣
∣

3n+ 2

n+ 1
− 3

∣
∣
∣
∣

=

∣
∣
∣
∣

−1

n+ 1

∣
∣
∣
∣

=
1

n+ 1
.

Now, the condition that
∣
∣
∣
∣

3n+ 2

n+ 1
− 3

∣
∣
∣
∣
=

1

n+ 1
< ε

it is equivalent to
1

ε
− 1 < n.

Now let’s write the formal proof.

Let ε > 0 be arbitrary and let K ∈ N be such that 1
ε
− 1 < K.

Then, 1
K+1 < ε. Now if n ≥ K then 1

n+1 ≤ 1
K+1 and thus if n ≥ K then

∣
∣
∣
∣

3n+ 2

n+ 1
− 3

∣
∣
∣
∣
=

∣
∣
∣
∣

−1

n+ 1

∣
∣
∣
∣

=
1

n+ 1

≤ 1

K + 1
< ε.

By definition, this proves that (xn) → 3.
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Example 3.1.5. Using the definition of the limit of a sequence, prove

that limn→∞
4n3+3n
n3+6 = 4.

Proof. Let xn = 4n3+3n
n3+6 . We want to show that for any given ε > 0,

there exists K ∈ N such that if n ≥ K then

|xn − 4| =
∣
∣
∣
∣

4n3 + 3n

n3 + 6
− 4

∣
∣
∣
∣
< ε.

Start by analyzing |xn − 4|:

|xn − 4| =
∣
∣
∣
∣

4n3 + 3n

n3 + 6
− 4

∣
∣
∣
∣

=

∣
∣
∣
∣

3n− 24

n3 + 6

∣
∣
∣
∣

In this case, it is difficult to explicitly isolate for n in terms of ε. Instead

we take a different approach; we find an upper bound for |xn − 4| =
∣
∣3n−24
n3+6

∣
∣:

∣
∣
∣
∣

3n− 24

n3 + 6

∣
∣
∣
∣
≤ 3n+ 24

n3 + 6

≤ 27n

n3 + 6

<
27n

n3

=
27

n2
.

Hence, if 27
n2 < ε then also |xn − 4| < ε by the transitivity property of

inequalities. The inequality 27
n2 < ε holds true if and only if

√
27
ε < n.

Now that we have done a detailed preliminary analysis, we can proceed

with the proof.

74



3.1. LIMITS OF SEQUENCES

Suppose that ε > 0 is given and let K ∈ N be such that
√

27
ε
< K.

Then 27
ε < K2, and thus 27

K2 < ε. Then, if n ≥ K then 27
n2 ≤ 27

K2 and

therefore

|xn − 4| =
∣
∣
∣
∣

3n− 24

n3 + 6

∣
∣
∣
∣

≤ 3n+ 24

n3 + 6

≤ 27n

n3 + 6

<
27n

n3

=
27

n2

≤ 27

K2

< ε.

This proves that limn→∞ xn = 4.

Example 3.1.6 (Important). Prove that for any irrational number ζ

there exists a sequence of rational numbers (xn) converging to ζ.

Proof. Let (δn) be any sequence of positive numbers converging to zero,

for example, δn = 1
n . Now since ζ − δn < ζ + δn for each n ∈ N, then

by the Density theorem there exists a rational number xn such that

ζ − δn < xn < ζ + δn. In other words, |xn − ζ| < δn. Now let ε > 0 be

arbitrary. Since (δn) converges to zero, there exists K ∈ N such that

|δn − 0| < ε for all n ≥ K, or since δn > 0, then δn < ε for all n ≥ K.

Therefore, if n ≥ K then |xn − ζ| < δn < ε. Thus, for arbitrary ε > 0

there exists K ∈ N such that if n ≥ K then |xn − ζ| < ε. This proves

that (xn) converges to ζ.
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Example 3.1.7. Let xn = cos(n)
n2−1 where n ≥ 2. Prove that limn→∞ xn =

0.

Proof. We want to prove given any ε > 0 there exists K ∈ N such that
∣
∣
∣
∣

cos(n)

n2 − 1

∣
∣
∣
∣
< ε, n ≥ K.

Now, since | cos(x)| ≤ 1 for all x ∈ R we have that
∣
∣
∣
∣

cos(n)

n2 − 1

∣
∣
∣
∣
=

| cos(n)|
n2 − 1

≤ 1

n2 − 1

≤ 1

n2 − 1
2n

2

=
2

n2
.

Thus, if 2
n2 < ε then

∣
∣
∣
cos(n)
n2−1

∣
∣
∣.

Let ε > 0 be arbitrary. Let K ∈ N be such that
√

2
ε < K. Then

2
K2 < ε. Therefore, if n ≥ K then 2

n2 ≤ 2
K2 and therefore

∣
∣
∣
∣

cos(n)

n2 − 1

∣
∣
∣
∣
=

| cos(n)|
n2 − 1

≤ 1

n2 − 1

≤ 1

n2 − 1
2n

2

=
2

n2
≤ 2

K2

< ε

This proves that limn→∞ xn = 0.

Example 3.1.8. Does the sequence (xn) defined by xn = (−1)nn
n+1

con-

verge?
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A useful tool for proving convergence is the following.

Theorem 3.1.9

Let (xn) be a sequence and let L ∈ R. Let (an) be a sequence of

positive numbers such that lim
n→∞

an = 0. Suppose that there exists

M ∈ N such that

|xn − L| ≤ an, ∀ n ≥M.

Then lim
n→∞

xn = L.

Proof. Let ε > 0 be arbitrary. Since an → 0, there exists K1 ∈ N such

that an < ε for all n ≥ K1. Let K = max{M,K1}. Then, if n ≥ K

then an < ε and |xn − L| ≤ an. Thus, if n ≥ K then

|xn − L| ≤ an < ε.

Example 3.1.10. Suppose that 0 < r < 1. Prove that limn→∞ rn = 0.

Proof. We first note that

r =
1
1
r

=
1

1 + x

where x = 1
r
− 1 and since r < 1 then x > 0. Now, by Bernoulli’s

inequality (Example 1.2.5) it holds that (1+x)n ≥ 1+xn for all n ∈ N

and therefore

rn =
1

(1 + x)n

≤ 1

1 + nx

<
1

nx
.
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Now since limn→∞
1
nx = 0 then it follows by Theorem 3.1.9 that

lim
n→∞

rn = 0.

Example 3.1.11. Consider the sequence xn = n2−1
2n2+3. Prove that

limn→∞ xn = 1
2 .

Proof. We have that

∣
∣
∣
∣

n2 − 1

2n2 + 3
− 1

2

∣
∣
∣
∣
=

5

2

1

(2n2 + 3)

<
5/2

2n2
.

Using the definition of the limit of a sequence, one can show that

limn→∞
5

4n2 = 0 and therefore limn→∞ xn = 1
2 .

Notice that in the definition of the limit of a sequence, we wrote

“there exists a number L”. Could there be more than one number L

satisfying the definition of convergence of a sequence? Before we go

any further, we prove that if a sequence converges then it has a unique

limit.

Theorem 3.1.12: Uniqueness of Limits

A convergent sequence can have at most one limit.

Proof. Suppose that (xn) → L1 and that (xn) → L2. Let ε > 0 be

arbitrary. Then there exists K1 such that |xn − L1| < ε/2 for all

n ≥ K1 and there exists K2 such that |xn − L2| < ε/2 for all n ≥ K2.

Let K = max{K1, K2}. Then for n ≥ K it holds that |xn − L1| < ε/2
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and also |xn − L2| < ε/2 and therefore

|L1 − L2| = |L1 − xn + xn − L2|
< |xn − L1|+ |xn − L2|
< ε/2 + ε/2

= ε.

Hence, |L1 −L2| < ε for all ε > 0, and therefore by Theoreom 2.2.7 we

conclude that |L1 − L2| = 0, that is, L1 − L2 = 0.

The ultimate long-time behavior of a sequence will not change if

we discard a finite number of terms of the sequence. To be pre-

cise, suppose that X = (x1, x2, x3, . . .) is a sequence and let Y =

(xm+1, xm+2, xm+3, . . .), that is, Y is the sequence obtained from X by

discarding the firstm terms of X. In this case, we will call Y them-tail

of X. The next theorem states, not surprisingly, that the convergence

properties of X and Y are the same.

Theorem 3.1.13: Tails of Sequences

Let X : N → R be a sequence and let Y : N → R be the sequence

obtained from X by discarding the first m ∈ N terms of X, in other

words, Y (n) = X(m + n). Then X converges to L if and only if Y

converges to L.
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Exercises

Exercise 3.1.1. Write the first three terms of the recursively defined

sequence x1 = 1, xn+1 =
1
2(xn +

2
xn
) for n ≥ 1.

Exercise 3.1.2. Use the definition of the limit of a sequence to establish

the following limits:

(a) lim
n→∞

n+ 1

3n
=

1

3

(b) lim
n→∞

3n2 + 2

4n2 + 1
=

3

4

(c) lim
n→∞

(−1)nn

n2 + 1
= 0

Exercise 3.1.3.

(a) Prove that limn→∞ |xn| = 0 if and only if limn→∞ xn = 0.

(b) Combining the previous result and Example 3.1.10, prove that if

1 < r < 0 then limn→∞ rn = 0.

(c) Conclude that for any real number r ∈ R, if |r| < 1 then limn→∞ rn =

0.

Exercise 3.1.4. Let m ∈ N and assume that m ≥ 2.

(a) Prove that 1
mn <

1
n for all n ∈ N.

(b) Use Theorem 3.1.9 to show that limn→∞
1
mn = 0.

Note: Do not use Example 3.1.10 to show that limn→∞
1
mn = 0.

Exercise 3.1.5. Suppose that S ⊂ R is non-empty and bounded above

and let u = supS. Show that there exists a sequence (xn) such that

xn ∈ S for all n ∈ N and limn→∞ xn = u. Hint: If ε > 0 then clearly

u−ε < u. Since u = sup(S) there exists x ∈ S such that u−ε < x < u.

Example 3.1.6 is similar.
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Exercise 3.1.6. Let (xn) be the sequence defined as

xn =

{

2n2 + 1, n < 50
sin(2n)
n2+1 , n ≥ 50.

Using the definition of the limit of a sequence, find limn→∞ xn.
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3.2 Limit Theorems

Proving that a particular number L ∈ R is the limit of a given sequence

is usually not easy because there is no systematic way to determine

a candidate limit L for a given arbitrary sequence. Instead, we are

frequently interested in just knowing if a given sequence converges or

not, and not so much on finding the actual limit. The theorems in this

section help us do just that. We begin with a definition.

Definition 3.2.1: Boundedness

A sequence (xn) is said to be bounded if there exists R ≥ 0 such

that |xn| ≤ R for all n ∈ N.

Example 3.2.2. Prove that (xn) is bounded if and only if there exists

numbers R1 and R2 such that R1 ≤ xn ≤ R2 for all n ∈ N.

Theorem 3.2.3: Convergence implies Boundedness

A convergent sequence is bounded.

Proof. Suppose that (xn) converges to L. Then there exists K ∈ N

such that |xn − L| < 1 for all n ≥ K. Let

R = 1 +max{|x1 − L|, |x2 − L|, . . . , |xK−1 − L|},

and we note that R ≥ 1. Then for all n ≥ 1 it holds that |xn−L| ≤ R.

Indeed, if n ≥ K then |xn − L| < 1 ≤ R and if 1 ≤ n ≤ K − 1 then

|xn − L| ≤ max{|x1 − L|, . . . , |xK−1 − L|} ≤ R.

Thus, for all n ≥ 1 it holds that L − R ≤ xn ≤ R + L and this proves

that (xn) is bounded.
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Theorem 3.2.4: Convergence under Absolute Value

If (xn) → L then (|xn|) → |L|.

Proof. Follows by the inequality ||xn| − |L|| ≤ |xn − L| (see Corol-

lary 2.3.6). Indeed, for any given ε > 0 there exists K ∈ N such that

|xn − L| < ε for all n ≥ K and therefore ||xn| − |L|| ≤ |xn − L| < ε for

all n ≥ K.

The following theorem describes how the basic operations of arith-

metic preserve convergence.

Theorem 3.2.5: Limit Laws

Suppose that (xn) → L and (yn) →M .

(a) Then (xn + yn) → L+M and (xn − yn) → L−M .

(b) Then (xnyn) → LM .

(c) If yn 6= 0 and M 6= 0 then
(
xn

yn

)

→ L
M .

Proof. (i) By the triangle inequality

|xn + yn − (L+M)| = |xn − L+ yn −M |
< |xn − L|+ |yn −M |.

Let ε > 0. There exists K1 such that |xn − L| < ε/2 for n ≥ K1

and there exists K2 such that |yn −M | < ε/2 for n ≥ K2. Let K =

max{K1, K2}. Then for n ≥ K

|xn + yn − (L+M)| ≤ |xn − L|+ |yn −M |
< ε/2 + ε/2

= ε.
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The proof for (xn − yn) → L−M is similar.

(ii) We have that

|xnyn − LM | = |xnyn − ynL+ ynL− LM |
≤ |xnyn − ynL|+ |ynL− LM |
= |yn||xn − L|+ |L||yn −M |.

Now, (yn) is bounded because it is convergent, and therefore |yn| ≤ R

for all n ∈ N for some R > 0. By convergence of (yn) and (xn), there

exists K ∈ N such that |xn − L| < ε
2R and |yn −M | < ε

2(|L|+1) for all

n ≥ K. Therefore, if n ≥ K then

|xnyn − LM | < |yn||xn − L|+ |L||yn −M |

< R|xn − L|+ (|L|+ 1)|yn −M |

< R
ε

2R
+ (|L|+ 1)

ε

2(|L|+ 1)

= ε.

(iii) It is enough to prove that
(

1
yn

)

→ 1
M and then use (ii). Now,

since M 6= 0 and yn 6= 0 then |yn| is bounded below by some positive

number, say R > 0. Indeed, (|yn|) → |M | and |yn| > 0. Thus, 1
|yn| <

1
R

for all n ∈ N. Now,

∣
∣
∣
∣

1

yn
− 1

M

∣
∣
∣
∣
=

1

|yn||M | |yn −M |

<
1

R|M | |yn −M |.

For ε > 0, there exists K ∈ N such that |yn − M | < R|M |ε for all
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n ≥ K. Therefore, for n ≥ K we have that
∣
∣
∣
∣

1

yn
− 1

M

∣
∣
∣
∣
<

1

R|M | |yn −M |

<
1

R|M |R|M |ε

= ε.

Corollary 3.2.6

Suppose that (xn) → L. Then (xkn) → Lk for any k ∈ N.

The next theorem states that the limit of a convergent sequence of

non-negative terms is non-negative.

Theorem 3.2.7

Suppose that (xn) → L. If xn ≥ 0 for all n ∈ N then L ≥ 0.

Proof. We prove the contrapositive, that is, we prove that if L < 0 then

there exists K ∈ N such that xK < 0. Suppose then that L < 0. Let

ε > 0 be such that L+ ε < 0. Since (xn) → L, there exists K ∈ N such

that xK < L+ ε, and thus by transitivity we have xK < 0.

Corollary 3.2.8: Comparison

Suppose that (xn) and (yn) are convergent and suppose that there

exists M ∈ N such that xn ≤ yn for all n ≥ M . Then lim
n→∞

xn ≤
lim
n→∞

yn.
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Proof. Suppose for now that M = 1, that is, xn ≤ yn for all n ∈ N.

Consider the sequence zn = yn − xn. Then zn ≥ 0 for all n ∈ N and

(zn) is convergent since it is the difference of convergent sequences. By

Theorem 3.2.7, we conclude that limn→∞ zn ≥ 0. But

lim
n→∞

zn = lim
n→∞

(yn − xn)

= lim
n→∞

yn − lim
n→∞

xn

and therefore limn→∞ yn−limn→∞ xn ≥ 0, which is the same as limn→∞ yn ≥
limn→∞ xn. If M > 1, then we can apply the theorem to the M -tail of

the sequences of (xn) and (yn) and the result follows.

Corollary 3.2.9

Suppose that a ≤ xn ≤ b and lim
n→∞

xn = L. Then a ≤ L ≤ b.

Proof. We have that 0 ≤ xn − a ≤ b − a. The sequence yn = b − a is

constant and converges to b − a. The sequence zn = xn − a converges

to L − a. Therefore, by the previous theorem, 0 ≤ L − a ≤ b − a, or

a ≤ L ≤ b.

Theorem 3.2.10: Squeeze Theorem

Suppose that yn ≤ xn ≤ zn for all n ∈ N. Assume that (yn) → L

and also (zn) → L. Then (xn) is convergent and (xn) → L.

Proof. Let ε > 0 be arbitrary. There exists K1 ∈ N such that L −
ε < yn < L + ε for all n ≥ K1 and there exists K2 ∈ N such that

L − ε < zn < L + ε for all n ≥ K2. Let K = max{K1, K2}. Then if

n ≥ K then

L− ε < yn ≤ xn ≤ zn < L+ ε.
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Therefore, for n ≥ K we have that

L− ε < xn < L+ ε

and thus limn→∞ xn = L.

Remark 3.2.11. Some people call the Squeeze Theorem the Sandwich

Theorem; we are not those people.

Example 3.2.12. Let 0 < a < b and let xn = (an + bn)1/n. Prove that

lim
n→∞

xn = b.

Theorem 3.2.13: Ratio Test

Let (xn) be a sequence such that xn > 0 for all n ∈ N and sup-

pose that L = lim
n→∞

xn+1

xn
exists. If L < 1 then (xn) converges and

lim
n→∞

xn = 0.

Proof. Let r ∈ R be such that L < r < 1 and set ε = r − L. There

exists K ∈ N such that

xn+1

xn
< L+ ε = r

for all n ≥ K. Therefore, for all n ≥ K we have that

0 < xn+1 < rxn.

Thus, xK+1 < rxK , and therefore xK+2 < rxK+1 < r2xK, and induc-

tively for m ≥ 1 it holds that

xK+m < rmxK.
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Hence, the tail of the sequence (xn) given by (ym) = (xK+1, xK+2, . . . , )

satisfies

0 < ym < rmxK .

Since 0 < r < 1 it follows that limm→∞ rm = 0 and therefore limm→∞ ym =

0 by the Squeeze theorem. This implies that (xn) converges to 0

also.
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Exercises

Exercise 3.2.1. Use the Limit Theorems to prove that if (xn) converges

and (xn + yn) converges then (yn) converges. Give an example of two

sequences (xn) and (yn) such that both (xn) and (yn) diverge but (xn+

yn) converges.

Exercise 3.2.2. Is the sequence yn = (−1)nn4 convergent? Explain.

Exercise 3.2.3. Let (xn) and (yn) be sequences in R. Suppose that

limn→∞ xn = 0 and that (yn) is bounded. Prove that limn→∞ xnyn = 0.

Exercise 3.2.4. Show that if (xn) and (yn) are sequences such that

(xn) and (xn + yn) are convergent, then (yn) is convergent.

Exercise 3.2.5. Give examples of the following:

(a) Divergent sequences (xn) and (yn) such that zn = xnyn converges.

(b) Divergent sequences (xn) and (yn) such that zn = xnyn diverges.

(c) A divergent sequence (xn) and a convergent sequence (yn) such

that zn = xnyn converges.

(d) A divergent sequence (xn) and a convergent sequence (yn) such

that zn = xnyn diverges.

Exercise 3.2.6. Let (xn) and (yn) be sequences and suppose that (xn)

converges to L. Assume that for every ε > 0 there exists M ∈ N such

that |xn − yn| < ε for all n ≥M . Prove that (yn) also converges to L.

Exercise 3.2.7. Let (xn) be a sequence and define a sequence (yn) as

yn =
x1 + x2 + · · ·+ xn

n

for n ∈ N. Show that if limn→∞ xn = 0 then limn→∞ yn = 0.
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Exercise 3.2.8. Let (xn) be a convergent sequence with limit L. Let

f(x) = a0 + a1x+ · · ·+ akx
k be a polynomial. Use the Limit Theorems

to prove that the sequence (yn) defined by yn = f(xn) is convergent

and find the limit of (yn).

Exercise 3.2.9. Apply the Limit Theorems to find the limits of the

following sequences:

(a) xn =

√

2n2 + 3

n2 + 1

(b) xn = (2 + 1/n)2

(c) xn =
n+ 1

n
√
n

(d) xn = 2n/n!

Exercise 3.2.10. Let (xn) be a sequence such that xn 6= 0 for all n ∈ N.

Suppose that limn→∞ xn = L and L > 0. Let w = inf{|xn| : n ∈ N}.
Prove that w > 0.

Exercise 3.2.11. Let (xn) be a sequence of positive numbers such that

lim
n→∞

xn+1

xn
= L > 1. Show that (xn) is not bounded and hence is not

convergent.
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3.3 Monotone Sequences

As we have seen, a convergent sequence is necessarily bounded, and it

is straightforward to construct examples of sequences that are bounded

but not convergent, for example, (xn) = (1, 0, 1, 0, 1, 0, . . .). In this

section, we prove the Monotone Convergence Theorem which says that

a bounded sequence whose terms increase (or decrease) must necessarily

converge.

Definition 3.3.1: Monotone Sequences

Let (xn) be a sequence.

(i) We say that (xn) is increasing if xn ≤ xn+1 for all n ∈ N.

(ii) We say that (xn) is decreasing if xn+1 ≤ xn for all n ∈ N.

(iii) We say that (xn) is monotone if (xn) is either increasing or

decreasing.

Example 3.3.2. Prove that if (xn) is increasing then (xn) is bounded

below. Similarly, prove that if (xn) is decreasing then (xn) is bounded

above.
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Theorem 3.3.3: Monotone Convergence Theorem

If (xn) is bounded and monotone then (xn) is convergent. In par-

ticular:

(i) if (xn) is bounded above and increasing then

lim
n→∞

xn = sup{xn : n ∈ N},

(ii) if (xn) is bounded below and decreasing then

lim
n→∞

xn = inf{xn : n ∈ N}.

Proof. Suppose that (xn) is bounded above and increasing. Let u =

sup{xn | n ∈ N} and let ε > 0 be arbitrary. Then by the properties of

the supremum, there exists xK such that u − ε < xK ≤ u. Since (xn)

is increasing, and u is an upper bound for the range of the sequence, it

follows that xK ≤ xn ≤ u for all n ≥ K. Therefore, u− ε < xn ≤ u for

all n ≥ K. Clearly, this implies that u− ε < xn < u+ ε for all n ≥ K.

Since ε > 0 was arbitrary, this proves that (xn) converges to u.

Suppose now that (xn) is bounded below and decreasing. Let w =

inf{xn | n ∈ N} and let ε > 0 be arbitrary. Then by the properties of

the infimum, there exists xK such that w ≤ xK < w + ε. Since (xn)

is decreasing, and w is a lower bound for the range of the sequence, it

follows that w ≤ xn ≤ xK for all n ≥ K. Therefore, w ≤ xn < w + ε

for all n ≥ K. Hence, w − ε < xn < w + ε for all n ≥ K. Since ε > 0

was arbitrary, this proves that (xn) converges to w.

The Monotone Convergence Theorem (MCT) is an important tool

in real analysis and we will use it frequently; notice that it is more-
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or-less a direct consequence of the Completeness Axiom. In fact, we

could have taken as our starting axiom the MCT and then proved the

Completeness property of R.

Example 3.3.4. By the MCT, a bounded sequence that is also mono-

tone is convergent. However, it is easy to construct a convergent se-

quence that is not monotone. Provide such an example.

The MCT can be used to show convergence of recursively defined

sequences. To see how, suppose that (xn) is defined recursively as

x1 = a and

xn+1 = f(xn)

where f is some given function. For example, say x1 = 2 and

xn+1 = 2 +
1

xn
.

Hence, in this case f(x) = 2 + 1
x . If (xn) is bounded and increasing

then by the MCT (xn) converges, but we do not know what the limit

is. However, for example, if f is a polynomial/rational function of x

then we can conclude that L = limn→∞ xn must satisfy the equation

L = f(L).

Indeed, if f is a polynomial/rational function then by the Limit Laws

we have

lim
n→∞

f(xn) = f( lim
n→∞

xn) = f(L).

But xn+1 = f(xn) and therefore limn→∞ xn+1 = f(L), which is equiva-

lent to limn→∞ xn = f(L) since (xn+1) is just the 1-tail of the sequence

(xn). Therefore, L = f(L) as claimed. From the equation L = f(L) we

can solve for L if possible.
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Example 3.3.5. Consider the sequence (xn) defined recursively as x1 =

1 and

xn+1 =
1
2
xn +

1

4
, ∀ n ≥ 1.

Prove that (xn) converges and find the limit.

Proof. We prove by induction that 1
2
≤ xn for all n ∈ N, that is, (xn) is

bounded below by 1
2. First of all, it is clear that 1

2 ≤ x1. Now assume

that 1
2 ≤ xn for some n ∈ N. Then

xn+1 =
1
2xn +

1

4

≥ 1

2
· 1
2
+

1

4

=
1

2
.

Hence, (xn) is bounded below by 1
2 . We now prove that (xn) is decreas-

ing. We compute that x2 =
1
2
+ 1

4
= 3

4
, and thus x2 < x1. Assume now

that xn < xn−1 for some n ∈ N. Then

xn+1 <
1

2
xn−1 +

1

4
= xn.

Hence, by induction we have shown that (xn) is decreasing. By the

MCT, (xn) is convergent. Suppose that (xn) → L. Then also (xn+1) →
L and the sequence yn = 1

2xn + 1
4 converges to 1

2L + 1
4. Therefore,

L = 1
2L+ 1

4 and thus L = 1/2.

Before we embark on the next example, we recall that

1 + r + r2 + · · · + rn−1 =
1− rn

1− r

and if 0 < r < 1 then 0 < rn < r < 1 and therefore

1− rn

1− r
<

1

1− r
.
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Example 3.3.6. Consider the sequence

xn = 1 +
1

1!
+

1

2!
+ · · ·+ 1

n!
.

Note that this can be defined recursively as x1 = 1 and xn+1 = xn +
1

(n+1)!. Prove that (xn) converges.

Proof. We will prove by the MCT that (xn) converges. By induction,

one can show that 2n−1 < n! for all n ≥ 3. Therefore,

xn < 1 +
1

1
+

1

2
+ · · ·+ 1

2n−1

= 1 +
1− (1/2)n

1− (1/2)

< 1 +
1

1− (1/2)

= 3.

Hence, xn < 3 and therefore (xn) is bounded. Now, since xn+1 =

xn + 1
(n+1)! then clearly xn < xn+1. Thus (xn) is increasing. By the

MCT, (xn) converges. You might recognize that limn→∞ xn = e =

2.71828 . . ..

Example 3.3.7. Let x1 = 0 and let xn+1 =
√
2 + xn for n ≥ 1. Prove

that (xn) converges and find its limit.

Proof. Clearly, x1 < x2 =
√
2. Assume by induction that xk > xk−1 for

some k ∈ N. Then

xk+1 =
√
2 + xk

>
√

2 + xk−1

= xk.

Hence, (xn) is an increasing sequence. We now prove that (xn) is

bounded above. Clearly, x1 < 2. Assume that xk < 2 for some k ∈ N.
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Then xk+1 =
√
2 + xk <

√
2 + 2 = 2. This proves that (xn) is bounded

above. By the MCT, (xn) converges, say to L. Moreover, since xn ≥ 0

(as can be proved by induction), then L ≥ 0. Therefore, L =
√
2 + L

and then L2 − L− 2 = 0. Hence, L = 1±
√
1+8
2 = 1±3

2 . Since L ≥ 0 then

L = 2.

Example 3.3.8. Consider the sequence xn =
(
1 + 1

n

)n
. We will show

that (xn) is bounded and increasing, and therefore by the MCT (xn)

convergent. The limit of this sequence is the number e. From the

binomial theorem

xn =
n∑

k=0

(
n

k

)
1

nk

= 1 +
n

n
+

1

2!

n(n− 1)

n2
+

1

3!

n(n− 1)(n− 2)

n3
+ · · ·

+
1

n!

n(n− 1)(n− 2) · · · (n− (n− 1))

nk

= 1 + 1 +
1

2!
(1− 1

n) +
1

3!
(1− 1

n)(1− 1
n) + · · ·

+
1

n!
(1− 1

n
)(1− 1

n
) · · · (1− (n− 1)/n)

< 1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!

< 1 + 1 +
1

2
+

1

22
+ · · ·+ 1

2n−1

= 1 +
1− (1/2)n

1− 1/2

< 3

where we used that 2n−1 < n! for all n ≥ 3. This shows that (xn) is
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bounded. Now, for each 1 ≤ k ≤ n, we have that

(
n

k

)
1

nk
=
n(n− 1)(n− 2) · · · (n− (k − 1))

nk

= (1− 1
n)(1− 2

n) · · · (1− k−1
n ).

And similarly,

(
n+ 1

k

)
1

(n+ 1)k
= (1− 1

n+1)(1− 2
n+1) · · · (1− k−1

n+1).

It is clear that (1 − j
n) < (1 − j

n+1) for all 1 ≤ j ≤ n. Hence,
(
n
k

)
1
nk <

(
n+1
k

)
1

(n+1)k
. Therefore, xn < xn+1, that is, (xn) is increasing. By the

MCT, (xn) converges to sup{xn : n ∈ N}.
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Exercises

Exercise 3.3.1. Let (xn) be an increasing sequence, let (yn) be a de-

creasing sequence, and assume that xn ≤ yn for all n ∈ N. Prove that

lim
n→∞

xn and lim
n→∞

yn exist, and that lim
n→∞

xn ≤ lim
n→∞

yn. Note: Recall that

a sequence (xn) is bounded if there exist constants R1, R2 > 0 (independent of n)

such that R1 ≤ xn ≤ R2 for all n ∈ N.

Exercise 3.3.2. Let x1 = 8 and let xn+1 =
1
2xn + 2 for n ≥ 1. Prove

that (xn) is bounded and monotone. Find the limit of (xn).

Exercise 3.3.3. Let x1 = 1 and let xn+1 =
n

n+ 1
x2n for n ≥ 1. Prove

that (xn) is bounded and monotone. Find the limit of (xn). Hint: Using

induction to prove that (xn) is monotone will not work with this sequence. Instead,

work with xn+1 directly to prove that (xn) is monotone.

Exercise 3.3.4. True or false, a convergent sequence is necessarily

monotone? If it is true, prove it. If it is false, give an example.
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3.4 Bolzano-Weierstrass Theorem

We can gather information about a sequence by studying its subse-

quences. Loosely speaking, a subsequence of (xn) is a new sequence

(yk) such that each term yk is from the original sequence (xn) and the

term yk+1 appears to the “right” of the term yk in the original sequence

(xn). Let us be precise about what we mean to the “right”.

Definition 3.4.1: Subsequences

Let (xn) be a sequence. A subsequence of (xn) is a sequence of

the form (xn1
, xn2

, xn3
, . . .) where n1 < n2 < n3 < · · · is a sequence

of strictly increasing natural numbers. A subsequence of (xn) will

be denoted by (xnk
).

The notation (xnk
) of a subsequence indicates that the indexing variable

is k ∈ N. The selection of the elements of (xn) to form a subsequence

(xnk
) does not need to follow any particular well-defined pattern but

only that n1 < n2 < n3 < · · · . Notice that for any increasing sequence

n1 < n2 < n3 < · · · of natural numbers, we have

k ≤ nk

for all k ≥ 1.

Example 3.4.2. An example of a subsequence of xn = 1
n is the se-

quence (yk) = (1, 13 ,
1
5,

1
7, . . .). Here we have chosen the odd terms of the

sequence (xn) to create (yk). In other words, if we write that yk = xnk

then nk = 2k − 1. Another example of a subsequence of (xn) is ob-

tained by taking the even terms to get the subsequence (1
2
, 1
4
, 1
6
, . . .), so

that here nk = 2k. In general, we can take any increasing selection
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n1 < n2 < n3 < · · · , such as

( 1
11
, 1
303
, 1
2000

, . . .)

to form a subsequence of (xn).

Example 3.4.3. Two subsequences of

(xn) = (1,−1, 12 ,−1, 13 ,−1, 14 ,−1, . . .)

(−1,−1,−1, . . . , ) and (1, 12,
1
3, . . . , ). Both of these subsequences con-

verge to distinct limits.

Example 3.4.4 (Important). We proved thatQ is countable and hence

there is a bijection f : N → Q. The bijection f defines a sequence

(xn) = (x1, x2, x3, x4, . . .)

where xn = f(n). Let L ∈ R be arbitrary. By the density of Q in

R, there exists xn1
∈ Q such that xn1

∈ (L − 1, L + 1). Now consider

the interval (L − 1
2 , L + 1

2). It has infinitely many distinct rational

numbers (by the Density Theorem). Therefore, there exists n2 > n1

such that xn2
∈ (L− 1

2 , L + 1
2). Consider now the interval (L− 1

3 , L +
1
3
). It has infinitely many rational numbers, and therefore there exists

n3 > n2 such that xn3
∈ (L − 1

3 , L + 1
3). By induction, there exists

a subsequence (xnk
) of (xn) such that |xnk

− L| < 1
k for all k ≥ 1.

Therefore, limk→∞ xnk
= L. We proved the following: For any real

number L there exists a sequence of rational numbers that converges

to L.

The following theorem is a necessary condition for convergence.
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Theorem 3.4.5

If (xn) → L then every subsequence of (xn) converges to L.

Proof. Let ε > 0. Then there exists K ∈ N such that |xn − L| < ε for

all n ≥ K. Since nK ≥ K and nK < nK+1 < . . ., then |xnk
− L| < ε for

all k ≥ K.

The contrapositive of the previous theorem is worth stating.

Theorem 3.4.6

Let (xn) be a sequence.

(i) If (xn) has two subsequences converging to distinct limits then

(xn) is divergent.

(ii) If (xn) has a subsequence that diverges then (xn) diverges.

The following is a very neat result that will supply us with a very

short proof of the main result of this section, namely, the Bolzano-

Weierstrass Theorem.

Theorem 3.4.7

Every sequence has a monotone subsequence.

Proof. Let (xn) be an arbitrary sequence. We will say that the term xm

is a peak if xm ≥ xn for all n ≥ m. In other words, xm is a peak if it is

an upper bound of all the terms coming after it. There are two possible

cases for (xn), either it has an infinite number of peaks or it has a finite

number of peaks. Suppose that it has an infinite number of peaks, say

xm1
, xm2

, . . ., and we may assume that m1 < m2 < m3 < · · · . Then,
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xm1
≥ xm2

≥ xm3
≥ · · · , and therefore (xmk

) is a decreasing sequence.

Now suppose that there are only a finite number of peaks and that xm

is the last peak. Then xn1
= xm+1 is not a peak and therefore there

exists n2 > n1 such that xn2
≥ xn1

. Similarly, xn2
is not a peak and

therefore there exists n3 > n2 such that xn3
≥ xn2

. Hence, by induction,

there exists a subsequence (xnk
) that is increasing.

Theorem 3.4.8: Bolzano-Weierstrass

Every bounded sequence contains a convergent subsequence.

Proof. Let (xn) be an arbitrary bounded sequence. By Theorem 3.4.7,

(xn) has a monotone subsequence (xnk
). Since (xn) is bounded then

so is (xnk
). By the MCT applied to (xnk

) we conclude that (xnk
) is

convergent.

We will give a second proof of the Bolzano-Weierstrass Theorem that

is more “hands-on”.

Another proof of Bolzano-Weierstrass. If (xn) is a bounded sequence,

then there exists a1, b1 ∈ R such that a1 ≤ xn ≤ b1 for all n ∈ N. We

will apply a recursive bisection algorithm to hunt down a converging

subsequence of (xn). Let m1 =
(a1+b1)

2 be the mid-point of the interval

[a1, b1]. Then at least one of the subsets I1 = {n ∈ N : a1 ≤ xn ≤ m1}
or J1 = {n ∈ N : m1 ≤ xn ≤ b1} is infinite; if it is I1 then choose

some xn1
∈ [a1, m1] and let a2 = a1 and b2 = m1; otherwise choose some

xn1
∈ [m1, b1] and let a2 = m1, b2 = b1. In any case, it is clear that

(b2 − a2) =
(b1−a1)

2 , that a1 ≤ a2 and that b1 ≥ b2. Now let m2 =
(a2+b2)

2

be the mid-point of the interval [a2, b2] and let I2 = {n ∈ N : a2 ≤
xn ≤ m2} and let J2 = {n ∈ N : m2 ≤ xn ≤ b2}. If I2 is infinite then

choose some xn2
∈ [a2, m2] and let a3 = a2, b3 = m2; otherwise choose
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some xn2
∈ [m2, b2] and let a3 = m2 and b3 = b2. In any case, it is

clear that (b3 − a3) =
(b1−a1)

22 , that a2 ≤ a3 and b3 ≤ b2. By induction,

there exists sequences (ak), (bk), and (xnk
) such that ak ≤ xnk

≤ bk

and (bk − ak) = (b1−a1)
2k−1 , (ak) is increasing and (bk) is decreasing. It

is clear that ak ≤ b and a ≤ bk for all k ∈ N. Hence, by the MCT,

(ak) and (bk) are convergent. Moreover, since (bk − ak) =
(b1−a1)
2k−1 then

lim(bk − ak) = 0 and consequently lim ak = lim bk = L. By the Squeeze

theorem we conclude that limk→∞ xnk
= L.

Notice that the proofs of the Bolzano-Weierstrass Theorem rely on

the Monotone Convergence Theorem and the latter relies on the Com-

pleteness Axiom. We therefore have the following chain of implications:

Completeness =⇒ MCT =⇒ Bol-Wei

It turns out that if we had taken as our starting axiom the Bolzano-

Weierstrass theorem then we could prove the Completeness property

and then of course the MCT. In other words, all three statements are

equivalent:

Completeness ⇐⇒ MCT ⇐⇒ Bol-Wei
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Exercises

Exercise 3.4.1. Prove that the following sequences are divergent.

(a) xn = 1− (−1)n + 1/n

(b) xn = sin(nπ/4)

(Hint: Theorem 3.4.6)

Exercise 3.4.2. Suppose that xn ≥ 0 for all n ∈ N and suppose that

lim
n→∞

(−1)nxn = L exists. Prove that L = 0 and that also lim
n→∞

xn = L.

(Hint: Consider subsequences of (−1)nxn.)

Exercise 3.4.3. Let (xn) be a sequence.

(a) Suppose that (xn) is increasing. Prove that if (xn) has a sub-

sequence (xnk
) that is bounded above then (xn) is also bounded

above.

(b) Suppose that (xn) is decreasing. Prove that if (xn) has a sub-

sequence (xnk
) that is bounded below then (xn) is also bounded

below.

Exercise 3.4.4. True or false: If (xn) is bounded and diverges then

(xn) has two subsequences that converge to distinct limits. Explain.

Exercise 3.4.5. Give an example of a sequence (xn) with the following

property: For each number L ∈
{
1, 12 ,

1
3 ,

1
4 , . . .

}
there exists a subse-

quence (xnk
) such that xnk

→ L. Hint: If you are spending a lot of

time on this question then you have not been reading this textbook

carefully.
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Exercise 3.4.6. Suppose that x1 and y1 satisfy 0 < x1 < y1 and define

xn+1 =
√
xnyn, yn+1 =

xn + yn
2

for n ≥ 1. Prove that (xn) and (yn) are convergent and that limxn =

lim yn. (Hint: First show that
√
xy ≤ (x+ y)/2 for any x, y > 0.)

Exercise 3.4.7. Let (xn) be a sequence and define the sequence (yn)

as

yn =
x1 + x2 + · · ·+ xn

n

Prove that if (xn) → L then (yn) → L.
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3.5 limsup and liminf

The behavior of a convergent sequence is easy to understand. Indeed,

if (xn) → L then eventually the terms of (xn) will be arbitrarily close to

L for n sufficiently large. What else is there to say? In this section, we

focus on bounded sequences that do not necessarily converge. The idea

is that we would like to develop a limit concept for these sequences,

and in particular, a “limiting upper bound”.

Let (xn) be an arbitrary sequence and introduce the set S defined

as the set of all the limits of convergent subsequences of (xn), that is,

S = {L ∈ R | (xnk
) → L} .

We will call S the subsequences limit set of (xn).

Example 3.5.1. If (xn) is bounded and S is the subsequences limit set

of (xn) explain why S is non-empty.

Example 3.5.2. Here are six examples of sequences and the corre-

sponding subsequences limit set. Notice that in the cases where (xn)

(xn) S
(1, 12 ,

1
3, . . .) {0}

(1,−1, 1,−1, . . .) {1,−1}
(1, 2, 3, 4, . . .) ∅

(1, 32 ,
1
3 ,

5
4,

1
5,

7
6, . . .) {0, 1}

(0, 1, 12,
1
4,

3
4,

1
8 , . . . ,

7
8 , . . .) [0, 1]

(rn) enumeration of Q R

Table 3.2: Limits of subsequences

is bounded, the set S is also bounded, which is as expected since if

a ≤ xn ≤ b then for any convergent subsequence (xnk
) of (xn) we nec-

essarily have a ≤ xnk
≤ b and therefore a ≤ limk→∞ xnk

≤ b.
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In general, we have seen that for a general set S, sup(S) and inf(S)

are not necessarily in S. This, however, is not the case for the subse-

quences limit set.

Lemma 3.5.3

Let (xn) be a bounded sequence and let S be its subsequences limit

set. Then sup(S) ∈ S and inf(S) ∈ S. In other words, there exists a

subsequence (xnk
) of (xn) such that lim

k→∞
xnk

= sup(S) and similarly

there exists a subsequence (ynk
) of (xn) such that lim

k→∞
ynk

= inf(S).

Proof. Let u = sup(S). If ε > 0 then there exists s ∈ S such that

u − ε < s ≤ u. Since s ∈ S, there exists a subsequence (xnk
) of

(xn) that converges to s. Therefore, there exists K ∈ N such that

u − ε < xnk
< u + ε for all k ≥ K. Hence, for each ε, the inequality

u− ε < xn < u+ ε holds for infinitely many n. Consider ε1 = 1. Then

there exists xn1
such that u − ε1 < xn1

< u + ε1. Now take ε2 = 1
2
.

Since u− ε2 < xn < u + ε holds for infinitely many n, there exists xn2

such that u− ε2 < xn2
< u+ ε2 and n2 > n1. By induction, for εk =

1
k ,

there exists xnk
such that u− εk < xnk

< u+ εk and nk > nk−1. Hence,

the subsequence (xnk
) satisfies |xnk

− u| < 1
k and therefore (xnk

) → u.

Therefore, u = sup(S) ∈ S.

By Lemma 3.5.3, if (xn) is a bounded sequence then there exists

a convergent subsequence of (xn) whose limit is larger than any other

limit of a convergent subsequence of (xn). This leads to the following

definition.
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Definition 3.5.4

Let (xn) be a bounded sequence and let S be its subsequences limit

set. We define the limit superior of (xn) as

lim supxn = supS

and the limit inferior of (xn) as

lim inf xn = inf S.

By Lemma 3.5.3, lim supxn is simply the largest limit of all convergent

subsequences of (xn) while lim inf xn is the smallest limit of all con-

vergent subsequences of (xn). Notice that by definition it is clear that

lim inf xn ≤ lim supxn. The next theorem gives an alternative charac-

terization of lim supxn and lim inf xn. The idea is that lim supxn is a

sort of limiting supremum and lim inf xn is a sort of limiting infimum

of a bounded sequence (xn).

Theorem 3.5.5

Let (xn) be a bounded sequence and let L∗ ∈ R. The following are

equivalent:

(i) L∗ = lim supxn

(ii) If ε > 0 then there are at most finitely many xn such that

L∗ + ε < xn and infinitely many xn such that L∗ − ε < xn.

(iii) Let um = sup{xn : n ≥ m}. Then L∗ = lim
m→∞

um = inf{um :

m ∈ N}.

Proof. (i)→(ii) Let S denote the subsequences limit set of (xn). By
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definition, L∗ = lim supxn = sup(S) and by Lemma 3.5.3 we have that

L∗ ∈ S. Hence, there exists a subsequence of (xn) converging to L∗ and

thus L∗ − ε < xn < L∗ + ε holds for infinitely many n. In particular

L∗ − ε < xn holds for infinitely many n. Suppose that L∗ + ε < xn

holds infinitely often. Now xn ≤ M for all n and some M > 0. Since

the inequality L∗+ε < xn holds infinitely often, there exists a sequence

n1 < n2 < · · · such that L∗+ε < xnk
≤M for all k ∈ N. We can assume

that (xnk
) is convergent (because it is bounded and we can pass to a

subsequence by the MCT) and thus L∗ + ε ≤ lim
n→∞

xnk
≤M . Hence we

have proved that the subsequence (xnk
) converges to a number greater

than L∗ which contradicts the definition of L∗ = sup(S).

(ii)→(iii) Let ε > 0. Since L∗ + ε/2 < xm holds for finitely many

m, there exists M such that xm ≤ L∗ + ε/2 for all m ≥ M . Hence,

L∗ + ε/2 is an upper bound of {xn | n ≥ m} and thus um < L∗ + ε.

Since (um) is decreasing, we have that um < L∗ + ε for all m ≥ M .

Now, L∗ − ε/2 < xn holds infinitely often and thus L∗ − ε < um for all

m ∈ N. Hence, L∗ − ε < um < L∗ + ε for all m ≥ M . This proves the

claim.

(iii)→(i) Let (xnk
) be a convergent subsequence. Since nk ≥ k, by

definition of uk, we have that xnk
≤ uk. Therefore, limxnk

≤ limuk =

L∗. Hence, L∗ is an upper bound of S. By definition of uk, there

exists xn1
such that u1 − 1 < xn1

≤ u1. By induction, there exists

a subsequence (xnk
) such that uk − 1

k
< xnk

≤ uk. Hence, by the

Squeeze Theorem, L∗ = limxnk
. Hence, L∗ ∈ S and thus L∗ = supS =

lim inf xn.

Example 3.5.6. Let pn denote the nth prime number, that is p1 = 2,

p2 = 3, p3 = 5, and so on. The numbers pn and pn+1 are called twin
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primes if pn+1 − pn = 2. The Twin Prime Conjecture is that

lim inf(pn+1 − pn) = 2

In other words, the Twin Prime Conjecture is that there are infinitely

many pairs of twin primes.

We end this section with the following interesting theorem that

says that if the subsequences limit set of a bounded sequence (xn)

consists of a single number L then the sequence (xn) also converges to

L.

Theorem 3.5.7

Let (xn) be a bounded sequence and let L ∈ R. If every convergent

subsequence of (xn) converges to L then (xn) converges to L.

Proof. Suppose that (xn) does not converge to L. Then, there exists

ε > 0 such that for everyK ∈ N there exists n ≥ K such that |xn−L| ≥
ε. Let K1 ∈ N. Then there exists n1 ≥ K1 such that |xn1

− L| ≥ ε.

Then there exists n2 > n1 + 1 such that |xn2
− L| ≥ ε. By induction,

there exists a subsequence (xnk
) of (xn) such that |xnk

− L| ≥ ε for all

k ∈ N. Now (xnk
) is bounded and therefore by Bolzano-Weierstrass

has a convergent subsequence, say (zk), which is also a subsequence

of (xn). By assumption, (zk) converges to L, which contradicts that

|xnk
− L| ≥ ε for all k ∈ N.

Another way to say Theorem 3.5.7 is that if (xn) is bounded and L =

lim supxn = lim inf xn then (xn) → L. The converse, by the way,

has already been proved: if (xn) → L then every subsequence of (xn)

converges to L and therefore L = lim supxn = lim inf xn.
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Exercises

Exercise 3.5.1. Determine the lim sup
n→∞

xn and lim inf
n→∞

xn for each case:

(a) xn = 3 + (−1)n(1 + 1/n)

(b) xn = 1 + sin(nπ/2)

(c) xn = (2− 1/n)(−1)n

Exercise 3.5.2. Let (xn) and (yn) be bounded sequences. Let (zn) be

the sequence zn = xn + yn. Show that

lim sup
n→∞

zn ≤ lim sup
n→∞

xn + lim sup
n→∞

yn

In other words, prove that

lim sup
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim sup
n→∞

yn

Exercise 3.5.3. Let (xn) and (yn) be bounded sequences. Show that

if xn ≤ yn for all n then

lim sup
n→∞

xn ≤ lim sup
n→∞

yn.
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3.6 Cauchy Sequences

Up until now, the Monotone Convergence theorem is our main tool for

determining that a sequence converges without actually knowing what

the the limit is. It is a general sufficient condition for convergence. In

this section, we prove another groundbreaking general sufficient condi-

tion for convergence known as the Cauchy criterion. Roughly speak-

ing, the idea is that if the terms of a sequence (xn) become closer and

closer to one another as n → ∞ then the sequence ought to converge.

A sequence whose terms become closer and closer to one another is

called a Cauchy sequence.

Definition 3.6.1: Cauchy Sequences

A sequence (xn) is said to be a Cauchy sequence if for every

ε > 0 there exists a natural number K such that if n,m ≥ K then

|xn − xm| < ε.

In other words, (xn) is a Cauchy sequence if the difference |xn − xm| is
arbitrarily small provided that both n and m are sufficiently large.

Example 3.6.2. Prove directly using the definition of a Cauchy se-

quence that if (xn) and (yn) are Cauchy sequences then the sequence

zn = |xn − yn| is a Cauchy sequence.

Not surprisingly, a convergent sequence is indeed a Cauchy se-

quence.

Lemma 3.6.3

If (xn) is convergent then it is a Cauchy sequence.
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Proof. Suppose that (xn) → L. Let ε > 0 and let K be sufficiently

large so that |xn − L| < ε/2 for all n ≥ K. If n,m ≥ K then by the

triangle inequality,

|xn − xm| = |xn − L+ L− xm|
≤ |xn − L|+ |xm − L|
< ε/2 + ε/2

= ε.

This proves that (xn) is Cauchy.

A Cauchy sequence is bounded.

Lemma 3.6.4: Cauchy implies Boundedness

If (xn) is a Cauchy sequence then (xn) is bounded.

Proof. The proof is similar to the proof that a convergent sequence is

bounded.

Theorem 3.6.5: Cauchy Criterion

The sequence (xn) is convergent if and only if (xn) is a Cauchy

sequence.

Proof. In Lemma 3.6.3 we already showed that if (xn) converges then

it is a Cauchy sequence. To prove the converse, suppose that (xn) is a

Cauchy sequence. By Lemma 3.6.4, (xn) is bounded. Therefore, by the

Bolzano-Weierstrass theorem there is a subsequence (xnk
) of (xn) that

converges, say it converges to L. We will prove that (xn) also converges

to L. Let ε > 0 be arbitrary. Since (xn) is Cauchy there exists K ∈ N

such that if n,m ≥ K then |xn − xm| < ε/2. On the other hand, since
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(xnk
) → L there exists nM ≥ K such that |xnM

− L| < ε/2. Therefore,

if n ≥ K then

|xn − L| = |xn − xnM
+ xnM

− L|

≤ |xn − xnM
|+ |xnM

− L|

< ε/2 + ε/2

= ε.

This proves that (xn) converges to L.

Example 3.6.6. Let 0 < r < 1 and suppose that |xn − xn+1| ≤ rn

for all n ∈ N. Using the fact that 1 + r + r2 + · · · + rk < 1
1−r for all

k ∈ N prove that if m > n then |xn − xm| ≤ rn

1−r . Deduce that (xn) is a

Cauchy sequence.

When the MCT is not applicable, the Cauchy criterion is another

possible tool to show convergence of a sequence.

Example 3.6.7. Consider the sequence (xn) defined by x1 = 1, x2 = 2,

and

xn = 1
2(xn−2 + xn−1)

for n ≥ 2. One can show that (xn) is not monotone and therefore the

MCT is not applicable.

(a) Prove that 1 ≤ xn ≤ 2 for all n ∈ N.

(b) Prove that |xn − xn+1| = 1
2n−1 for all n ∈ N.

(c) Prove that if m > n then

|xn − xm| <
1

2n−2

Hint: Use part (b) and the Triangle inequality.
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(d) Deduce that (xn) is a Cauchy sequence and thus convergent.

(e) Show by induction that x2n+1 = 1 + 2
3

(
1− 1

4n

)
and deduce that

limxn = 5
3 .

Notice that the main result used in the Cauchy Criterion is the

Bolzano–Weierstrass (B–W) theorem. We therefore have the following

chain of implications:

Completeness =⇒ MCT =⇒ B-W =⇒ Cauchy

A close inspection of the Cauchy Criterion reveals that it is really a

statement about the real numbers not having any gaps or holes. In

fact, the same can be said about the MCT and the Bolzano-Weierstrass

theorem. Regarding the Cauchy Criterion, if (xn) is a Cauchy sequence

then the terms of (xn) are clustering around a number and that number

must be in R if R has no holes. It is natural to ask then if we could

have used the Cauchy Criterion as our starting axiom (instead of the

Completeness Axiom) and then prove the Completeness property, and

then the MCT and the Bolzano-Weierstrass theorem. Unfortunately,

the Cauchy Criterion is not enough and we also need to take as an

axiom the Archimedean Property.

Theorem 3.6.8

Suppose that every Cauchy sequence in R converges to a number in

R and the Archimedean Property holds in R. Then R satisfies the

Completeness property, that is, every non-empty bounded above

subset of R has a least upper bound in R.

Proof. Let S ⊂ R be a non-empty set that is bounded above. If u is

an upper bound of S and u ∈ S then u is the least upper bound of S
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and since u ∈ R there is nothing to prove. Suppose then that no upper

bound of S is an element of S. Let a1 ∈ S be arbitrary and let b1 ∈ R

be an upper bound of S. Then a1 < b1, and we set M = b1 − a1 > 0.

Consider the mid-point m1 = a1+b1
2 of the interval [a1, b1]. If m1 is an

upper bound of S then set b2 = m1 and set a2 = a1, otherwise set

b2 = b1 and a2 = m1. In any case, we have |a2−a1| ≤ M
2 , |b2− b1| ≤ M

2 ,

and |b2 − a2| = M
2 . Now consider the mid-point m2 = a2+b2

2 of the

interval [a2, b2]. If m2 is an upper bound of S then set b3 = m2 and

a3 = a2, otherwise set b3 = b2 and a3 = m2. In any case, we have

|a3 − a2| ≤ M
22
, |b3 − b2| ≤ M

22
, and |b3 − a3| = M

22
. By induction, there

exists a sequence (an) such that an is not an upper bound of S and a

sequence (bn) such that bn is an upper bound of S, and |an−an+1| ≤ M
2n ,

|bn − bn+1| ≤ M
2n , and |bn − an| = M

2n−1 . By Exercise 3.6.6, and using the

fact that limn→∞ rn = 0 if 0 < r < 1 (this is where the Archimedean

property is needed), it follows that (an) and (bn) are Cauchy sequences

and therefore by assumption both (an) and (bn) are convergent. Since

|bn − an| = M
2n−1 it follows that u = lim an = lim bn. We claim that u is

the least upper bound of S. First of all, for fixed x ∈ S we have that

x < bn for all n ∈ N and therefore x ≤ lim bn, that is, u is an upper

bound of S. Since an is not an upper bound of S, there exists xn ∈ S

such that an < xn < bn and therefore by the Squeeze theorem we have

u = limxn. Given an arbitrary ε > 0 then there exists K ∈ N such

that u−ε < xK and thus u−ε is not an upper bound of S. This proves

that u is the least upper bound of S.
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Exercises

Exercise 3.6.1. Show that if (xn) is a Cauchy sequence then (xn) is

bounded. (Note: Do not use the fact that a Cauchy sequence converges

but show directly that if (xn) is Cauchy then (xn) is bounded.)

Exercise 3.6.2. Show that if (xn) converges then it is a Cauchy se-

quence.

Exercise 3.6.3. Show by definition that xn = n+1
n is a Cauchy se-

quence.

Exercise 3.6.4. Show by definition that xn = cos(n2+1)
n is a Cauchy

sequence.

Exercise 3.6.5. Suppose that (xn) and (yn) are sequences such that

|xm − xn| ≤ |ym − yn| for all n,m ∈ N. Show that if the sequence (yn)

is convergent then so is the sequence (xn).

Exercise 3.6.6. Suppose that 0 < r < 1. Show that if the sequence

(xn) satisfies |xn − xn−1| < rn−1 for all n ≥ 2 then (xn) is a Cauchy

sequence and therefore convergent. Hint: If m > n then

|xm − xn| = |xm − xm−1 + xm−1 − xm−2 + xm−2 − · · ·+ xn+1 − xn|

Also, if 0 < r < 1 then
∑k

j=0 r
j = 1−rk+1

1−r < 1
1−r .
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3.7 Infinite Series

Informally speaking, a series is an infinite sum:

x1 + x2 + x3 + · · ·

Using summation notation:

∞∑

n=1

xn = x1 + x2 + x3 + · · ·

The series
∑∞

n=1 xn can be thought of as the sum of the sequence (xn) =

(x1, x2, x3, . . .). It is of course not possible to actually sum an infinite

number of terms and so we need a precise way to talk about what it

means for a series to have a finite value. Take for instance
∞∑

n=1

(2
3
)n−1 = 1 + (2

3
) + (2

3
)2 + (2

3
)3 + · · ·

so that the sequence being summed is xn = (23)
n−1. Let’s compute the

first 10 terms of the sequence of partial sums {sn}∞n=1 = (s1, s2, s3, s4, s5, . . .)

defined as follows:

s1 = 1

s2 = 1 + (23) = 1.6666

s3 = 1 + (2
3
) + (2

3
)2 = 2.1111

s4 = 1 + (23) + (23)
2 + (23)

3 = 2.4074

s5 = 1 + (2
3
) + (2

3
)2 + (2

3
)3 + (2

3
)4 = 2.6049

s6 = 1 + (23) + (23)
2 + (23)

3 + (23)
4 + (23)

5 = 2.7366

s7 = 1 + (2
3
) + (2

3
)2 + (2

3
)3 + (2

3
)4 + (2

3
)5 + (2

3
)6 = 2.8244

s8 = 1 + (23) + (23)
2 + (23)

3 + (23)
4 + (23)

5 + (23)
6 + (23)

7 = 2.8829

s9 = 1 + (2
3
) + (2

3
)2 + (2

3
)3 + (2

3
)4 + (2

3
)5 + (2

3
)6 + (2

3
)7 + (2

3
)8 = 2.9219

s10 = 1 + (23) + (23)
2 + (23)

3 + (23)
4 + (23)

5 + (23)
6 + (23)

7 + (23)
8 + (23)

9 = 2.9479
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With the help of a computer, one can compute

s20 =

20∑

k=1

(23)
k−1 = 2.999097813 . . .

s50 =

50∑

k=1

(23)
k−1 = 2.999999994 . . .

s100 =
100∑

k=1

(23)
k−1 = 2.999999998 . . . .

It seems as though the sequence (sn) is converging to L = 3, that is,

limn→∞ sn = 3. It is then reasonable to say that the infinite series sums

or converges to

∞∑

n=1

(23)
n−1 = 3 = lim

n→∞
sn.

We now introduce some definitions to formalize our example.
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Definition 3.7.1

Let (xn) be a sequence. The infinite series generated by (xn) is

the sequence (sn) defined by

sn = x1 + x2 + · · ·+ xn

or recursively,

s1 = x1

sn+1 = sn + xn+1, n ≥ 1.

The sequence (sn) is also called the sequence of partials sums

generated by (xn). The nth term of the sequence of partial sums

(sn) can instead be written using summation notation:

sn = x1 + x2 + · · ·+ xn =
n∑

k=1

xk.

Example 3.7.2. Let (xn) be the sequence xn = 3
n . The first few terms

of the sequence of partials (sn) is

s1 = x1 = 3

s2 = x1 + x2 = 3 + 3
2 =

9
2

s3 = x1 + x2 + x3 =
9
2 + 1 = 11

2

s4 = s3 + x4 =
11
2 + 3

4 =
25
4

In both examples above, we make the following important observa-

tion: if (xn) is a sequence of non-negative terms then the sequence of

partials sums (sn) is increasing. Indeed, if xn ≥ 0 then

sn+1 = sn + xn+1 ≥ sn
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and thus sn+1 ≥ sn.

Example 3.7.3. Find the sequence of partial sums generated by xn =

(−1)n.

Solution. We compute:

s1 = x1 = −1

s2 = x1 + x2 = −1 + 1 = 0

s3 = s2 + x3 = 0− 1 = −1

Hence, (sn) = (−1, 0,−1, 0,−1, 0, . . .).

The limit of the sequence (sn), if it exists, makes precise what it

means for an infinite series

∞∑

n=1

xn = x1 + x2 + x3 + · · ·

to converge.

Definition 3.7.4: Convergence of Series

Let (xn) be a sequence and let (sn) be the sequence of partial sums

generated by (xn). If limn→∞ sn exists and equals L then we say

that the series generated by (xn) converges to L and we write

that ∞∑

n=1

xn = L = lim
n→∞

sn = lim
n→∞

n∑

k=1

xk.

The notation
∑∞

n=1 xn is therefore a compact way of writing

lim
n→∞

n∑

k=1

xk,
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and the question of whether the series
∑∞

n=1 xn converges is really about

whether the limit limn→∞ sn exists. Often we will write a series such as
∑∞

n=1 xn simply as
∑
xn when either the initial value of n is understood

or is unimportant. Sometimes, the initial n value may be n = 0, n = 2,

or some other n = n0.

Example 3.7.5 (Geometric Series). The geometric series is perhaps

the most important series we will encounter. Let xn = rn where r ∈ R

is a constant. The generated series is

∞∑

n=0

xn =
∞∑

n=0

rn = 1 + r + r2 + r3 + · · ·

and is called the geometric series. The nth term of the sequence of

partial sums is

sn = 1 + r + r2 + · · ·+ rn.

If r = 1 then limn→∞ sn does not exist (why?), so suppose that r 6= 1.

Using the fact that (1− r)(1 + r+ r2 + · · ·+ rn) = 1−rn+1

1−r we can write

sn =
1− rn+1

1− r
.

Now if |r| < 1 then limn→∞ rn = 0, while if |r| > 1 then limn→∞ rn does

not exist. Therefore, if |r| < 1 then

lim
n→∞

sn = lim
n→∞

1− rn+1

1− r
=

1

1− r
.

Therefore,
∞∑

n=0

rn = lim
n→∞

sn =
1

1− r
.

In summary: The series
∑∞

n=0 r
n is called the geometric series and

converges if and only if |r| < 1 and in this case converges to 1
1−r .
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Example 3.7.6. Consider the series
∑∞

n=0
(−1)n2n

3n . The series can be

written as
∑∞

n=0

(−2
3

)n
and thus it is a geometric series with r = −2

3.

Since |r| = | − 2
3| < 1, the series converges and it converges to

∞∑

n=0

(−1)n2n

3n
=

1

1− (−2/3)
=

3

5

Example 3.7.7. Use the geometric series to show that

0.999999 . . . = 1.

Solution. We can write

0.999999 . . . = 0.9 + 0.09 + 0.009 + · · ·

=
9

10
+

9

100
+

9

1000
+ · · ·

=
9

10
+

9

102
+

9

103
+ · · ·

=
9

10

(

1 +
1

10
+

1

102
+ · · ·

)

=
9

10

∞∑

n=0

1

10n

=
9

10

(
1

1− 1
10

)

= 1.
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Example 3.7.8 (Telescoping Series). Consider
∑∞

n=1
1

n(n+1) = 1
1·2 +

1
2·3 +

1
3·4 + · · · . Using partial fraction decomposition

1

n(n+ 1)
=

1

n
− 1

n+ 1
.

Therefore, the nth term of the sequence of partial sums (sn) is

sn =
n∑

k=1

1

k(k + 1)
=

n∑

k=1

[
1

k
− 1

k + 1

]

This is a telescoping sum because all terms in the middle cancel and

only the first and last remain. For example:

s1 = 1− 1
2

s2 = 1− 1
2 +

1
2 − 1

3 = 1− 1
3

s3 = 1− 1
2
+ 1

2
− 1

3
+ 1

3
− 1

4
= 1− 1

4
.

By induction one can show that sn = 1− 1
n+1 and therefore limn→∞ sn =

1. Therefore, the given series converges and it converges to
∑∞

n=1
1

n(n+1) =

limn→∞ sn = 1.

Example 3.7.9 (Harmonic Series). Consider the series
∑∞

n=1
1
n = 1 +

1
2 +

1
3 +

1
4 + · · · . We are going to analyze a subsequence (snk

) of the

sequence of partial sums (sn). We will show that (snk
) is unbounded

and thus (sn) is unbounded and therefore divergent. Consequently, the

series
∑∞

n=1
1
n is divergent. Consider

s4 = 1 + 1
2 +

(
1
3 +

1
4

)
> 1 + 1

2 +
1
2 = 1 + 21

2.

Now consider

s8 = s4 +
1
5 +

1
6 +

1
7 +

1
8 > 1 + 21

2 + 41
8 = 1 + 31

2.
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Lastly consider,

s16 = s8 +
1
9 +

1
10 + · · ·+ 1

16 > 1 + 31
2 + 8 1

16 = 1 + 41
2.

In general, one an show by induction that for k ≥ 2 we have

s2k > 1 +
k

2
.

Therefore, the subsequence (s4, s8, s16, . . .) is unbounded and thus the

series
∑∞

n=1
1
n is divergent.

We now present some basic theorems on the convergence of series;

most of them are a direct consequence of results from limit theorems

for sequences. The first theorem we present can be used to show that

a series diverges.

Theorem 3.7.10: Series Divergence Test

If
∑
xn converges then lim

n→∞
xn = 0. Equivalently, if lim

n→∞
xn 6= 0

then
∑
xn diverges.

Proof. By definition, if
∑
xn converges then the sequence of partial

sums (sn) is convergent. Suppose then that L = limn→∞ sn =
∑
xn.

Recall that (sn) has the recursive definition sn+1 = sn + xn+1. The

sequences (sn+1) and (sn) both converge to L and thus

lim
n→∞

xn+1 = lim
n→∞

(sn+1 − sn)

= L− L

= 0.
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Example 3.7.11. The series
∑∞

n=1
3n+1
2n+5 is divergent because limn→∞

3n+1
2n+5 =

3
2 > 1.

Example 3.7.12. The Series Divergence Test can only be used to

show that a series diverges. For example, consider the harmonic series
∑∞

n=1
1
n
. Clearly limn→∞

1
n
= 0. However, we already know that

∑∞
n=1

1
n

is a divergent series. Hence, in general, the condition limn→∞ xn = 0 is

not sufficient to establish convergence of the series
∑∞

n=1 xn.

Example 3.7.13. A certain series
∑∞

k=1 xk has sequence of partial sums

(sn) whose general nth term is sn = 2n
n+1.

(a) What is
∑10

k=1 xk?

(b) Does the series
∑∞

k=1 xk converge? If yes, what does it converge

to? Explain.

(c) Does the sequence (xn) converge? If yes, what does it converge

to? Explain.

The next theorem is just an application of the Cauchy criterion

for convergence of sequences to the sequence of partial sums (sn).

Theorem 3.7.14: Cauchy Criterion

The series
∑
xn converges if and only if for every ε > 0 there exists

K ∈ N such that if m > n ≥ K then

|sm − sn| = |xn+1 + xn+2 + · · ·+ xm| < ε.

The following theorem is very useful and is a direct application of

the Monotone convergence theorem.
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Theorem 3.7.15

Suppose that (xn) is a sequence of non-negative terms, that is, xn ≥
0 for all n ∈ N. Then

∑
xn converges if and only if (sn) is bounded.

In this case,
∞∑

n=1

xn = sup{sn | n ≥ 1}.

Proof. Clearly, if
∑
xn = limn→∞ sn exists then (sn) is bounded. Now

suppose that (sn) is bounded. Since xn ≥ 0 for all n ∈ N then sn+1 =

sn + xn+1 ≥ sn and thus sn+1 ≥ sn shows that (sn) is an increasing

sequence. By the Monotone convergence theorem, (sn) converges and

limn→∞ sn = sup{sn | n ≥ 1}.

Example 3.7.16. Consider the series
∑∞

n=1
1
n2 . Since

1
n2 > 0, to prove

that the series converges it is enough to show that the sequence of

partial sums (sn) is bounded. We will consider a subsequence of (sn),

namely, (snk
) where nk = 2k − 1 for k ≥ 2. We have

s3 = 1 +
1

22
+

1

32

< 1 +
1

22
+

1

22

= 1 +
1

2

and

s7 = s3 +
1

42
+

1

52
+

1

62
+

1

72

< 1 +
1

2
+

4

42

= 1 +
1

2
+

1

22
.
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By induction, one can show that

snk
< 1 +

1

2
+

1

22
+ · · ·+ 1

2k−1

and therefore using the geometric series with r = 1/2 we have

snk
< 1 +

1

2
+

1

22
+ · · ·+ 1

2k−1

<

∞∑

n=0

1

2n
= 2.

This shows that the subsequence (snk
) is bounded. In general, the

existence of a bounded subsequence does not imply that the original

sequence is bounded but if the original sequence is increasing then it

does. In this case, (sn) is indeed increasing, and thus since (snk
) is

a bounded subsequence then (sn) is also bounded. Therefore, (sn)

converges, that is,
∑∞

n=1
1
n2 is a convergent series.

Theorem 3.7.17

Suppose that
∑
xn and

∑
yn are convergent series.

(i) Then
∑

(xn + yn) and
∑

(xn − yn) are also convergent and

∑

(xn ± yn) =
∑

xn ±
∑

yn.

(ii) For any constant c ∈ R,
∑
cxn is also convergent and

∑
cxn =

c
∑
xn.
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Proof. Using the limit laws:

lim
n→∞

n∑

k=1

(xk ± yk) = lim
n→∞

(
n∑

k=1

xk ±
n∑

k=1

yk

)

= lim
n→∞

n∑

k=1

xk ± lim
n→∞

n∑

k=1

yk

=

∞∑

n=1

xn ±
∞∑

n=1

yn.

Hence,

∞∑

n=1

(xn ± yn) =
∞∑

n=1

xn ±
∞∑

n=1

yn.

If c is a constant then by the Limit Laws,

lim
n→∞

n∑

k=1

cxk = c lim
n→∞

n∑

k=1

xk = c

∞∑

n=1

xn.

Therefore,

∞∑

n=1

cxn = c
∞∑

n=1

xn.

Once establishing the convergence/divergence of some sequences,

we can use comparison tests to the determine convergence/divergence

properties of new sequences.

129



3.7. INFINITE SERIES

Theorem 3.7.18: Comparison Test

Let (xn) and (yn) be non-negative sequences and suppose that xn ≤
yn for all n ≥ 1.

(i) If
∑
yn converges then

∑
xn converges.

(ii) If
∑
xn diverges then

∑
yn diverges.

Proof. Let tn =
∑n

k=1 xn and sn =
∑n

k=1 yk be the sequences of partial

sums. Since xn ≤ yn then tn ≤ sn. To prove (a), if
∑
yn converges then

(sn) is bounded. Thus, (tn) is also bounded. Since (tn) is increasing and

bounded it is convergent by the MCT. To prove (b), if
∑
xn diverges

then (tn) is necessarily unbounded and thus (sn) is also unbounded and

therefore (sn) is divergent.

Example 3.7.19. Let p ≥ 2 be an integer and let (dn) be a sequence

of integers such that 0 ≤ dn ≤ p− 1. Use the comparison test to show

that the series
∑∞

n=1
dn
pn converges and converges to a point in [0, 1].

Example 3.7.20. Determine whether the given series converge.

(a)
∑∞

n=1
n2

3n2+n
: First compute limn→∞

n2

3n2+n
= 1/3. Therefore, by

the divergence test, the series diverges.

(b)
∑∞

n=1
1
np where p ≥ 2: We know that

∑∞
n=1

1
n2 is convergent. Now,

if p ≥ 2 then 1
np ≤ 1

n2 . Therefore by the Comparison test,
∑∞

n=1
1
np

is also convergent. This is called a p-series and actually converges

for any p > 1.
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(c)
∑∞

n=1
n+7
n3+3: We will use the comparison test. We have

n+ 7

n3 + 3
≤ n+ 7n

n3 + 3

<
8n

n3

=
8

n2
.

The series
∑∞

n=1
8
n2 converges and thus the original series

∑∞
n=1

n+7
n3+3

also converges.

Example 3.7.21. Suppose that 0 ≤ xn ≤ 1 for all n ∈ N. If
∑
xn

converges prove that
∑

(xn)
2 also converges. Does the claim hold if we

only assume that xn > 0?

Solution. Since 0 ≤ xn ≤ 1 then 0 ≤ x2n ≤ xn. Since
∑
xn converges

then by the Comparison test then
∑

(xn)
2 also converges. More gener-

ally, suppose that xn > 0 and
∑
xn converges. Then (xn) converges to

zero and thus there exists K ∈ N such that 0 < xn < 1 for all n ≥ K.

Then since the series
∑∞

n=1 xn+K converges it follows that
∑∞

n=1 x
2
n+K

converges and consequently
∑∞

n=1 x
2
n converges.

The following two tests can be used for series whose terms are not

necessarily non-negative.

Theorem 3.7.22: Absolute Convergence

If the series
∑ |xn| converges then

∑
xn converges.

Proof. From −|xn| ≤ xn ≤ |xn| we obtain that

0 ≤ xn + |xn| ≤ 2|xn|.
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If
∑ |xn| converges then so does

∑
2|xn|. By the Comparison test

3.7.18, the series
∑

(xn+ |xn|) converges also. Then the following series

is a difference of two converging series and therefore converges:

∑

(xn + |xn|)−
∑

|xn| =
∑

xn

and the proof is complete.

In the case that
∑ |xn| converges we say that

∑
xn converges

absolutely. We end the section with the Ratio test for series.

Theorem 3.7.23: Ratio Test for Series

Consider the series
∑
xn and let L = limn→∞

|xn+1|
|xn| . If L < 1 then

the series
∑
xn converges absolutely and if L > 1 then the series

diverges. If L = 1 or the limit does not exist then the test is

inconclusive.

Proof. Suppose that L < 1. Let ε > 0 be such that r = L + ε < 1.

There exists K ∈ N such that |xn+1|
|xn| < L + ε = r for all n ≥ K

and thus |xn+1| < |xn|r for all n ≥ K. By induction, it follows that

|xK+m| < |xK |rm for all m ≥ 1. Since
∑∞

m=1 |xk|rm is a geometric

series with r < 1 then, by the comparison test, the series
∑∞

m=1 |xK+m|
converges. Therefore, the series

∑ |xn| converges and by the Absolute

convergence criterion we conclude that
∑
xn converges absolutely. If

L > 1 then a similar argument shows that
∑
xn diverges. The case

L = 1 follows from the fact that some series converge and some diverge

when L = 1.
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Exercises

Exercise 3.7.1. Suppose that
∑
xn is a convergent series. Is it true

that if
∑
yn is divergent then

∑
(xn + yn) is divergent? If it is true,

prove it, otherwise give an example to show that it is not true.

Exercise 3.7.2. Suppose that xn ≥ 0 for all n ∈ N. Prove that

if
∑∞

n=1 xn converges then
∑∞

n=1
xn

n also converges. Is the converse

true? That is, if
∑∞

n=1
xn

n converges then does it necessarily follow

that
∑∞

n=1 xn converges?

Exercise 3.7.3. Using only the tests derived in this section, determine

whether the given series converge or diverge:

(a)
∞∑

n=1

2n2 + 3√
n2 + 3n+ 2

(b)

∞∑

n=1

cos(nπ)3n

2n

(c)
∞∑

n=1

n− 3

n3 + 1

Exercise 3.7.4. Suppose that (xn) and (yn) are non-negative sequences.

Prove that if
∑
xn and

∑
yn are convergent then

∑
xnyn is convergent.

(Hint: Recall that if zn ≥ 0 then
∑
zn converges iff (sn) is bounded,

where sn =
∑n

k=1 zk is the sequence of partial sums. Alternatively, use

the identity (x+ y)2 = x2 + 2xy + y2.)

Exercise 3.7.5. Suppose that xn > 0 for all n ∈ N and
∑∞

n=1 xn

converges. You will prove that
∑∞

n=1

√
xnxn+1 converges.

(a) Let yn = xn + xn+1. Prove that
∑∞

n=1 yn converges.
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(b) Using the fact that (a+b)2 = a2+2ab+b2, prove that
√
ab ≤ a+b

if a, b > 0. Deduce that

√
xnxn+1 ≤ xn + xn+1 = yn.

(c) Deduce that
∑∞

n=1

√
xnxn+1 converges.

Exercise 3.7.6. Any number of the form x = 0.a1a2a3a4 . . . can be

written as

x =
a1
10

+
a2
102

+
a3
103

+
a4
104

+ · · ·

Using this fact, and a geometric series, prove that

0.25555555555555555 . . . . . . . . . =
23

90
.

Exercise 3.7.7. Show that the following series converge and find their

sum.

(a)
∞∑

n=0

(−1)n

e2n

(b)
∞∑

j=2

3

2j

(c)
∞∑

k=−2

1

3k

Exercise 3.7.8. Using the fact that 2k−1 < k! for all k ≥ 3, prove that

the series
∑∞

n=0
1
n! converges.

Exercise 3.7.9. Let X : N → R be a decreasing sequence of non-

negative terms. Let (sn) be the sequence of partial sums of the series
∑∞

n=1X(n), let nk = 2k − 1 for k ∈ N, and consider the subsequence

(snk
).
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(a) Show by induction that

snk
<

k−1∑

n=0

2nX(2n)

for all k ∈ N.

(b) Conclude that if
∑∞

n=0 2
nX(2n) converges then

∑∞
n=1X(n).

(Note: This is a generalization of Example 3.7.16.)
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4

Limits of Functions

In this chapter, we study another notion of convergence that is surely

familiar to the reader, namely, the limit of a function at a given point.

After introducing the precise definition of the limit of a function, and

working through some examples, we will relate limits of functions with

limits of sequences resulting in the Sequential Criterion for Limits (The-

orem 4.1.11). In this chapter, when not explicitly stated, the letter A

will denote a subset of R.

4.1 Limits of Functions

Before we can give the definition of the limit of a function, we need the

notion of a cluster point of a set.

Definition 4.1.1: Cluster Point

A number c ∈ R is called a cluster point of A if for any given

δ > 0 there exists at least one point x ∈ A, with x 6= c, such that

|x− c| < δ.

Hence, c is a cluster point of A if there are points in A that are ar-

bitrarily close to c. In general, a cluster point of A is not necessarily
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an element of A. Naturally, cluster points can be characterized using

limits of sequences.

Lemma 4.1.2

A point c is a cluster point of A if and only if there exists a sequence

(xn) in A such that xn 6= c and lim
n→∞

xn = c.

Proof. Let c be a cluster point of A and let δn = 1
n for n ∈ N. Then

by definition of a cluster point, there exists xn ∈ A, xn 6= c, such that

|xn − c| < δn. Since δn → 0 then xn → c.

To prove the converse, suppose that xn → c, xn 6= c and xn ∈ A for

n ∈ N. Then by convergence of (xn) to c, for any δ > 0 there exists

K ∈ N such that |xK − c| < δ. Since x = xK ∈ A, this proves that c is

a cluster point of A.

Example 4.1.3. Below are some examples of cluster points for a given

set:

• Consider the set A = [0, 1]. Every point c ∈ A is a cluster point

of A.

• On the other hand, for A = (0, 1], the point c = 0 is a cluster

point of A but does not belong to A.

• For A =
{
1
n | n ∈ N

}
, the only cluster point of A is c = 0.

• A finite set does not have any cluster points.

• The set A = N has no cluster points.

• Consider the set A = Q ∩ [0, 1]. By the Density theorem, every

point c ∈ [0, 1] is a cluster point of A.
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We now give the definition of the limit of a function f : A → R at

a cluster point c of A.

Definition 4.1.4: Limit of a Function

Consider a function f : A → R and let c be a cluster point of A.

We say that f has a limit at c, or converges at c, if there exists

a number L ∈ R such that for any given ε > 0 there exists δ > 0

such that if x ∈ A and 0 < |x− c| < δ then |f(x)− L| < ε. In this

case, we write that

lim
x→c

f(x) = L

and we say that f converges to L at c, or that f has limit L at

c. If f does not converge at c then we say that f diverges at c.

Another short-hand notation to denote that f converges to L at c is

f(x) → L as x→ c.

By definition, if limx→c f(x) = L, then for any ε > 0 there exists a

δ > 0 such that for all x ∈ (c− δ, c+ δ)∩A not equal to c it holds that

f(x) ∈ (L− ε, L+ ε).

Theorem 4.1.5: Uniqueness of Limits

A function f : A→ R can have at most one limit at c.

Proof. Suppose that f(x) → L and f(x) → L′ as x→ c, and let ε > 0.

Then there exists δ > 0 such that |f(x)−L| < ε/2 and |f(x)−L′| < ε/2,

for all x ∈ A satisfying 0 < |x− c| < δ. Then if 0 < |x− c| < δ then

|L− L′| ≤ |f(x)− L|+ |f(x)− L′|
< ε/2 + ε/2

= ε.
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Since ε > 0 is arbitrary, Theorem 2.2.7 implies that L = L′.

Example 4.1.6. Consider the function f(x) = 5x + 3 with domain

A = R. Prove that

lim
x→2

f(x) = 13.

Proof. We begin by analyzing the quantity |f(x)− 13|:

|f(x)− 13| = |5x+ 3− 13|
= |5x− 10|
= 5|x− 2|.

Hence, if 0 < |x− 2| < ε/5 then

|f(x)− 13| = |5x+ 3− 13|
= 5|x− 2|
< 5(ε/5)

= ε.

Thus, given ε > 0 we let δ = ε/5 and thus if 0 < |x − c| < δ then

|f(x)− 13| < ε. Thus, by definition, limx→2 f(x) = 13.

Example 4.1.7. Consider the function f(x) = x+1
x2+3 with domain A =

R. Prove that

lim
x→1

f(x) =
1

2
.
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Proof. We have that

|f(x)− 1
2| =

∣
∣
∣
∣

x+ 1

x2 + 3
− 1

2

∣
∣
∣
∣

=

∣
∣
∣
∣

x2 − 2x+ 1

2(x2 + 3)

∣
∣
∣
∣

=
|x− 1|2
2(x2 + 3)

< |x− 1|2.

Let ε > 0 be arbitrary and let δ =
√
ε. Then if 0 < |x − 1| < δ then

|x− 1|2 < δ2 = ε. Hence, if 0 < |x− 1| < δ then

|f(x)− 1
2 | =

∣
∣
∣
∣

x+ 1

x2 + 3
− 1

2

∣
∣
∣
∣

< |x− 1|2

< ε.

Thus, by definition, limx→1 f(x) =
1
2.

Example 4.1.8. Consider the function f(x) = x2 with domain A = R.

Prove that for any c ∈ R,

lim
x→c

f(x) = c2.

Proof. We first note that

|f(x)− c2| = |x2 − c2| = |x + c||x− c|.

By the triangle inequality, |x + c| ≤ |x|+ |c| and therefore

|f(x)− c2| = |x+ c||x− c|

≤ (|x|+ |c|)|x− c|.
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We now need to analyze how large |x| can become when x is say within

δ > 0 of c. To be concrete, suppose that δ = 1/2. Hence, if 0 < |x−c| <
δ then

|x| = |x− c+ c|
≤ |x− c|+ |c|
< δ + |c|
< 1 + |c|.

Therefore, if 0 < |x− c| < δ it holds that

|f(x)− c2| ≤ (|x|+ c)|x− c|

< (1 + c)|x− c|.

Now suppose that ε > 0 is arbitrary and let δ = min{δ, ε
1+|c|}. Then if

0 < |x− c| < δ then |x| < 1 + |c| and therefore

|f(x)− c2| = |x2 − c2|

= |x+ c||x− c|

≤ (|x|+ |c|) · δ

< (1 + |c|) · ε

1 + |c|

= ε.

This proves, by definition, that limx→c x
2 = c2 for any c ∈ R.

Example 4.1.9. Consider the function f(x) = x2−3x
x+3

with domain A =

R\{−3}. Prove that
lim
x→6

f(x) = 2.
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Proof. We first note that c = −3 is indeed a cluster point of A =

R\{−3}. Now,

|f(x)− 2| =
∣
∣
∣
∣

x2 − 3x

x+ 3
− 2

∣
∣
∣
∣

=

∣
∣
∣
∣

x2 − 5x− 6

x + 3

∣
∣
∣
∣

=

∣
∣
∣
∣

(x+ 1)(x− 6)

(x+ 3)

∣
∣
∣
∣

=
|x+ 1|
|x+ 3||x− 6|.

We now obtain a bound for |x+1|
|x+3| when x is close to 6. Suppose then

that |x − 6| < 1. Then 5 < x < 7 and therefore, 6 < x + 1 < 8, which

implies that |x + 1| < 8. Similarly, if |x − 6| < 1 then 8 < x + 3 < 10

and therefore 8 < |x + 3|, which implies that 1
|x+3| <

1
8 . Therefore, if

|x− 6| < 1 then
|x+ 1|
|x+ 3| < 8 · 1

8
= 1.

Suppose now that ε > 0 is arbitrary and let δ = min{1, ε}. If 0 <

|x − 6| < δ then from our analysis above it follows that |x+1|
|x+3| < 1.

Therefore, if 0 < |x− 6| < δ then

|f(x)− 2| =
∣
∣
∣
∣

x2 − 3x

x+ 3
− 2

∣
∣
∣
∣

=
|x+ 1|
|x+ 3||x− 6|

< 1 · δ
≤ ε.
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This proves that limx→6 f(x) = 2.

Example 4.1.10. Consider the function f : R → R defined as

f(x) =

{

(x− 1) arctan(x), x ∈ Q
3(x−1)
1+x2 , x /∈ Q.

Prove that limx→1 f(x) = 0.

Proof. If x ∈ Q then

|f(x)| = |(x− 1) arctan(x)|
= |x− 1|| arctan(x)|
= |x− 1| · π

2

and if x /∈ Q then

|f(x)| =
∣
∣
∣
∣

3(x− 1)

1 + x2

∣
∣
∣
∣

=
3|x− 1|
1 + x2

≤ 3|x− 1|.

Therefore, for all x ∈ R it holds that |f(x)| ≤ 3|x − 1| since π/2 < 3.

Thus, given ε > 0 let δ = ε/3 and thus if 0 < |x− 1| < δ then

|f(x)| ≤ 3|x− 1|
< 3 · δ
= 3 · ε/3
= ε.

This proves that limx→1 f(x) = 0.

The following important result states that limits of functions can

be studied using limits of sequences.
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Theorem 4.1.11: Sequential Criterion for Limits

Let f : A → R be a function and let c be a cluster point of A.

Then limx→c f(x) = L if and only if for every sequence (xn) in A

converging to c (with xn 6= c for all n ∈ N) the sequence (f(xn))

converges to L.

Proof. Suppose that limx→c f(x) = L. Let (xn) be a sequence in A

converging to c, with xn 6= c for all n ∈ N. We must prove that the

sequence (f(xn)) converges to L. To that end, let ε > 0 be arbitrary.

Then, by convergence of f to L at c, there exists δ > 0 such that if

0 < |x− c| < δ then |f(x)− L| < ε. Now, since (xn) → c, there exists

K ∈ N such that |xn − c| < δ for all n ≥ K. Therefore, for n ≥ K we

have that |f(xn)− L| < ε. This proves that limn→∞ f(xn) = L.

To prove the converse, we prove the contrapositive. Hence, we must

show that if f does not converge to L then there exists a sequence (xn)

in A (with xn 6= c) converging to c but the sequence (f(xn)) does not

converge to L. Assume then that f does not converge to L. Then,

negating the definition of the limit of a function, there exists ε > 0

such for all δ > 0 there exists x ∈ A such that 0 < |x − c| < δ and

|f(x)− L| ≥ ε. Then, let δn = 1
n for n ∈ N. Then there exists xn 6= c

such that 0 < |xn − c| < δn and |f(xn) − L| ≥ ε. Since δn → 0 then

(xn) → c but clearly f(xn) does not converge to L. This ends the

proof.

The following theorem follows immediately from Theorem 4.1.11.
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Corollary 4.1.12

Let f : A → R be a function and let c be a cluster point of A and

let L ∈ R. Then f does not converge to L at c if and only if there

exists a sequence (xn) in A converging c, with xn 6= c for all n ∈ N,

and such that (f(xn)) does not converge to L.

Note that in Corollary 4.1.12, if the sequence (f(xn)) diverges then by

definition it does not converge to any L ∈ R and then f does not have

a limit at c. When applicable, the following corollary is a useful tool

to prove that a limit of a function does not exist.

Corollary 4.1.13

Let f : A → R be a function and let c be a cluster point of A.

Suppose that (xn) and (yn) are sequences in A converging to c, with

xn 6= c and yn 6= c for all n ∈ N. If f(xn) and f(yn) converge but

lim
n→∞

f(xn) 6= lim
n→∞

f(yn)

then f does not have a limit at c.

Example 4.1.14. Prove that limx→0
1
x does not exist.

Proof. Consider xn = 1
n , which clearly converges to c = 0 and xn 6= 0

for all n ∈ N. Then f(xn) = n which is unbounded and thus does not

converge. Thus, by Corollary 4.1.12, limx→0
1
x does not exist.

Example 4.1.15. Prove that limx→0 sin
(
1
x

)
does not exist.

Proof. Let f(x) = sin
(
1
x

)
with domain A = R\{0}. Consider the

sequence xn = 1
π/2+nπ

. It is clear that (xn) → 0 and xn 6= 0 for all

n ∈ N. Now (f(xn)) = (−1, 1,−1,−1, . . .) and therefore (f(xn)) does
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not converge. Therefore, f has no limit at c = 0. In fact, for each

α ∈ [0, 2π), consider the sequence xn = 1
α+2nπ . Clearly (xn) → 0 and

xn 6= 0 for all n ∈ N. Now, f(xn) = sin(α + 2nπ) = sin(α). Hence,

(f(xn)) converges to sin(α). This shows that f oscillates within the

interval [−1,−1] as x approaches c = 0.

Example 4.1.16. The sign function, denoted by sgn : R → R, is

defined as

sgn(x) =

{

1, x ≥ 0

−1, x < 0

Prove that limx→0 sgn(x) does not exist.

Proof. Consider the sequence xn = (−1)n

n . Then (xn) → 0 and xn 6= 0

for all n ∈ N. Now, yn = sgn(xn) = (−1)n and thus (yn) does not

converge. Therefore, by Corollary 4.1.12, the function sgn has no limit

at c = 0.
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Exercises

Exercise 4.1.1. Use the definition of the limit of a function to prove

that the following limits do indeed hold.

(a) lim
x→3

2x+ 3

4x− 9
= 3

(b) lim
x→6

x2 − 3x

x+ 3
= 2

(c) lim
x→4

|x− 3| = 1

Exercise 4.1.2. Let A ⊂ R, let f : A → R, and suppose that c is a

cluster point of A. Suppose that there exists a constant K > 0 such

that |f(x)− L| ≤ K|x− c| for all x ∈ A. Prove that lim
x→c

f(x) = L.

Exercise 4.1.3. Consider the function

f(x) =

{

x2 sin(1/x), x ∈ Q\{0}
x2

1+x2 , x /∈ Q.

Prove that limx→0 f(x) = 0.

Exercise 4.1.4. Let f : R → R be defined as follows:

f(x) =

{

x, if x ∈ Q

−x, if x ∈ R\Q.

(a) Prove that f has a limit at c = 0.

(b) Now suppose that c 6= 0. Prove that f has no limit at c.

(c) Define g : R → R by g(x) = (f(x))2. Prove that g has a limit at

any c ∈ R.
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Hint: The Density Theorem will be helpful for (b). In particular, the

Density Theorem implies that for any point c ∈ R, there exists a se-

quence (xn) of rational numbers such that (xn) → c, and that there

exists a sequence (yn) of irrational numbers such that (yn) → c.

Exercise 4.1.5. Use any applicable theorem to explain why the fol-

lowing limits do not exist.

(a) limx→0
1
x2

(b) limx→0(x+ sgn(x))

(c) limx→0 sin(1/x
2)

Recall that the function sgn : R → R is defined as follows:

sgn(x) =

{

1, x ≥ 0

−1, x < 0
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4.2 Limit Theorems

In this section, we establish basic limit theorems for limits of functions.

The reader should compare the results of this section with Section 3.2

where we established limit theorems for sequences. In fact, thanks to

the sequential criterion for limits of functions (Theorem 4.1.11), all of

the theorems in this section can be proved using limits of sequences.

To begin, we first show that if f has a limit at c then f satisfies a

local boundedness property at c. Let us first define then what it means

for a function to be locally bounded at a given point.

Definition 4.2.1: Local Boundedness

Consider a function f : A → R and let c be a cluster point of A.

We say that f is bounded locally at c if there exists δ > 0 and

M > 0 such that if x ∈ (c− δ, c+ δ) ∩ A then |f(x)| ≤M .

Theorem 4.2.2

Consider a function f : A→ R and let c be a cluster point of A. If

lim
x→c

f(x) exists then f is bounded locally at c.

Proof. Let L = limx→c f(x) and let ε > 0 be arbitrary. Then there

exists δ > 0 such that |f(x) − L| < ε for all x ∈ A such that 0 <

|x− c| < δ. Therefore, for all x ∈ A and 0 < |x− c| < δ we have that

|f(x)| = |f(x)− L+ L|
≤ |f(x)− L|+ |L|
< ε+ |L|.

If c ∈ A then let M = max{|f(c)|, ε + |L|} and if c /∈ A then let
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M = ε+ |L|. Then |f(x)| ≤M for all x ∈ A such that 0 < |x− c| < δ,

that is, f is bounded locally at c.

Example 4.2.3. Consider the function f(x) = 1
x defined on the set

A = (0,∞). Clearly, c = 0 is a cluster point of A. For any δ > 0

and any M > 0 let x ∈ A be such that 0 < x < min{δ, 1
M }. Then

0 < x < 1
M , that is, M < 1

x = f(x). Since M was arbitrary, this proves

that f is unbounded at c = 0 and consequently f does not have a limit

at c = 0.

We now state and prove some limit laws for functions. Let f, g :

A→ R be functions and define the functions (f + g), (f − g), fg, and

f/g on A as follows:

(f ± g)(x) = f(x)± g(x)

(fg)(x) = f(x)g(x)

(
f

g

)

(x) =
f(x)

g(x)

where for f/g we require that g(x) 6= 0 for all x ∈ A.

Theorem 4.2.4: Limit Laws

Let f, g : A → R be functions and let c be a cluster point of A.

Suppose that limx→c f(x) = L and limx→c g(x) =M . Then

(i) lim
x→c

(f ± g)(x) = L±M

(ii) lim
x→c

(fg)(x) = LM

(iii) lim
x→c

(
f

g

)

(x) =
L

M
, if M 6= 0
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The proofs are left as an exercises. (To prove the results, use the

sequential criterion for limits and the limits laws for sequences).

Corollary 4.2.5

Let f1, . . . , fk : A → R be functions and let c be a cluster point of

A. If limx→c fi(x) exists for each i = 1, 2, . . . , k then

(i) lim
x→c

k∑

i=1

fi(x) =
k∑

i=1

lim
x→c

fi(x)

(ii) lim
x→c

k∏

i=1

fi(x) =
k∏

i=1

lim
x→c

fi(x)

Example 4.2.6. If f(x) = a0+ a1x+ a2x
2+ · · ·+ anx

n is a polynomial

function then limx→c f(x) = f(c) for every c ∈ R. If g(x) = b0 + b1x +

b2x + · · · + bmx
m is another polynomial function and g(x) 6= 0 in a

neighborhood of x = c and limx→c g(x) = g(c) 6= 0 then

lim
x→c

f(x)

g(x)
=
f(c)

g(c)
.

Example 4.2.7. Prove that lim
x→2

x2 − 4

x− 2
= 4.

Proof. We cannot use the Limit Laws directly since limx→2(x− 2) = 0.

Instead, notice that if x 6= 2 then x2−4
x−2 = x + 2. Hence, the func-

tions f(x) = x2−4
x−2 and g(x) = x + 2 are equal at every point in

R\{0}. It is clear that limx→2 g(x) = 4 and therefore it follows that

also limx→2 f(x) = 4.
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Theorem 4.2.8

Let f : A → R be a function and let c be a cluster point of A.

Suppose that f has limit L at c. If f(x) ≥ 0 for all x ∈ A then

L ≥ 0.

Proof. We prove the contrapositive. Suppose then that L < 0. Let

ε > 0 be such that L+ ε < 0. Then since limx→c f(x) = 0, there exists

δ > 0 such that if 0 < |x − c| < δ then f(x) < L + ε < 0. Hence,

f(x) < 0 for some x ∈ A.

We give another proof using the sequential criterion for limits. To

that end, if f converges to L at c then for any sequence (xn) converging

to c, xn 6= 0, we have that f(xn) → L. Now f(xn) ≥ 0 and therefore

L ≥ 0 from our results on limits of sequences (Theorem 3.2.7).

Theorem 4.2.9

Let f : A → R be a function and let c be a cluster point of A.

Suppose that M1 ≤ f(x) ≤ M2 for all x ∈ A and suppose that

limx→c f(x) = L. Then M1 ≤ L ≤M2.

Proof. We have that 0 ≤ f(x)−M1 and therefore by Theorem 4.2.8 we

have that 0 ≤ L −M1. Similarly, from 0 ≤ M2 − f(x) we deduce that

0 ≤M2−L. From this we conclude thatM1 ≤ L ≤M2. An alternative

proof: Since f → L at c, for any sequence (xn) → c with xn 6= 0, we

have that f(xn) → L. Clearly, M1 ≤ f(xn) ≤ M2 and therefore M1 ≤
L ≤M2 from our results on limits of sequences (Theorem 3.2.7).

The following is the Squeeze Theorem for functions.
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Theorem 4.2.10: Squeeze Theorem

Let f, g, h : A → R be functions and let c be a cluster point of A.

Suppose that lim
x→c

g(x) = L and lim
x→c

h(x) = L. If g(x) ≤ f(x) ≤ h(x)

for all x ∈ A, x 6= c, then lim
x→c

f(x) = L.

Proof. Let (xn) be a sequence in A converging to c with xn 6= c for all

n ∈ N. Then, by the sequential criterion,

L = lim
n→∞

g(xn) = lim
n→∞

h(xn).

By assumption, it holds that g(xn) ≤ f(xn) ≤ h(xn) for all n ∈ N,

and therefore by the Squeeze Theorem for sequences, we have that

limn→∞ f(xn) = L. This holds for every such sequence and therefore

limx→c f(x) = L.

Example 4.2.11. Let

f(x) =







x2 sin(1/x), x ∈ Q\{0}
x2 cos(1/x), x /∈ Q

0, x = 0.

Show that limx→0 f(x) = 0.

We end this section with the following theorem.

Theorem 4.2.12

Let f : A → R be a function and let c be a cluster point of A.

Suppose that limx→c f(x) = L. If L > 0 then there exists δ > 0

such that f(x) > 0 for all x ∈ (c− δ, c+ δ), x 6= c.

Proof. Choose ε > 0 so that L − ε > 0, take for example ε = L/2.

Then there exists δ > 0 such that L − ε < f(x) < L + ε for all
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x ∈ (c−δ, c+δ), x 6= c, and thus by transitivity it follows that 0 < f(x)

for all x ∈ (c− δ, c+ δ), x 6= c.
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Exercises

Exercise 4.2.1. Let f, g : A → R and suppose that c ∈ R is a cluster

point of A. Suppose that at c, f converges to L and g converges to M .

Prove that fg converges to LM at c in two ways: (1) using the definition

of the limit of a function, and (2) using the sequential criterion for

limits.

Exercise 4.2.2. Give an example of a set A ⊂ R, a cluster point c of

A, and two functions f, g : A → R such that lim
x→c

f(x)g(x) exists but

lim
x→c

f(x) does not exist.

Exercise 4.2.3. Give an example of a function f : R → R that is

bounded locally at c = 0 but does not have a limit at c = 0. Your

answer should not be in the form of a graph.

Exercise 4.2.4. Let f : R → R be a function that is bounded locally

at c and suppose that g : R → R converges to L = 0 at c. Prove that

lim
x→c

f(x)g(x) = 0.
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5

Continuity

Throughout this chapter, A is a non-empty subset of R and f : A→ R

is a function.

5.1 Continuous Functions

Definition 5.1.1: Continuity

The function f is continuous at c ∈ A if for any given ε > 0 there

exists δ > 0 such that if x ∈ A and |x−c| < δ then |f(x)−f(c)| < ε.

If f is not continuous at c then we say that f is discontinuous at

c. The function f is continuous on A if f is continuous at every

point in A.

Suppose that c ∈ A is a cluster point of A and f is continuous at

c. Then from the definition of continuity, lim
x→c

f(x) exists and equal to

f(c). If c is not a cluster point of A then there exists δ > 0 such that

(c− δ, c+ δ)∩A = {c} and continuity of f at c is immediate. In either

case, we see that f is continuous at c if and only if

lim
x→c

f(x) = f(c)
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The following is then immediate.

Theorem 5.1.2: Sequential Criterion for Continuity

The function f is continuous at c ∈ A if and only if for every

sequence (xn) in A converging to c, f(xn) converges to f(c):

lim
n→∞

f(xn) = f( lim
x→∞

xn) = f(c).

Notice that here (xn) is allowed to take on the value c. The following

is immediate.

Theorem 5.1.3

The function f is discontinuous at c if and only if there exists a

sequence (xn) in A converging to c but f(xn) does not converge to

f(c).

Example 5.1.4. If f(x) = a0+ a1x+ a2x
2+ · · ·+ anx

n is a polynomial

function then limx→c f(x) = f(c) for every c ∈ R. Thus, f is continuous

everywhere. If g(x) = b0+ b1x+ b2x+ · · ·+ bmxm is another polynomial

function and g(c) 6= 0 then

lim
x→c

f(x)

g(x)
=
f(c)

g(c)
.

Hence, h(x) = f(x)/g(x) is continuous at every c where g is non-zero.

Example 5.1.5. Determine the points of continuity of

f(x) =

{
1
x
, x 6= 0

0, x = 0.

Solution. Suppose that c 6= 0. Then limx→c f(x) =
1
c
= f(c). Hence,

f is continuous at c ∈ R\{0}. Consider now c = 0. The sequence
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xn = 1
n converges to c = 0 but f(xn) = n does not converge. Hence,

limx→0 f(x) does not exist. Thus, even though f(0) = 0 is well-defined,

f is discontinuous at c = 0.

Example 5.1.6 (Dirichlet Function). The following function was con-

sidered by Peter Dirichlet in 1829:

f(x) =

{

1, x ∈ Q

0, x ∈ R\Q (5.1)

Prove that f is discontinuous everywhere.

Proof. Let c be irrational and let ε = 1/2. Then for all δ > 0, there

exists x ∈ Q ∩ (c − δ, c + δ) (by the Density theorem) and therefore

|f(x) − f(c)| = 1 > ε. Hence, f is discontinuous at c. A similar

argument shows that f is discontinuous c ∈ Q. Alternatively, if c ∈ Q

then there exists a sequence of irrational numbers (xn) converging to c.

Now f(xn) = 0 and f(c) = 1, and this proves that f is discontinuous

at c. A similar arguments holds for c irrational.

Example 5.1.7 (Thomae Function). Let A = {x ∈ R : x > 0} and

define f : A→ R as

f(x) =

{

0, x ∈ R\Q,
1
n , x = m

n ∈ Q, gcd(m, n) = 1, n ∈ N

The graph of f is shown in Figure 5.1. Prove that f is continuous

at every irrational number in A and is discontinuous at every rational

number in A.

Proof. Let c = m
n ∈ Q with gcd(m, n) = 1. There exists a sequence

(xn) of irrational numbers in A converging to c. Hence, f(xn) = 0

while f(c) = 1
n . This shows that f is discontinuous at c. Now let c be
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-1 -0.75 -0.50 -0.25 0.25 0.50 0.75 1

0.2

0.3

0.4

0.5

Figure 5.1: Thomae’s function is continuous at each irrational and
discontinuous at each rational

irrational and let ε > 0 be arbitrary. Let N ∈ N be such that 1
N < ε.

In the interval (c− 1, c+1), there are only a finite number of rationals
m
n with n < N , otherwise we can create a sequence mk

nk
with nk < N , all

the rationals mk

nk
distinct and thus necessarily mk

nk
is unbounded. Hence,

there exists δ > 0 such that the interval (c − δ, c + δ) contains only

rational numbers x = m
n with n > N . Hence, if x = m

n ∈ (c− δ, c + δ)

then f(x) = 1
n
< 1

N
and therefore |f(x) − f(c)| = 1

n
< 1

N
< ε. On

the other hand, if x ∈ (c − δ, c + δ) is irrational then |f(x) − f(c)| =
|0− 0| < ε. This proves that f is continuous at c.

Suppose that f has a limit L at c but f is not defined at c. We can

extend the definition of f by defining

F (x) =

{

f(x), x 6= c

L, x = c.

Now, limx→c F (x) = limx→c f(x) = L = F (c), and thus F is continuous

at c. Hence, functions that are not defined at a particular point c but
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have a limit at c can be extended to a function that is continuous at c.

Points of discontinuity of this type are called removal singularities.

On the other hand, the function f(x) = sin(1/x) is not defined at c = 0

and has not limit at c = 0, and therefore cannot be extended at c = 0

to a continuous function.
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Exercises

Exercise 5.1.1. Let

f(x) =

{

x2 sin(1/x), x 6= 0

0, x = 0

Prove that f is continuous at c = 0.

Exercise 5.1.2. Let

f(x) =

{

(1/x) sin(1/x2), x 6= 0

0, x = 0

Prove that f is discontinuous at c = 0.

Exercise 5.1.3. This is an interesting exercise.

(a) Suppose that h : R → R is continuous on R and that h(r) = 0

for every rational number r ∈ Q. Prove that in fact h(x) = 0 for

all x ∈ R.

(b) Let f, g : R → R be continuous functions on R such that f(r) =

g(r) for every rational number r ∈ Q. Prove that in fact f(x) =

g(x) for all x ∈ R. Hint: Part (a) will be useful here.

Exercise 5.1.4. Suppose that f : R → R is a continuous function such

that f(p + q) = f(p) + f(q) for every p, q ∈ Q. Prove that in fact

f(x+ y) = f(x) + f(y) for every x, y ∈ R.
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5.2 Combinations of Continuous Functions

Not surprisingly, the set of continuous functions is closed under the

basic operation of arithmetic.

Theorem 5.2.1

Let f, g : A → R be continuous functions at c ∈ A and let b ∈ R.

Then

(i) f + g, f − g, fg, and bf are continuous at c.

(ii) If h : A→ R is continuous at c ∈ A and h(x) 6= 0 for all x ∈ A

then f
h is continuous at c.

Proof. Let ε > 0 be arbitrary. By continuity of f and g at c, there

exists δ1 > 0 such that |f(x) − f(c)| < ε/2 for all x ∈ A such that

0 < |x− c| < δ1, and there exists δ2 > 0 such that |g(x)− g(c)| < ε/2

for all x ∈ A such that 0 < |x− c| < δ2. Let δ = min{δ1, δ2}. Then for

x ∈ A such that 0 < |x− c| < δ we have that

|f(x) + g(x)− (f(c) + g(c))| ≤ |f(x)− f(c)|+ |g(x)− g(c)|
< ε/2 + ε/2

= ε.

This proves that f + g is continuous at c. A similar proof holds for

f − g.

Consider now the function bf . If b = 0 then bf(x) = 0 for all x ∈ A

and continuity is trivial. So assume that b 6= 0. Let ε > 0 be arbitrary.

Then there exists δ > 0 such that if x ∈ A ∩ (c− δ, c+ δ), x 6= c, then

|f(x)− f(c)| < ε/(|b|). Therefore, for x ∈ A ∩ (c− δ, c+ δ), x 6= c, we

163



5.2. COMBINATIONS OF CONTINUOUS FUNCTIONS

have that

|bf(x)− bf(c)| = |b||f(x)− f(c)|
< |b|ε/(|b|)
= ε.

We now prove continuity of fg. Let (xn) be any sequence in A

converging to c. Then yn = f(xn) converges to f(c) by continuity of f

at c, and zn = g(xn) converges to g(c) by continuity of g at c. Hence the

sequence wn = ynzn converges to f(c)g(c). Hence, for every sequence

(xn) converging to c, f(xn)g(xn) converges to f(c)g(c). This shows that

fg is continuous at c.

Corollary 5.2.2

Let f, g : A→ R be continuous functions on A and let b ∈ R. Then

(i) f + g, f − g, fg, and bf are continuous on A.

(ii) If h : A → R is continuous on A and h(x) 6= 0 for all x ∈ A

then f
h
is continuous on A.

Example 5.2.3. Prove that f(x) = x is continuous on R.

Proof. Let ε > 0 be arbitrary. Let δ = ε. If 0 < |x − c| < δ then

|f(x)− f(c)| = |x− c| < δ = ε.

Example 5.2.4. All polynomials p(x) = a0 + a1x + · · · + anx
n are

continuous everywhere.

Example 5.2.5. Rational functions f(x) = p(x)/q(x), with q(x) 6= 0

on A ⊂ R, are continuous on A.
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Lemma 5.2.6: Continuity Under Shifting

If f : R → R is continuous then g(x) = f(x + α) is continuous,

where α ∈ R is arbitrary.

Proof. Let ε > 0 be arbitrary. Then there exists δ > 0 such that

|f(y) − f(d)| < ε for all 0 < |y − d| < δ. Therefore, if 0 < |x − c| =
|(x+ α)− (c+ α)| < δ then |f(x+ α)− f(c+ α)| < ε and therefore

|g(x)− g(c)| = |f(x+ α)− f(c+ α)| < ε.

To prove continuity of sin(x) and cos(x) we use the following facts.

For all x ∈ R, | sin(x)| ≤ |x| and | cos(x)| ≤ 1, and for all x, y,∈ R

sin(x)− sin(y) = 2 sin
(
1
2
(x− y)

)
cos
(
1
2
(x+ y)

)
.

Example 5.2.7. Prove that sin(x) and cos(x) are continuous every-

where.

Proof. We have that

| sin(x)− sin(c)| ≤ 2| sin(12(x− c))|| cos(12(x− c))|

≤ 2
1

2
|x− c|

= |x− c|.

Hence given ε > 0 we choose δ = ε. The proof that cos(x) is continuous

follows from the fact that cos(x) = sin(x+ π/2) and Lemma 5.2.6.

Example 5.2.8. The functions tan(x) = sin(x)
cos(x)

, cot(x) = cos(x)
sin(x)

, sec(x) =
1

cos(x) , and csc(x) = 1
sin(x) are continuous on their domain.

165



5.2. COMBINATIONS OF CONTINUOUS FUNCTIONS

Example 5.2.9. Prove that f(x) =
√
x is continuous on A = {x ∈

R | x ≥ 0}.

Proof. For c = 0, we must consider |√x−
√
0| = √

x. Given ε > 0 let

δ = ε2. Then if x ∈ A and x < δ = ε2 then
√
x < ε. This shows that f

is continuous at c = 0. Now suppose that c 6= 0. Then

|√x−√
c| = |√x−√

c| ·
√
x+

√
c√

x+
√
c

=
|x− c|√
x+

√
c

≤ 1√
c
|x− c|.

Hence, given ε > 0, suppose that 0 < |x− c| < √
cε. Then |√x−√

c| <
ε.

Example 5.2.10. Prove that f(x) = |x| is continuous everywhere.

Proof. Follows from the inequality ||x| − |c|| ≤ |x− c|.

The last theorem of this section is concerned with the composition

of continuous functions.

Theorem 5.2.11: Continuity of Composite Functions

Let f : A → R and let g : B → R be continuous functions and

suppose that f(A) ⊂ B. Then the composite function (g ◦f) : A→
R is continuous.

Proof. Let ε > 0 be given. Let c ∈ A and let d = f(c) ∈ B. Then there

exists δ1 > 0 such that if 0 < |y − d| < δ1 then |g(y) − g(d)| < ε. Now

since f is continuous at c, there exists δ2 > 0 such that if 0 < |x−c| < δ2
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then |f(x)−f(c)| < δ1. Therefore, if 0 < |x−c| < δ2 then |f(x)−d| < δ1

and therefore |g(f(x))−g(d)| < ε. This proves that (g◦f) is continuous
at c ∈ A. Since c is arbitrary, (g ◦ f) is continuous on A.

Corollary 5.2.12

If f : A → R is continuous then g(x) = |f(x)| is continuous. If

f(x) ≥ 0 for all x ∈ A then h(x) =
√

f(x) is continuous.

5.3 Continuity on Closed Intervals

In this section we develop properties of continuous functions on closed

intervals.

Definition 5.3.1

We say that f : A → R is bounded on A if there exists M > 0

such that |f(x)| ≤ M for all x ∈ A.

If f is not bounded on A then for any given M > 0 there exists x ∈ A

such that |f(x)| > M .

Example 5.3.2. Consider the function f(x) = 1
x defined on the interval

A = (0,∞). Let M > 0 be arbitrary. Then if 0 < x < 1
M then

f(x) = 1
x
> M . For instance, take x = 1

M+1
. However, on the interval

[2, 3], f is bounded by M = 1
2.

Theorem 5.3.3

Let f : A → R be a continuous function. If A = [a, b] is a closed

and bounded interval then f is bounded on A.
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Proof. Suppose that f is unbounded. Then for each n ∈ N there exists

xn ∈ [a, b] such that |f(xn)| > n. Now the sequence (xn) is bounded

since a ≤ xn ≤ b. By the Bolzano-Weierstrass theorem, (xn) has a

convergent subsequence, say (xnk
), whose limit u = limk→∞ xnk

satisfies

a ≤ u ≤ b. Since f is continuous at u then limk→∞ f(xnk
) exists and

equal to f(u). This is a contradiction since |f(xnk
)| > nk ≥ k implies

that f(xnk
) is unbounded.

Definition 5.3.4: Extrema of Functions

Let f : A→ R be a function.

(i) The function f has an absolute maximum on A if there

exists x∗ ∈ A such that f(x) ≤ f(x∗) for all x ∈ A. We call

x∗ a maximum point and f(x∗) the maximum value of f

on A.

(ii) The function f has an absolute minimum on A if there

exists x∗ ∈ A such that f(x∗) ≤ f(x) for all x ∈ A. We call

x∗ a minimum point and f(x∗) the minimum value of f

on A.

Suppose that f : [a, b] → R is continuous. By Theorem 5.3.3, the

range of f , that is S = {f(x) | x ∈ [a, b]}, is bounded and therefore

inf(S) and sup(S) exist. In this case, we want to answer the question

as to whether inf(S) and sup(S) are elements of S. In other words, as

to whether f achieves its maximum and/or minimum value on [a, b].

That is, if there exists x∗, x∗ ∈ [a, b] such that f(x∗) ≤ f(x) ≤ f(x∗)

for all x ∈ [a, b].

Example 5.3.5. The function f(x) = 1
x is continuous on A = (0, 1].
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However, f is unbounded on A and never achieves a maximum value

on A.

Example 5.3.6. The function f(x) = x2 is continuous on [0, 2), is

bounded on [0, 2) but never reaches its maximum value on [0, 2), that

is, if S = {x2 : x ∈ [0, 2)} then sup(S) = 4 /∈ S.

Theorem 5.3.7: Extreme Value Theorem

Let f : A → R be a continuous function. If A = [a, b] is a closed

and bounded interval then f has a maximum and minimum point

on [a, b].

Proof. Let S = {f(x) | x ∈ [a, b]} be the range of f . By Theorem 5.3.3,

sup(S) exists; set M = sup(S). By the definition of the supremum,

for each ε > 0 there exists x ∈ [a, b] such that M − ε < f(x) ≤
M . In particular, for εn = 1/n, there exists xn ∈ [a, b] such that

M − εn < f(xn) ≤ M . Then limn→∞ f(xn) = M . The sequence (xn)

is bounded and thus has a convergent subsequence, say (xnk
). Let

x∗ = limk→∞ xnk
. Clearly, a ≤ x∗ ≤ b. Since f is continuous at x∗, we

have thatM = limk→∞ f(xnk
) = f(x∗). Hence, x∗ is a maximum point.

A similar proof establishes that f has a minimum point on [a, b].

By Theorem 5.3.7, we can replace sup{f(x) | x ∈ [a, b]} with

max{f(x) | x ∈ [a, b]}, and inf{f(x) | x ∈ [a, b]} with min{f(x) | x ∈
[a, b]}. When the interval [a, b] is clear from the context, we will simply

write max(f) and min(f). The following example shows the importance

of continuity in achieving a maximum/minimum.

Example 5.3.8. The function f : [−1, 1] → R defined by

f(x) =

{

3− x2, 0 < x ≤ 1

x2, −1 ≤ x ≤ 0
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does not achieve a maximum value on the closed interval [−1, 1].

The next theorem, called the Intermediate Value Theorem, is the

main result of this section, and one of the most important results in

this course.

Theorem 5.3.9: Intermediate Value Theorem

Consider the function f : [a, b] → R and suppose that f(a) < f(b).

If f is continuous then for any ξ ∈ R such that f(a) < ξ < f(b)

there exists c ∈ (a, b) such that f(c) = ξ.

Proof. Let S = {x ∈ [a, b] : f(x) < ξ}. The set S is non-empty

because a ∈ S. Moreover, S is clearly bounded above. Let c = sup(S).

By the definition of the supremum, there exists a sequence (xn) in S

such that limn→∞ xn = c. Since a ≤ xn ≤ b it follows that a ≤ c ≤ b.

By definition of xn, f(xn) < ξ and since f is continuous at c we have

that f(c) = limn→∞ f(xn) ≤ ξ, and thus f(c) ≤ ξ. Now let δn > 0 be

such that δn → 0 and c+ δn < b. Then zn = c+ δn converges to c and

ξ ≤ f(zn) because zn 6∈ S. Therefore, since limn→∞ f(zn) = f(c) we

have that ξ ≤ f(c). Therefore, f(c) ≤ ξ ≤ f(c) and this proves that

ξ = f(c). This shows also that a < c < b.

The Intermediate Value Theorem has applications in finding points

where a function is zero.

Corollary 5.3.10

Let f : [a, b] → R be a function and suppose that f(a)f(b) < 0. If

f is continuous then there exists c ∈ (a, b) such that f(c) = 0.

Example 5.3.11. A hiker begins his climb at 7:00 am on a marked

trail and arrives at the summit at 7:00 pm. The next day, the hiker
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begins his trek down the mountain at 7:00 am, takes the same trail

down as he did going up, and arrives at the base at 7:00 pm. Use the

Intermediate Value Theorem to show that there is a point on the path

that the hiker crossed at exactly the same time of day on both days.

Proof. Let f(t) be the distance traveled along the trail on the way up

the mountain after t units of time, and let g(t) be the distance remaining

to travel along the trail on the way down the mountain after t units of

time. Both f and g are defined on the same time interval, say [0, 12] if

t is measured in hours. If M is the length of the trail, then f(0) = 0,

f(12) = M , g(0) = M and g(12) = 0. Let h(t) = g(t) − f(t). Then

h(0) = M and h(12) = −M . Hence, there exists t∗ ∈ (0, 12) such that

h(t∗) = 0. In other words, f(t∗) = g(t∗), and therefore t∗ is the time of

day when the hiker is at exactly the same point on the trail.

Example 5.3.12. Prove by the Intermediate Value Theorem that f(x) =

xex − 2 has a root in the interval [0, 1].

Proof. The function f is continuous on [0, 1]. We have that f(0) =

−2 < 0 and f(1) = e− 2 > 0. Therefore, there exists x∗ ∈ (0, 1) such

that f(x∗) = 0, i.e., f has a zero in the interval (0, 1).

The next results says, roughly, that continuous functions preserve

closed and bounded intervals. In the following theorem, we use the

short-hand notation f([a, b]) = {f(x) |x ∈ [a, b]} for the range of f

under [a, b].

Theorem 5.3.13

If f : [a, b] → R is continuous then f([a, b]) = [min(f),max(f)].

Proof. Since f achieves its maximum and minimum value on [a, b], there

exists x∗, x∗ ∈ [a, b] such that f(x∗) ≤ f(x) ≤ f(x∗) for all x ∈ [a, b].
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Hence, f([a, b]) ⊂ [f(x∗), f(x∗)]. Assume for simplicity that x∗ < x∗.

Then [x∗, x∗] ⊂ [a, b]. Let ξ ∈ R be such that f(x∗) < ξ < f(x∗). Then

by the Intermediate Value Theorem, there exists c ∈ (x∗, x∗) such that

ξ = f(c). Hence, ξ ∈ f([a, b]), and this shows that [f(x∗), f(x∗)] ⊂
f([a, b]). Therefore, f([a, b]) = [f(x∗), f(x∗)] = [min(f),max(f)].

It is worth noting that the previous theorem does not say that

f([a, b]) = [f(a), f(b)].
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Exercises

Exercise 5.3.1. Let f : A → R be any function. Show that if −f
achieves its maximum at x0 ∈ A then f achieves its minimum at x0.

Exercise 5.3.2. Let f and g be continuous functions on [a, b]. Suppose

that f(a) ≥ g(a) and f(b) ≤ g(b). Prove that f(x0) = g(x0) for at least

one x0 in [a, b].

Exercise 5.3.3. Let f : [0, 1] → R be a continuous function and sup-

pose that f(x) ∈ [0, 1] for all x ∈ [0, 1]. Show that there exists x0 ∈ [0, 1]

such that f(x0) = x0. Hint: Consider the function g(x) = f(x)− x on

the interval [0, 1].

Exercise 5.3.4. Let f : [a, b] → R be a continuous function. Prove that

if f(x) ∈ Q for all x ∈ [a, b] then f is a constant function. Hint: You

will need the Density Theorem and the Intermediate Value Theorem.

173



5.4. UNIFORM CONTINUITY

5.4 Uniform Continuity

In the definition of continuity of f : A → R at c ∈ A, the δ will in

general not only depend on ε but also on c. In other words, given two

points c1, c2 and fixed ε > 0, the minimum δ1 and δ2 needed for c1

and c2 in the definition of continuity are generally going to be different.

To see this, consider the continuous function f(x) = x2. Then it is

straightforward to verify that if c2−ε > 0 then |x2− c2| < ε if and only

if
√

c2 − ε− c < x− c <
√

c2 + ε− c.

Let c1 = 1 and c2 = 3, and let ε = 1/2. Then |x − 1| < δ1 implies

that |f(x) − f(1)| < ε if and only δ1 ≤
√
1 + ε − 1 ≈ 0.2247. On the

other hand, |x − c| < δ2 implies that |f(x) − f(3)| < ε if and only if

δ2 ≤
√
9 + ε − 9 ≈ 0.0822. The reason that a smaller delta is needed

at c = 3 is that the slope of f at c = 3 is larger than that at c = 1.

On the other hand, consider the function f(x) = sin(2x). For any c it

holds that

|f(x)− f(c)| = | sin(2x)− sin(2c)|
≤ 2|x− c|.

Hence, given any ε > 0 we can set δ = ε/2 and then |x− c| < δ implies

that |f(x)− f(c)| < ε. The punchline is that δ = ε/2 will work for any

c. These motivating examples lead to the following definition.

Definition 5.4.1: Uniform Continuity

The function f : A → R is said to be uniformly continuous on

A if for each ε > 0 there exists δ > 0 such that for all x, u ∈ A

satisfying |x− u| < δ it holds that |f(x)− f(u)| < ε.
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Example 5.4.2. Let k 6= 0 be any non-zero constant. Show that

f(x) = kx is uniformly continuous on R.

Proof. We have that |f(x)−f(c)| = |kx−kc| = |k||x−c|. Hence, for any
ε > 0 we let δ = ε/|k|, and thus if |x−c| < δ then |f(x)−f(c)| < ε.

Example 5.4.3. Prove that f(x) = sin(x) is uniformly continuous.

Proof. We have that

| sin(x)− sin(c)| ≤ 2| sin(1
2
(x− c))|

≤ |x− c|.

Hence, for ε > 0 let δ = ε and if |x−c| < δ then | sin(x)−sin(c)| < ε.

Example 5.4.4. Show that f(x) =
1

1 + x2
is uniformly continuous on

R.

Proof. We have that

|f(x)− f(c)| =
∣
∣
∣
∣

1

1 + x2
− 1

1 + c2

∣
∣
∣
∣

=

∣
∣
∣
∣

1 + c2 − 1− x2

(1 + x2)(1 + c2)

∣
∣
∣
∣

=

∣
∣
∣
∣

x+ c

(1 + x2)(1 + c2)

∣
∣
∣
∣
|x− c|

=

∣
∣
∣
∣

x

(1 + x2)(1 + c2)
+

c

(1 + x2)(1 + c2)

∣
∣
∣
∣
|x− c|.

Now, |x| ≤ 1 + x2 implies that |x|
1+x2 ≤ 1 and therefore

|x|
(1 + x2)(1 + c2)

≤ 1

1 + c2
≤ 1.
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It follows that |f(x) − f(c)| ≤ 2|x − c|. Hence, given ε > 0 we let

δ = ε/2, and if |x− c| < δ then |f(x)− f(c)| < ε.

The following is a simple consequence of the definition of uniform

continuity.

Theorem 5.4.5

Let f : A→ R be a function. The following are equivalent:

(i) The function f is not uniformly continuous on A.

(ii) There exists ε0 > 0 such that for every δ > 0 there exists

x, u ∈ A such that |x− u| < δ but |f(x)− f(c)| ≥ ε0.

(iii) There exists ε0 > 0 and two sequences (xn) and (un) such that

lim
n→∞

(xn − un) = 0 and |f(xn)− f(un)| ≥ ε0.

Example 5.4.6. Let f(x) = 1
x and let A = (0,∞). Let xn = 1

n and let

un = 1
n+1. Then lim(xn − un) = 0. Now |f(xn) − f(un)| = | − 1| = 1.

Hence, if ε = 1/2 then |f(xn) − f(un)| > ε. This proves that f is not

uniformly continuous on A = (0,∞).

Theorem 5.4.7: Uniform Continuity on Intervals

Let f : A → R be a continuous function with domain A = [a, b]. If

f is continuous on A then f is uniformly continuous on A.

Proof. We prove the contrapositive, that is, we will prove that if f is

not uniformly continuous on [a, b] then f is not continuous on [a, b].

Suppose then that f is not uniformly continuous on [a, b]. Then there
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exists ε > 0 such that for δn = 1/n, there exists xn, un ∈ [a, b] such

that |xn − un| < δn but |f(xn)− f(un)| ≥ ε. Clearly, lim(xn − un) = 0.

Now, since a ≤ xn ≤ b, by the Bolzano-Weierstrass theorem there is a

subsequence (xnk
) of (xn) that converges to a point z ∈ [a, b]. Now,

|unk
− z| ≤ |unk

− xnk
|+ |xnk

− z|

and therefore also limk→∞ unk
= z. Hence, both (xnk

) and (unk
) are

sequences in [a, b] converging to z but |f(xnk
) − f(unk

)| ≥ ε. Hence

f(xnk
) and f(unk

) do not converge to the same limit and thus f is not

continuous at z. This completes the proof.

The following example shows that boundedness of a function does

not imply uniform continuity.

Example 5.4.8. Show that f(x) = sin(x2) is not uniformly continuous

on R.

Proof. Consider xn =
√
πn and un =

√
πn+

√
π

4
√
n
. Clearly lim(xn−un) =

0. On the other hand

|f(xn)− f(un)| =
∣
∣
∣sin(πn)− sin(

√
πn+

√
π

4
√
n
)2
∣
∣
∣

=
∣
∣sin

(
πn+ π

2
+ π

16n

)∣
∣

=
∣
∣cos

(
πn+ π

16n

)∣
∣

=
∣
∣cos(nπ) cos( π

16n)− sin(nπ) sin( π
16n)
∣
∣

= |(−1)n cos( π
16n)|

= cos( π
16n)

≥ cos( π
16)
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The reason that f(x) = sin(x2) is not uniformly continuous is that

f is increasing rapidly on arbitrarily small intervals. Explicitly, it does

not satisfy the following property.

Definition 5.4.9

A function f : A→ R is called a Lipschitz function on A if there

exists a constant K > 0 such that |f(x)− f(u)| ≤ K|x− u| for all
x, u ∈ A.

Suppose that f is Lipschitz with Lipschitz constant K > 0. Then

for all x, u ∈ A we have that
∣
∣
∣
∣

f(x)− f(u)

x− u

∣
∣
∣
∣
≤ K.

Hence, the secant line through the points (x, f(x)) and (u, f(u)) has

slope no larger than K in magnitude. Hence, a Lipschitz function has

a constraint on how quickly it can change (measured by |f(x)− f(u)|)
relative to the change in its inputs (measured by |x− u|).

Example 5.4.10. Since | sin(x)− sin(u)| ≤ |x− u|, f(x) = sin(x) is a

Lipschitz function on R with constant K = 1.

Example 5.4.11. If a 6= 0, the function f(x) = ax + b is Lipschitz

on R with constant K = |a|. When a = 0, f is clearly Lipschitz with

arbitrary constant K > 0.

Theorem 5.4.12: Lipschitz and Uniform Continuity

If f : A → R is a Lipschitz function on A then f is uniformly

continuous on A.
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Proof. By assumption, |f(x) − f(u)| ≤ K|x − u| for all x, u ∈ A for

some constant K > 0. Let ε > 0 be arbitrary and let δ = ε/K. Then

if |x− u| < δ then |f(x)− f(u)| ≤ K|x− u| < ε. Hence, f is uniformly

continuous on A.

The following example shows that a uniformly continuous function

is not necessarily Lipschitzian.

Example 5.4.13. Consider the function f(x) =
√
x defined on A =

[0, 2]. Since f is continuous, f is uniformly continuous on [0, 2]. To show

that f is not Lipschitzian on A, let u = 0 and consider the inequality

|f(x)| = √
x ≤ K|x| for some K > 0. If x ∈ [0, 2] then

√
x ≤ K|x| if

and only if x ≤ K2x2 if and only if x(K2x−1) ≥ 0. If x ∈ (0, 1/K2)∩A,
it holds that K2x − 1 < 0, and thus no such K can exist. Thus, f is

not Lipschitzian on [0, 2].
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Exercises

Exercise 5.4.1. Let f : A → R and let g : A → R be uniformly

continuous functions on A. Prove that f + g is uniformly continuous

on A

Exercise 5.4.2. Let f : A → R and let g : A → R be Lipschitz

functions on A. Prove that f + g is a Lipschitz function on A.

Exercise 5.4.3. Give an example of a function that is uniformly con-

tinuous on R but is not bounded on R.

Exercise 5.4.4. Prove that f(x) = x2 is not uniformly continuous on

R.

Exercise 5.4.5. Give an example of distinct functions f : R → R and

g : R → R that are uniformly continuous on R but fg is not uniformly

continuous on R. Prove that your resulting function fg is indeed not

uniformly continuous.

Exercise 5.4.6. A function f : R → R is said to be T -periodic on

R if there exists a number T > 0 such that f(x + T ) = f(x) for all

x ∈ R. Prove that a T -periodic continuous function on R is bounded

and uniformly continuous on R. Hint: First consider f on the interval

[0, T ].
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Differentiation

6.1 The Derivative

We begin with the definition of the derivative of a function.

Definition 6.1.1: The Derivative

Let I ⊂ R be an interval and let c ∈ I. We say that f : I → R is

differentiable at c or has a derivative at c if

lim
x→c

f(x)− f(c)

x− c

exists. We say that f is differentiable on I if f is differentiable at

every point in I.

By definition, f has a derivative at c if there exists a number L ∈ R

such that for every ε > 0 there exists δ > 0 such that if |x− c| < δ then

∣
∣
∣
∣

f(x)− f(c)

x− c
− L

∣
∣
∣
∣
< ε.
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If f is differentiable at c, we will denote lim
x→c

f(x)− f(c)

x− c
by f ′(c), that

is,

f ′(c) = lim
x→c

f(x)− f(c)

x− c
.

The rule that sends c to the number f ′(c) defines a function on a pos-

sibly smaller subset J ⊂ I. The function f ′ : J → R is called the

derivative of f .

Example 6.1.2. Let f(x) = 1/x for x ∈ (0,∞). Prove that f ′(x) =

− 1
x2 .

Example 6.1.3. Let f(x) = sin(x) for x ∈ R. Prove that f ′(x) =

cos(x).

Proof. Recall that

sin(x)− sin(c) = 2 sin
(
x−c
2

)
cos
(
x+c
2

)

and that limx→0
sin(x)
x = 1. Therefore,

lim
x→c

sin(x)− sin(c)

x− c
= lim

x→c

2 sin
(
x−c
2

)
cos
(
x+c
2

)

x− c

= lim
x→c

(

sin
(
x−c
2

)

x−c
2

)

cos
(
x+c
2

)

= 1 · cos(c) = cos(c).

Hence f ′(c) = cos(c) for all c and thus f ′(x) = cos(x).

Example 6.1.4. Prove by definition that f(x) = x
1+x2 is differentiable

on R.
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Proof. We have that

f(x)− f(c)

x− c
=

x
1+x2 − c

1+c2

x− c

=
x(1 + c2)− c(1 + x2)

(1 + x2)(1 + c2)(x− c)

=
1− cx

(1 + c2)(1 + x2)
.

Now

lim
x→c

f(x)− f(c)

x− c
=

1− c2

(1 + c2)2
.

Hence, f ′(c) exists for all c ∈ R and the derivative function of f is

f ′(x) =
1− x2

(1 + x2)2
.

Example 6.1.5. Prove that f ′(x) = α if f(x) = αx + b.

Proof. We have that f(x) − f(c) = αx − αc = α(x − c). Therefore,

limx→c
f(x)−f(c)

x−c = α. This proves that f ′(x) = α for all x ∈ R.

Example 6.1.6. Compute the derivative function of f(x) = |x| for
x ∈ R.

Solution. If x > 0 then f(x) = x and thus f ′(x) = 1 for x > 0. If x < 0

then f(x) = −x and therefore f ′(x) = −1 for x < 0. Now consider

c = 0. We have that
f(x)− f(c)

x− c
=

|x|
x
.

We claim that the limit limx→0
|x|
x
does not exist and thus f ′(0) does not

exist. To see this, consider xn = 1/n. Then (xn) → 0 and f(xn) = 1
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for all n. On the other hand, consider yn = −1/n. Then (yn) → 0 and

f(yn) = −1. Hence, limn→∞ f(xn) 6= limn→∞ f(yn), and thus the claim

holds by the Sequential criterion for limits. The derivative function f ′

of f is therefore defined on A = R\{0} and is given by

f ′(x) =

{

1, x > 0

−1, x > 0.

Hence, even though f is continuous at every point in its domain R,

it is not differentiable at every point in its domain. In other words,

continuity is not a sufficient condition for differentiability.

Theorem 6.1.7: Differentiability Implies Continuity

Suppose that f : I → R is differentiable at c. Then f is continuous

at c.

Proof. To prove that f is continuous at c we must show that limx→c f(x) =

f(c). By assumption limx→c
f(x)−f(c)

x−c = f ′(c) exists, and clearly limx→c(x−
c) = 0. Hence we can apply the Limits laws and compute

lim
x→c

f(x) = lim
x→c

(f(x)− f(c) + f(c))

= lim
x→c

(
f(x)− f(c)

(x− c)
(x− c) + f(c)

)

= f ′(c) · 0 + f(c)

= f(c)

and the proof is complete.
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Theorem 6.1.8: Combinations of Differentiable Functions

Let f : I → R and g : I → R be differentiable at c ∈ I. The

following hold:

(i) If α ∈ R then (αf) is differentiable and (αf)′(c) = αf ′(c).

(ii) (f + g) is differentiable at c and (f + g)′(c) = f ′(c) + g′(c).

(iii) fg is differentiable at c and (fg)′(c) = f ′(c)g(c) + f(c)g′(c).

(iv) If g(c) 6= 0 then (f/g) is differentiable at c and

(
f

g

)′
(c) =

f ′(c)g(c)− f(c)g′(c)

g(c)2

Proof. Parts (i) and (ii) are straightforward. We will prove only (iii)

and (iv). For (iii), we have that

f(x)g(x)− f(c)g(c)

x− c
=
f(x)g(x)− f(c)g(x) + f(c)g(x)− f(c)g(c)

x− c

=
f(x)− f(c)

x− c
g(x) + f(c)

g(x)− g(c)

x− c
.

Now limx→c g(x) = g(c) because g is differentiable at c. Therefore,

lim
x→c

f(x)g(x)− f(c)g(c)

x− c
= lim

x→c

f(x)− f(c)

x− c
g(x) + lim

x→c
f(c)

g(x)− g(c)

x− c

= f ′(c)g(c) + f(c)g′(c).

To prove part (iv), since g(c) 6= 0, then there exist a δ-neighborhood
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J = (c− δ, c+ δ) such that g(x) 6= 0 for all x ∈ J . If x ∈ J then

f(x)
g(x)

− f(c)
g(x)

x− c
=
f(x)g(c)− g(x)f(c)

g(x)g(c)(x− c)

=
f(x)g(c)− f(c)g(c) + f(c)g(c)− g(x)f(c)

g(x)g(c)(x− c)

=

f(x)g(c)−f(c)g(c)
x−c − f(c)g(x)−f(c)g(c)

x−c

g(x)g(c)

Since g(c) 6= 0, it follows that

lim
x→c

f(x)
g(x) −

f(c)
g(x)

x− c
=
f ′(c)g(c)− f(c)g′(c)

g(c)2

and the proof is complete.

We now prove the Chain Rule.

Theorem 6.1.9: Chain Rule

Let f : I → R and g : J → R be functions such that f(I) ⊂ J and

let c ∈ I. If f ′(c) exists and g′(f(c)) exists then (g ◦ f)′(c) exists

and (g ◦ f)′(c) = g′(f(c))f ′(c).

Proof. Suppose that there exists a neighborhood of c where f(x) 6=
f(c). Otherwise, the composite function (g ◦ f)(x) is constant in a

neighborhood of c, and then clearly differentiable at c. Consider the

function h : J → R defined by

h(y) =

{
g(y)−g(f(c))

y−f(c) , y 6= f(c)

g′(f(c)), y = f(c).
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Now

lim
y→f(c)

h(y) = lim
y→f(c)

g(y)− g(f(c))

y − c

= g′(f(c))′

= h(f(c)).

Hence, h is differentiable at f(c) and therefore h is at f(c). Now,

g(f(x))− g(f(c))

x− c
= h(f(x))

f(x)− f(c)

x− c

and therefore

lim
x→c

g(f(x))− g(f(c))

x− c
= lim

x→c
h(f(x))

f(x)− f(c)

x− c
= h(f(c))f ′(c)

= g′(f(c))f ′(c).

Therefore, (g ◦ f)′(c) = g′(f(c))f ′(c) as claimed.

Example 6.1.10. Compute f ′(x) if

f(x) =

{

x2 sin( 1x), x 6= 0

0, x = 0.

Where is f ′(x) continuous?

Solution. When x 6= 0, f(x) is the composition and product of differ-

entiable functions at x, and therefore f is differentiable at x 6= 0. For

instance, on A = R\{0}, the functions 1/x, sin(x) and x2 are differen-

tiable at every x ∈ A. Hence, if x 6= 0 we have that

f ′(x) = 2x sin( 1x)− cos( 1x).
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Consider now c = 0. If f ′(0) exists it is equal to

lim
x→0

f(x)− f(c)

x− c
= lim

x→0

x2 sin( 1x)

x
= lim

x→0
x sin( 1x).

Using the Squeeze Theorem, we deduce that f ′(0) = 0. Therefore,

f ′(x) =

{

2x sin( 1x)− cos( 1x), x 6= 0

0, x = 0.

From the above formula obtained for f ′(x), we observe that when x 6= 0

f ′ is continuous since it is the product/difference/composition of con-

tinuous functions. To determine continuity of f ′ at x = 0 consider

limx→0 f
′(x). Consider the sequence xn = 1

nπ
, which clearly converges

to c = 0. Now, f ′(xn) =
2
nπ sin(nπ)− cos(nπ). Now, sin(nπ) = 0 for all

n and therefore f ′(xn) = − cos(nπ) = (−1)n+1. The sequence f ′(xn)

does not converge and therefore limx→0 f
′(x) does not exist. Thus, f ′

is not continuous at x = 0.

Example 6.1.11. Compute f ′(x) if

f(x) =

{

x3 sin( 1x), x 6= 0

0, x = 0

Where is f ′(x) continuous?

Solution. When x 6= 0, f(x) is the composition and product of differen-

tiable functions, and therefore f is differentiable at x 6= 0. For instance,

on A = R\{0}, the functions 1/x, sin(x) and x3 are differentiable on

A. Hence, if x 6= 0 we have that

f ′(x) = 3x2 sin( 1x)− x cos( 1x).
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Consider now c = 0. If f ′(0) exists it is equal to

lim
x→0

f(x)− f(c)

x− c
= lim

x→0

x3 sin( 1x)

x
= lim

x→0
x2 sin( 1x)

and using the Squeeze Theorem we deduce that f ′(0) = 0. Therefore,

f ′(x) =

{

3x2 sin( 1x)− x cos( 1x), x 6= 0

0, x = 0.

When x 6= 0, f ′ is continuous since it is the product/difference/composition

of continuous functions. To determine continuity of f ′ at c = 0 we

consider the limit limx→0 f
′(x). Now limx→0 3x

2 sin( 1
x
) = 0 using the

Squeeze Theorem, and similarly limx→0 x cos(
1
x) = 0 using the Squeeze

Theorem. Therefore, limx→0 f
′(x) exists and is equal to 0, which is

equal to f ′(0). Hence, f ′ is continuous at x = 0, and thus continuous

everywhere.

Example 6.1.12. Consider the function

f(x) =







x2 sin( 1x), x ∈ Q\{0}
x2 cos( 1x), x /∈ Q

0, x = 0.

Show that f ′(0) = 0.
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Exercises

Exercise 6.1.1. Use the definition of the derivative of a function to

find f ′(x) if f(x) =
3x+ 4

2x− 1
. Clearly state the domain of f ′(x).

Exercise 6.1.2. Use the definition of the derivative of a function to

find f ′(x) if f(x) = x|x|. Clearly state the domain of f ′(x).

Exercise 6.1.3. Let f : R → R be defined by

f(x) =

{

x2, x ∈ Q

0, x ∈ R\Q

1. Show that f is differentiable at c = 0 and find f ′(0).

2. Prove that if c 6= 0 then f is not differentiable at c.

Exercise 6.1.4. Let g(x) = |x3| for x ∈ R. Determine whether g′(0),

g(2)(0), g(3)(0) exist and if yes find them. Hint: Consider writing g as a

piecewise function and use the definition of the derivative.

Exercise 6.1.5. If f : R → R is differentiable at c ∈ R, explain why

f ′(c) = lim
n→∞

[n(f(c+ 1/n)− f(c))]

Give an example of a function f and a number c such that

lim
n→∞

[n(f(c+ 1/n)− f(c))]

exists but f ′(c) does not exist.

190



6.2. THE MEAN VALUE THEOREM

6.2 The Mean Value Theorem

Definition 6.2.1: Relative Extrema

Let f : I → R be a function and let c ∈ I.

(i) We say that f has a relative maximum at c if there exists

δ > 0 such that f(x) ≤ f(c) for all x ∈ (c− δ, c+ δ).

(ii) We say that f has a relative minimum at c if there exists δ

such that f(c) ≤ f(x) for all x ∈ (c− δ, c+ δ).

A point c ∈ I is called a critical point of f : I → R if f ′(c) =

0. The next theorem says that a relative maximum/minimum of a

differentiable function can only occur at a critical point.

Theorem 6.2.2: Critical Point at Extrema

Let f : I → R be a function and let c be an interior point of I.

Suppose that f has a relative maximum (or minimum) at c. If f is

differentiable at c then c is a critical point of f , that is, f ′(c) = 0.

Proof. Suppose that f has a relative maximum at c; the relative min-

imum case is similar. Then for x 6= c, it holds that f(x) − f(c) ≤ 0

for x ∈ (c − δ, c + δ) and some δ > 0. Consider the function h :

(c−δ, c+δ) → R defined by h(x) = f(x)−f(c)
x−c for x 6= c and h(c) = f ′(c).

Then the function h is continuous at c = 0 because limx→c h(x) = h(c).

Now for x ∈ A = (c, c + δ) it holds that h(x) ≤ 0 and therefore

f ′(c) = limx→c h(x) ≤ 0. Similarly, for x ∈ B = (c− δ, c) it holds that

h(x) ≥ 0 and therefore 0 ≤ f ′(c). Thus f ′(c) = 0.
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Corollary 6.2.3

If f : I → R has a relative maximum (or minimum) at c then either

f ′(c) = 0 or f ′(c) does not exist.

Example 6.2.4. The function f(x) = |x| has a relative minimum at

x = 0, however, f is not differentiable at x = 0.

Theorem 6.2.5: Rolle

Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b).

If f(a) = f(b) then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. Since f is continuous on [a, b] it achieves its maximum and min-

imum at some point x∗ and x∗, respectively, that is f(x∗) ≤ f(x) ≤
f(x∗) for all x ∈ [a, b]. If f is constant then f ′(x) = 0 for all x ∈ (a, b).

If f is not constant then f(x∗) < f(x∗). Since f(a) = f(b) it follows

that at least one of x∗ and x∗ is not contained in {a, b}, and hence by

Theorem 6.2.2 there exists c ∈ {x∗, x∗} such that f ′(c) = 0.

We now state and prove the main result of this section.

Theorem 6.2.6: Mean Value

Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b).

Then there exists c ∈ (a, b) such that f ′(c) = f(b)−f(a)
b−a .

Proof. If f(a) = f(b) then the result follows from Rolle’s Theorem

(f ′(c) = 0 for some c ∈ (a, b)). Let h : [a, b] → R be the line from

(a, f(a)) to (b, f(b), that is,

h(x) = f(a) +
f(b)− f(a)

(b− a)
(x− a)
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and define the function

g(x) = f(x)− h(x)

for x ∈ [a, b]. Then g(a) = f(a)− f(a) = 0 and g(b) = f(b)− f(b) = 0,

and thus g(a) = g(b). Clearly, g is continuous on [a, b] and differentiable

on (a, b), and it is straightforward to verify that g′(x) = f ′(x)− f(b)−f(a)
b−a

.

By Rolle’s Theorem, there exists c ∈ (a, b) such that g′(c) = 0, and

therefore f ′(c) = f(b)−f(a)
b−a .

Theorem 6.2.7

Let f : [a, b] → R be continuous on [a, b] and differentiable on (a, b).

If f ′(x) = 0 for all x ∈ (a, b) then f is constant on [a, b].

Proof. Let y ∈ (a, b]. Now f restricted to [a, y] satisfies all the as-

sumptions needed in the Mean Value Theorem. Therefore, there ex-

ists c ∈ (a, y) such that f ′(c) = f(y)−f(a)
y−a . But f ′(c) = 0 and thus

f(y) = f(a). This holds for all y ∈ (a, b] and thus f is constant on

[a, b].

Example 6.2.8. Show by example that Theorem 6.2.7 is not true for

a function f : A→ R if A is not a closed and bounded interval.

Corollary 6.2.9

If f, g : [a, b] → R are continuous and differentiable on (a, b) and

f ′(x) = g′(x) for all x ∈ (a, b) then f(x) = g(x) + C for some

constant C.
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Example 6.2.10. Use the Mean Value theorem to show that −x ≤
sin(x) ≤ x for all x ∈ R.

Proof. Suppose that x > 0 and let g(x) = sin(x) so that g′(x) = cos(x).

By the MVT, there exists c ∈ (0, x) such that cos(c) = sin(x)
x , that is

sin(x) = x cos(c). Now | cos(c)| ≤ 1 and therefore | sin(x)| ≤ |x| =
x. Therefore, −x ≤ sin(x) ≤ x. The case x < 0 can be treated

similarly.

Definition 6.2.11: Monotone Functions

The function f : I → R is increasing if f(x1) ≤ f(x2) whenever

x1 < x2. Similarly, f is decreasing if f(x2) ≤ f(x1) whenever

x1 < x2. In either case, we say that f is monotone.

The sign of the derivative f ′ determines where f is increasing/decreasing.

Theorem 6.2.12

Suppose that f : I → R is differentiable.

(i) Then f is increasing if and only if f ′(x) ≥ 0 for all x ∈ I.

(ii) Then f is decreasing if and only if f ′(x) ≤ 0 for all x ∈ I.

Proof. Suppose that f is increasing. Then for all x, c ∈ I with x 6= c

it holds that f(x)−f(c)
x−c ≥ 0 and therefore f ′(c) = limx→c

f(x)−f(c)
x−c ≥ 0.

Hence, this proves that f ′(x) ≥ 0 for all x ∈ I.

Now suppose that f ′(x) ≥ 0 for all x ∈ I. Suppose that x < y. Then

by the Mean Value Theorem, there exists c ∈ (x, y) such that f ′(c) =
f(y)−f(x)

y−x
. Therefore, since f ′(c) ≥ 0 it follows that f(y)− f(x) ≥ 0.

Part (ii) is proved similarly.
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Exercises

Exercise 6.2.1. Use the Mean Value Theorem to show that

| cos(x)− cos(y)| ≤ |x− y|.

In general, suppose that f : [a, b] → R is such that f ′ exists on [a, b]

and f ′ is continuous on [a, b]. Prove that f is Lipschitz on [a, b].

Exercise 6.2.2. Give an example of a uniformly continuous function on

[0, 1] that is differentiable on (0, 1) but whose derivative is not bounded

on (0, 1). Justify your answer.

Exercise 6.2.3. Let I be an interval and let f : I → R be differentiable

on I. Prove that if f ′(x) > 0 for x ∈ I then f is strictly increasing on

I.

Exercise 6.2.4. Let f : [a, b] → R be continuous on [a, b] and differ-

entiable on (a, b). Show that if limx→a f
′(x) = A then f ′(a) exists and

equals A. Hint: Use the definition of f ′(a), the Mean Value Theorem,

and the Sequential Criterion for limits.

Exercise 6.2.5. Let f : [a, b] → R be continuous and suppose that f ′

exists on (a, b). Prove that if f ′(x) > 0 for x ∈ (a, b) then f is strictly

increasing on [a, b].

Exercise 6.2.6. Suppose that f : [a, b] → R is continuous on [a, b] and

differentiable on (a, b). We proved that if f ′(x) = 0 for all x ∈ (a, b)

then f is constant on [a, b]. Give an example of a function f : A → R

such that f ′(x) = 0 for all x ∈ A but f is not constant on A.

Exercise 6.2.7. Let f : [a, b] → R be differentiable. Prove that if

f ′(x) 6= 0 on [a, b] then f is injective.
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6.3 Taylor’s Theorem

Taylor’s theorem is a higher-order version of the Mean Value Theo-

rem and it has abundant applications in numerical analysis. Taylor’s

theorem involves Taylor polynomials which you are familiar with from

calculus.

Definition 6.3.1: Taylor Polynomials

Let x0 ∈ [a, b] and suppose that f : [a, b] → R is such that the

derivatives f ′(x0), f (2)(x0), f
(3)(x0),. . .,f

(n)(x0) exist for some posi-

tive integer n. Then the polynomial

Pn(x) = f(x0) + f ′(x0)(x− x0) +
1

2!
f (2)(x0)(x− x0)

2+

· · ·+ 1

n!
f (n)(x0)(x− x0)

n

is called the nth order Taylor polynomial of f based at x0.

Using summation convention, Pn(x) can be written as

Pn(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k.

By construction, the derivatives of f and Pn up to order n are

identical at x0 (verify this!):

Pn(x0) = f(x0)

P (1)
n (x0) = f (1)(x0)

... =
...

P (n)(x0) = f (n)(x0).

It is reasonable then to suspect that Pn(x) is a good approximation to

f(x) for points x near x0. If x ∈ [a, b] then the difference between f(x)
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and Pn(x) is

Rn(x) = f(x)− Pn(x)

and we call Rn(x) the nth order remainder based at x0. Hence, for

each x∗ ∈ [a, b], the remainder Rn(x
∗) is the error in approximating

f(x∗) with Pn(x
∗). You may be asking yourself why we would need

to approximate f(x) if the function f is known and given. For exam-

ple, if say f(x) = sin(x) then why would we need to approximate say

f(1) = sin(1) since any basic calculator could easily compute sin(1)?

Well, what your calculator is actually computing is an approximation to

sin(1) using a (rational) number such as Pn(1) and using a large value

of n for accuracy (although modern numerical algorithms for comput-

ing trigonometric functions have superseded Taylor approximations but

Taylor approximations are a good start). Taylor’s theorem provides an

expression for the remainder term Rn(x) using the derivative f (n+1).

Theorem 6.3.2: Taylor’s Theorem

Let f : [a, b] → R be a function such that for some n ∈ N the func-

tions f, f (1), f (2), . . . , f (n) are continuous on [a, b] and f (n+1) exists

on (a, b). Fix x0 ∈ [a, b]. Then for any x ∈ [a, b] there exists c

between x0 and x such that

f(x) = Pn(x) +Rn(x)

where

Rn(x) =
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1.

Proof. If x = x0 then Pn(x0) = f(x0) and then c can be chosen arbi-

trarily. Thus, suppose that x 6= x0, let m = f(x)−Pn(x)
(x−x0)n+1 , and define the
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function g : [a, b] → R by

g(t) = f(t)− Pn(t)−m(t− x0)
n+1.

Since f (n+1) exists on (a, b) then g(n+1) exists on (a, b). Moreover,

since P (k)(x0) = f (k)(x0) for k = 0, 1, . . . , n then g(k)(x0) = 0 for

k = 0, 1, . . . , n. Now g(x) = 0 and therefore since g(x0) = 0 by Rolle’s

theorem there exists c1 in between x and x0 such that g′(c1) = 0. Now

we can apply Rolle’s theorem to g′ since g′(c1) = 0 and g′(x0) = 0, and

therefore there exists c2 in between c1 and x0 such that g′′(c2) = 0. By

applying this same argument repeatedly, there exists c in between x0

and cn−1 such that g(n+1)(c) = 0. Now,

g(n+1)(t) = f (n+1)(t)−m(n+ 1)!

and since g(n+1)(c) = 0 then

0 = f (n+1)(c)−m(n+ 1)!

from which we conclude that

f(x)− P (x) =
f (n+1)(c)

(n+ 1)!
(x− x0)

n+1

and the proof is complete.

Example 6.3.3. Consider the function f : [0, 2] → R given by f(x) =

ln(1 + x). Use P4 based at x0 = 0 to estimate ln(2) and give a bound

on the error with your estimation.

Solution. Note that f(1) = ln(2) and so the estimate of ln(2) using P4

is ln(2) ≈ P4(1). To determine P4 we need f(0), f
(1)(0), . . . , f (4)(0). We
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compute

f (1)(x) =
1

1 + x
f (1)(0) = 1

f (2)(x) =
−1

(1 + x)2
f (2)(0) = −1

f (3)(x) =
2

(1 + x)3
f (3)(0) = 2

f (4)(x) =
−6

(1 + x)4
f (4)(0) = −6.

Therefore,

P4(x) = x− 1
2x

2 + 1
3x

3 − 1
4x

4.

Now P4(1) = 1− 1
2
+ 1

3
− 1

4
= 7

12
and therefore

ln(2) ≈ P4(1) =
7

12
.

The error is R4(1) = f(1) − P4(1) which is unknown but we can ap-

proximate it using Taylor’s theorem. To that end, by Taylor’s theorem,

for any x ∈ [0, 2] there exists c in between x0 = 0 and x such that

R4(x) =
f (5)(c)

5!
x5

=
1

5!

24

(1 + c)5
x4

=
1

5(1 + c)5
.

Therefore, for x = 1, there exists 0 < c < 1 such that

R4(1) =
1

5(1 + c)5
.

Therefore, a bound for the error is

|R4(1)| =
∣
∣
∣
∣

1

5(1 + c)5

∣
∣
∣
∣
≤ 1

5
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since 1 + c > 1.

Example 6.3.4. Let f : R → R be the sine function, that is, f(x) =

sin(x).

(a) Approximate f(3) = sin(3) using P8 centered at x0 = 0 and give

a bound on the error.

(b) Restrict f to a closed and bounded interval of the form [−R,R].
Show that for any ε > 0 there exists K ∈ N such that if n ≥ K

then |f(x)− Pn(x)| < ε for all x ∈ [−a, a].

Solution. (a) It is straightforward to compute that

P8(x) = x− 1

3!
x3 +

1

5!
x5 − 1

7!
x7

and f (9)(x) = sin(x). Thus, by Taylor’s theorem for any x there exists

c in between x = 0 and x such that

f(x)− P8(x) = R8(x) =
sin(c)

9!
x9.

The estimate for f(3) = sin(3) is

sin(3) ≈ P8(3)

= 3− 1

3!
33 +

1

5!
35 − 1

7!
37

=
51

560
= 0.0910714286

By Taylor’s theorem, there exists c such that 0 < c < 3 and

sin(3)− P8(3) = R8(3) =
sin(c)

9!
39
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Now since | sin(c)| ≤ 1 for all c ∈ R, we have

|R8(3)| =
| sin(c)|

9!
39

=
39

9!
= 0.054241 . . .

(b) Since f(x) = sin(x) has derivatives of all orders, for any n ∈ N we

have by Taylor’s theorem that

|f(x)− Pn(x)| = |Rn(x)|

=

∣
∣
∣
∣

f (n+1)(c)

(n+ 1)!
xn+1

∣
∣
∣
∣

=
|f (n+1)(c)

(n+ 1)!
|x|n+1

where c is in between x0 = 0 and x. Now, the derivative of f(x) = sin(x)

of any order is one of ± cos(x) or ± sin(x), and therefore |f (n+1(c)| ≤ 1.

Since x ∈ [−a, a] then |x| ≤ a and therefore |x|n+1 ≤ an+1. Therefore,

for all x ∈ [−a, a] we have

|Rn(x)| ≤
1

(n+ 1)!
an+1

=
an+1

(n+ 1)!
.

Consider the sequence xn = an

n! . Applying the Ratio test we obtain

lim
n→∞

xn+1

xn
= lim

n→∞
an+1n!

(n+ 1)!an

= lim
n→∞

a

n+ 1
= 0.

Therefore, by the Ratio test limn→∞ xn = 0. Hence, for any ε > 0 there

exists K ∈ N such that |xn − 0| = xn < ε for all n ≥ K. Therefore, for
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all n ≥ K we have that

|Rn(x)| ≤
an+1

(n+ 1)!
< ε

for all x ∈ [−a, a].

Taylor’s theorem can be used to derive useful inequalities.

Example 6.3.5. Prove that for all x ∈ R it holds that

1− 1

2
x2 ≤ cos(x).

Solution. Let f(x) = cos(x). Applying Taylor’s theorem to f at x0 = 0

we obtain

cos(x) = 1− 1

2
x2 +R2(x)

where

R2(x) =
f (3)(c)

3!
x3 =

sin(c)

6
x3

and c is in between x0 = 0 and x. Now, if 0 ≤ x ≤ π then 0 < c < π and

then sin(c) > 0, from which it follows that R2(x) ≥ 0. If on the other

hand −π ≤ x ≤ 0 then −π < c < 0 and then sin(c) < 0, from which it

follows that R2(x) ≥ 0. Hence, the inequality holds for |x| ≤ π. Now if

|x| ≥ π > 3 then

1− 1

2
x2 < −3 < cos(x).

Hence the inequality holds for all x ∈ R.
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Exercises

Exercise 6.3.1. Use Taylor’s theorem to prove that if x > 0 then

1 +
1

2
x− 1

8
x2 ≤

√
1 + x ≤ 1 +

1

2
x

Then use these inequalities to approximate
√
1.2 and

√
2, and for each

case determine a bound on the error of your approximation.

Exercise 6.3.2. Let f : R → R be such that f (k)(x) exists for all x ∈ R

and for all k ∈ N (such a function is called infinitely differentiable on

R). Suppose further that there existsM > 0 such that |f (k)(x)| ≤M for

all x ∈ R and all k ∈ N. Let Pn(x) be the nth order Taylor polynomial

of f centered at x0 = 0. Let I = [−R,R], where R > 0. Prove that for

any fixed ε > 0 there exists K ∈ N such that for n ≥ K it holds that

|f(x)− Pn(x)| < ε

for all x ∈ [−R,R]. Hint: f (n) is continuous on [−R,R] for every

n ∈ N.

Exercise 6.3.3. Euler’s number is approximately e ≈ 2.718281828 . . ..

Use Taylor’s theorem at x0 = 0 on f(x) = ex and the estimate e < 3 to

show that, for all n ∈ N,

0 < e−
(

1 + 1 +
1

2!
+

1

3!
+ · · ·+ 1

n!

)

<
3

(n+ 1)!

Exercise 6.3.4. Let f : R → R be the cosine function f(x) = cos(x).

Approximate f(2) = cos(2) using P8 centered at x0 = 0 and give a

bound on the error of your estimation.
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7

Riemann Integration

7.1 The Riemann Integral

We begin with the definition of a partition.

Definition 7.1.1: Partitions

Let a, b ∈ R and suppose a < b. By a partition of the interval [a, b]

we mean a collection of intervals

P = {[x0, x1], [x1, x2], . . . , [xn−1, xn]}

such that a = x0 < x1 < x2 < · · · < xn = b and where n ∈ N.

Hence, a partition P defines a finite collection of non-overlapping in-

tervals Ik = [xk−1, xk], where k = 1, . . . , n. The norm of a partition P
is defined as

‖P‖ = max{x1 − x0, x2 − x1, . . . , xn − xn−1}.

In other words, ‖P‖ is the maximum length of the intervals in P . To

ease our notation, we will denote a partition as P = {[xk−1, xk]}nk=1.

Let P = {[xk−1, xk]}nk=1 be a partition of [a, b]. If tk ∈ Ik = [xk−1, xk]
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then we say that tk is a sample of Ik and the set of ordered pairs

Ṗ = {([xk−1, xk], tk)}nk=1

will be called a sampled partition.

Example 7.1.2. Examples of sampled partitions are mid-points, right-

end points, and left-end points partitions.

Now consider a function f : [a, b] → R and let Ṗ = {([xk−1, xk], tk)}nk=1

be a sampled partition of the interval [a, b]. The Riemann sum of f

corresponding to Ṗ is the number

S(f ; Ṗ) =
n∑

k=1

f(tk)(xk − xk−1).

When f(x) > 0 on the interval [a, b], the Riemann sum S(f ; Ṗ) is

the sum of the areas of the rectangles with height f(tk) and width

(xk − xk−1).

We now define the notion of Riemann integrability.

Definition 7.1.3: Riemann Integrability

The function f : [a, b] → R is said to be Riemann integrable if

there exists a number L ∈ R such that for every ε > 0 there exists

δ > 0 such that for any sampled partition Ṗ that satisfies ‖Ṗ‖ < δ

it holds that |S(f ; Ṗ)− L| < ε.

The set of all Riemann integrable functions on the interval [a, b] will be

denoted by R[a, b].

Theorem 7.1.4

If f ∈ R[a, b] then the number L in the definition of Riemann

integrability is unique.
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Proof. Let L1 and L2 be two real numbers satisfying the definition of

Riemann integrability and let ε > 0 be arbitrary. Then there exists

δ > 0 such that |S(f ; Ṗ)− L1| < ε/2 and |S(f ; Ṗ)− L2| < ε/2, for all

sampled partitions Ṗ with ‖Ṗ‖ < δ. Then, if ‖Ṗ‖ < δ it holds that

|L1 − L2| ≤ |S(f ; Ṗ)− L1|+ |S(f ; Ṗ)− L2|
< ε.

By Theorem 2.2.7 this proves that L1 = L2.

If f ∈ R[a, b], we call the number L the integral of f over [a, b] and

we denote it by

L =

∫ b

a

f

Example 7.1.5. Show that a constant function on [a, b] is Riemann

integrable.

Proof. Let f : [a, b] :→ R be such that f(x) = C for all x ∈ [a, b] and

let Ṗ = {([xk−1, xk], tk)} be a sampled partition of [a, b]. Then

S(f ; Ṗ) =
n∑

k=1

f(tk)(xk − xk−1)

= C
n∑

k=1

(xk − xk−1)

= C(xn − x0)

= C(b− a).

Hence, with L = C(b−a), we obtain that |S(f ; Ṗ)−L| = 0 < ε for any

ε > 0 and therefore
∫ b

a f = C(b − a). This proves that f is Riemann

integrable.

Example 7.1.6. Prove that f(x) = x is Riemann integrable on [a, b].
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Proof. We consider the special case that [a, b] = [0, 1], the general case

is similar. Let Q̇ = {([xk−1, xk], qk)} be a sampled partition of [0, 1]

chosen so that qk =
1
2
(xk + xk−1), i.e., qk is the midpoint of the interval

[xk−1, xk]. Then

S(f ; Q̇) =
n∑

k=1

f(qk)(xk − xk−1)

=

n∑

k=1

1
2(xk + xk−1)(xk − xk−1)

=
1

2

n∑

k=1

(x2k − x2k−1)

=
1

2
(x2n − x20)

=
1

2
(12 − 02)

=
1

2
.

Now let Ṗ = {([xk−1, xk]), tk}nk=1 be an arbitrary sampled partition of

[0, 1] and suppose that ‖Ṗ‖ < δ, so that (xk − xk−1) ≤ δ for all k =

1, 2, . . . , n. If Q̇ = {([xk−1, xk], qk)}nk=1 is the corresponding midpoint
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sampled partition then |tk − qk| < δ. Therefore,

|S(f ; Ṗ)− S(f ; Q̇)| =
∣
∣
∣
∣
∣

n∑

k=1

tk(xk − xk−1)− qk(xk − xk−1)

∣
∣
∣
∣
∣

≤
n∑

k=1

|tk − qk|(xk − xk−1)

< δ(1− 0)

= δ.

Hence, we have proved that for arbitrary Ṗ that satisfies ‖Ṗ‖ < δ it

holds that |S(f ; Ṗ) − 1/2| < δ. Hence, given ε > 0 we let δ = ε and

then if ‖Ṗ‖ < δ then |S(f ; Ṗ)− 1/2| < ε. Therefore,
∫ 1

0 f = 1
2 .

The next result shows that if f ∈ R[a, b] then changing f at a finite

number of points in [a, b] does not affect the value of
∫ b

a f .

Theorem 7.1.7

Let f ∈ R[a, b] and let g : [a, b] → R be a function such that

g(x) = f(x) for all x ∈ [a, b] except possibly at a finite number of

points in [a, b]. Then g ∈ R[a, b] and in fact
∫ b

a g =
∫ b

a f .

Proof. Let L =
∫ b

a f . Suppose that g(x) = f(x) except at one point

x = c. Let Ṗ = {([xk−1, xk], tk)} be a sampled partition. We consider

mutually exclusive cases. First, if c 6= tk and c 6= xk for all k then

S(f ; Ṗ) = S(g; Ṗ). If c = tk /∈ {x0, x1, . . . , xn} for some k then

S(g; Ṗ)− S(f ; Ṗ) = (f(c)− g(c))(xk − xk−1).

If c = tk = tk−1 for some k then necessarily c = xk−1 and then

S(g; Ṗ)−S(f ; Ṗ) = (f(c)−g(c))(xk−xk−1)+(f(c)−g(c))(xk−1−xk−2).
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Hence, in any case, by the triangle inequality

|S(g; Ṗ)− S(f ; Ṗ)| ≤ 2(|f(c)|+ |g(c)|)‖Ṗ‖
=M‖Ṗ‖.

where M = 2(|f(c)|+ |g(c)|). Let ε > 0 be arbitrary. Then there exists

δ1 > 0 such that |S(f ; Ṗ) − L| < ε/2 for all partitions Ṗ such that

‖Ṗ‖ < δ1. Let δ = min{δ1, ε/(2M)}. Then if ‖Ṗ‖ < δ then

‖S(g; f)− L‖ ≤ |S(g; Ṗ)− S(f ; Ṗ)|+ |S(f ; Ṗ)− L|

< M‖Ṗ|+ ε/2

< Mε/(2M) + ε/2

= ε.

This proves that g ∈ R[a, b] and
∫ b

a g = L =
∫ b

a f . Now suppose by

induction that if g(x) = f(x) for all x ∈ [a, b] except at a j ≥ 1 number

of points in [a, b] then g ∈ R[a, b] and
∫ b

a g =
∫ b

a f . Now suppose that

h : [a, b] → R is such that h(x) = f(x) for all x ∈ [a, b] except at the

points c1, c2, . . . , cj, cj+1. Define the function g by g(x) = h(x) for all

x ∈ [a, b] except at x = cj+1 and define g(cj+1) = f(cj+1). Then g

and f differ at the points c1, . . . , cj. Then by the induction hypothesis,

g ∈ R[a, b] and
∫ b

a g =
∫ b

a f . Now g and h differ at the point cj+1 and

therefore h ∈ R[a, b] and
∫ b

a h =
∫ b

a g =
∫ b

a f . This ends the proof.

We now state some properties of the Riemann integral.
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Theorem 7.1.8: Properties of the Riemann Integral

Suppose that f, g ∈ R[a, b]. The following hold.

(i) If k ∈ R then (kf) ∈ R[a, b] and
∫ b

a kf = k
∫ b

a f .

(ii) (f + g) ∈ R[a, b] and
∫ b

a (f + g) =
∫ b

a f +
∫ b

a g.

(iii) If f(x) ≤ g(x) for all x ∈ [a, b] then
∫ b

a f ≤
∫ b

a g.

Proof. If k = 0 then (kf)(x) = 0 for all x and then clearly
∫ b

a kf = 0,

so assume that k 6= 0. Let ε > 0 be given. Then there exists δ > 0 such

that if ‖Ṗ‖ < δ then |S(f ; Ṗ) −
∫ b

a f‖ < ε/|k|. Now for any partition

Ṗ , it holds that S(kf ; Ṗ) = kS(f ; Ṗ). Therefore, if ‖Ṗ‖ < δ then

∣
∣
∣
∣
S(kf ; Ṗ)− k

∫ b

a

f

∣
∣
∣
∣
= |k|

∣
∣
∣
∣
S(f ; Ṗ)−

∫ b

a

f

∣
∣
∣
∣

< |k|(ε/|k|)
= ε.

To prove (b), it is easy to see that S(f + g; Ṗ) = S(f ; Ṗ) + S(g; Ṗ).

Given ε > 0 there exists δ > 0 such that |S(f ; Ṗ) −
∫ b

a f | < ε/2 and

|S(g; Ṗ) −
∫ b

a g| < ε/2, whenever ‖Ṗ‖ < δ. Therefore, if ‖Ṗ‖ < δ we

have that

∣
∣
∣
∣
S(f + g; Ṗ)−

(∫ b

a

f +

∫ b

a

g

)∣
∣
∣
∣
≤
∣
∣
∣
∣
S(f ; Ṗ)−

∫ b

a

f

∣
∣
∣
∣
+

∣
∣
∣
∣
S(g; Ṗ)−

∫ b

a

g

∣
∣
∣
∣

< ε.

To prove (c), let ε > 0 be arbitrary and let δ > 0 be such that if
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‖Ṗ‖ < δ then

∫ b

a

f − ε/2 < S(f ; Ṗ) <

∫ b

a

f + ε/2

∫ b

a

g − ε/2 < S(g; Ṗ) <

∫ b

a

g + ε/2

Now, by assumption, S(f ; Ṗ) ≤ S(g; Ṗ) and therefore

∫ b

a

f − ε/2 < S(f ; Ṗ) ≤ S(g; Ṗ) <

∫ b

a

g + ε/2.

Therefore,
∫ b

a

f <

∫ b

a

g + ε.

Since ε is arbitrary, we can choose εn = 1/n and then passing to the

limit we deduce that
∫ b

a f ≤
∫ b

a g.

Properties (i), (ii), and (iii) in Theorem 7.1.8 are known as homogeneity,

additivity, and monotonicity, respectively.

We now give a necessary condition for Riemann integrability.

Theorem 7.1.9: Integrable Functions are Bounded

If f ∈ R[a, b] then f is bounded on [a, b].

Proof. Let f ∈ R[a, b] and put L =
∫ b

a f . There exists δ > 0 such that

if ‖Ṗ‖ < δ then |S(f ; Ṗ) − L| < 1 and therefore |S(f ; Ṗ)| < |L| + 1.

Suppose by contradiction that f is unbounded on [a, b]. Let P be a

partition of [a, b], with sets I1, . . . , In, and with ‖P‖ < δ. Then f is

unbounded on some Ij, i.e., for any M > 0 there exists x ∈ Ij =

[xj−1, xj] such that f(x) > M . Choose samples in P by asking that
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tk = xk for k 6= j and tj is such that

|f(tj)(xj − xj−1)| > |L|+ 1 +

∣
∣
∣
∣
∣
∣

∑

k 6=j

f(tk)(xk − xk−1)

∣
∣
∣
∣
∣
∣

.

Therefore, (using |a| = |a+ b− b| ≤ |a+ b|+ |b| implies that |a+ b| ≥
|a| − |b|)

|S(f ; Ṗ)| =

∣
∣
∣
∣
∣
∣

f(tj)(xj − xj−1) +
∑

k 6=j

f(tk)(xk − xk−1)

∣
∣
∣
∣
∣
∣

≥ |f(tj)(xj − xj−1)| −

∣
∣
∣
∣
∣
∣

∑

k 6=j

f(tk)(xk − xk−1)

∣
∣
∣
∣
∣
∣

> |L|+ 1.

This is a contradiction and thus f is bounded on [a, b].

Example 7.1.10 (Thomae). Consider Thomae’s function h : [0, 1] →
R defined as h(x) = 0 if x is irrational and h(m/n) = 1/n for every

rational m/n ∈ [0, 1], where gcd(m, n) = 1. In Example 5.1.7, we

proved that h is continuous at every irrational but discontinuous at

every rational. Prove that h is Riemann integrable.

Proof. Let ε > 0 be arbitrary and let E = {x ∈ [0, 1] : h(x) ≥ ε/2}.
By definition of h, the set E is finite, say consisting of n elements. Let

δ = ε/(4n) and let Ṗ be a sampled partition of [0, 1] with ‖Ṗ‖ < δ.

We can separate the partition Ṗ into two sampled partitions Ṗ1 and

Ṗ2 where Ṗ1 has samples in the the set E and Ṗ2 has no samples in E.

Then the number of intervals in Ṗ1 can be at most 2n, which occurs

when all the elements of E are samples and they are at the endpoints
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of the subintervals of Ṗ1. Therefore, the total length of the intervals

in Ṗ1 can be at most 2nδ = ε/2. Now 0 < h(tk) ≤ 1 for every sample

tk in Ṗ1 and therefore S(f ; Ṗ1) ≤ 2nδ = ε/2. For samples tk in Ṗ2

we have that h(tk) < ε/2. Therefore, since the sum of the lengths of

the subintervals of Ṗ2 is ≤ 1, it follows that S(f ; Ṗ2) ≤ ε/2. Hence

0 ≤ S(f ; Ṗ) = S(f ; Ṗ1) + S(f ; Ṗ2) < ε. Thus
∫ b

a h = 0.
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Exercises

Exercise 7.1.1. Suppose that f, g ∈ R[a, b] and let α, β ∈ R. Prove

by definition that (αf + βg) ∈ R[a, b].

Exercise 7.1.2. If f is Riemann integrable on [a, b] and |f(x)| ≤ M

for all x ∈ [a, b], prove that |
∫ b

a f | ≤ M(b − a). Hint: The inequality

|f(x)| ≤ M is equivalent to −M ≤ f(x) ≤ M . Then use the fact that

constants functions are Riemann integrable whose integrals are easily

computed. Finally, apply a theorem from this section.

Exercise 7.1.3. If f is Riemann integrable on [a, b] and (Ṗn) is a se-

quence of tagged partitions of [a, b] such that ‖Ṗn‖ → 0 prove that

∫ b

a

f = lim
n→∞

S(f ; Ṗn)

Hint: For each n ∈ N we have the real number sn = S(f ; Ṗn), and we

therefore have a sequence (sn). Let L =
∫ b

a f . We therefore want to

prove that lim
n→∞

sn = L.

Exercise 7.1.4. Give an example of a function f : [0, 1] → R that

is Riemann integrable on [c, 1] for every c ∈ (0, 1) but which is not

Riemann integrable on [0, 1]. Hint: What is a necessary condition for

Riemann integrability?
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7.2 Riemann Integrable Functions

To ease our notation, if I is a bounded interval with end-points a < b

we denote by µ(I) the length of I, that is µ(I) = b − a. Hence, if

I = [a, b], I = [a, b), I = (a, b], or I = (a, b) then µ(I) = b− a.

Thus far, to establish the Riemann integrability of f , we computed

a candidate integral L and showed that in fact L =
∫ b

a f . The following

theorem is useful when a candidate integral L is unknown. The proof

is omitted.

Theorem 7.2.1: Cauchy Criterion

A function f : [a, b] → R is Riemann integrable if and only if for

every ε > 0 there exists δ > 0 such that if Ṗ and Q̇ are sampled

partitions of [a, b] with norm less than δ then

|S(f ; Ṗ)− S(f ; Q̇)| < ε.

Using the Cauchy Criterion, we show next that the Dirichlet func-

tion is not Riemann integrable.

Example 7.2.2 (Non-Riemann integrable function). Let f : [0, 1] → R

be defined as f(x) = 1 if x is rational and f(x) = 0 if x is irrational.

Show that f is not Riemann integrable.

Proof. To show that f is not in R[0, 1], we must show that there exists

ε0 > 0 such that for all δ > 0 there exists sampled partitions Ṗ and Q̇
with norm less than δ but |S(f ; Ṗ) − S(f ; Q̇)| ≥ ε0. To that end, let

ε0 = 1/2, and let δ > 0 be arbitrary. Let n be sufficiently large so that

1/n < δ. Let Ṗ be a sampled partition of [0, 1] with intervals all of equal

length 1/n < δ and let the samples of Ṗ be rational numbers. Similarly,

let Q̇ be a partition of [0, 1] with intervals all of equal length 1/n and
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with samples irrational numbers. Then S(f ; Ṗ) = 1 and S(f ; Q̇) = 0,

and therefore |S(f ; Q̇)− S(f ; Q̇)| ≥ ε0.

We now state a sort of squeeze theorem for integration.

Theorem 7.2.3: Squeeze Theorem

Let f be a function on [a, b]. Then f ∈ R[a, b] if and only if for

every ε > 0 there exist functions α and β in R[a, b] with α(x) ≤
f(x) ≤ β(x) for all x ∈ [a, b] and

∫ b

a (β − α) < ε.

Proof. If f ∈ R[a, b] then let α(x) = β(x) = f(x). Then clearly
∫ b

a (β−
α) = 0 < ε for all ε > 0. Now suppose the converse and let ε > 0

be arbitrary. Let α and β satisfy the conditions of the theorem, with
∫ b

a (β − α) < ε
3. Now, there exists δ > 0 such that if ‖Ṗ‖ < δ then

∫ b

a

α− ε

3
< S(α; Ṗ) <

∫ b

a

α +
ε

3

and ∫ b

a

β − ε

3
< S(β; Ṗ) <

∫ b

a

β +
ε

3
.

For any sampled partition Ṗ it holds that S(α; Ṗ) ≤ S(f ; Ṗ) ≤ S(β; Ṗ),

and therefore ∫ b

a

α− ε

3
< S(f ; Ṗ) <

∫ b

a

β +
ε

3
. (7.1)

If Q̇ is another sampled partition with ‖Q̇‖ < δ then also

∫ b

a

α− ε

3
< S(f ; Q̇) <

∫ b

a

β +
ε

3
. (7.2)

Subtracting the two inequalities (7.1)-(7.2), we deduce that

−
∫ b

a

(β − α)− 2
ε

3
< S(f ; Ṗ)− S(f ; Q̇) <

∫ b

a

(β − α) + 2
ε

3
.
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Therefore, since
∫ b

a (β − α) < ε
3 it follows that

−ε < S(f ; Ṗ)− S(f ; Q̇) < ε.

By the Cauchy criterion, this proves that f ∈ R[a, b].

Step-functions, defined below, play an important role in integration

theory.

Definition 7.2.4

A function s : [a, b] → R is called a step-function on [a, b] if

there is a finite number of disjoint intervals I1, I2, . . . , In contained

in [a, b] such that [a, b] =
⋃n

k=1 Ik and such that s is constant on

each interval.

In the definition of a step-function, the intervals Ik may be of any

form, i.e., half-closed, open, or closed.

Lemma 7.2.5

Let J be a subinterval of [a, b] and define ϕJ on [a, b] as ϕJ(x) = 1

if x ∈ J and ϕJ(x) = 0 otherwise. Then ϕJ ∈ R[a, b] and
∫ b

a ϕJ =

µ(J).

Theorem 7.2.6

If ϕ : [a, b] → R is a step function then ϕ ∈ R[a, b].

Proof. Let I1, . . . , In be the intervals where ϕ is constant, and let c1, . . . , cn

be the constant values taken by ϕ on the intervals I1, . . . , In, respec-

tively. Then it is not hard to see that ϕ =
∑n

k=1 ckϕIk . Then ϕ is
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the sum of Riemann integrable functions and therefore is also Riemann

integrable. Moreover,
∫ b

a ϕ =
∑n

k=1 ckµ(Ik).

We will now show that any continuous function on [a, b] is Riemann

integrable. To do that we will need the following.

Lemma 7.2.7: Continuity and Step-Functions

Let f : [a, b] → R be a continuous function. Then for every ε > 0

there exists a step-function s : [a, b] → R such that |f(x)−s(x)| < ε

for all x ∈ [a, b].

Proof. Let ε > 0 be arbitrary. Since f is uniformly continuous on [a, b]

there exists δ > 0 such that if |x − u| < δ then |f(x)− f(u)| < ε. Let

n ∈ N be sufficiently large so that (b− a)/n < δ. Partition [a, b] into n

subintervals of equal length (b−a)/n, and denote them by I1, I2, . . . , In,

where I1 = [x0, x1] and Ik = (xk−1, xk] for 1 < k ≤ n. Then for x, u ∈ Ik

it holds that |f(x) − f(u)| < ε. For x ∈ Ik define s(x) = f(xk).

Therefore, for any x ∈ Ik it holds that |f(x)−s(x)| = |f(x)−f(xk)| < ε.

Since
⋃n

k=1 Ik = [a, b], it holds that |f(x)−s(x)| < ε for all x ∈ [a, b].

We now prove that continuous functions are integrable.

Theorem 7.2.8: Continuous Functions are Integrable

A continuous function on [a, b] is Riemann integrable on [a, b].

Proof. Suppose that f : [a, b] → R is continuous. Let ε > 0 be arbitrary

and let ε̃ = (ε/4)/(b− a). Then there exists a step-function s : [a, b] →
R such that |f(x)− s(x)| < ε̃ for all x ∈ [a, b]. In other words, for all

x ∈ [a, b] it holds that

s(x)− ε̃ < f(x) < s(x) + ε̃.
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The functions α(x) := s(x) − ε̃ and β(x) := s(x) + ε̃ are Riemann

integrable integrable on [a, b], and
∫ b

a (β − α) = 2ε̃(b − a) = ε/2 < ε.

Hence, by the Cauchy criterion, f is Riemann integrable.

Recall that a function is called monotone if it is decreasing or in-

creasing.

Theorem 7.2.9: Monotone Functions are Integrable

A monotone function on [a, b] is Riemann integrable on [a, b].

Proof. Assume that f : [a, b] → R is increasing and that M = f(b) −
f(a) > 0 (if M = 0 then f is the zero function which is clearly inte-

grable). Let ε > 0 be arbitrary. Let n ∈ N be such that M(b−a)
n < ε.

Partition [a, b] into subintervals of equal length ∆x = (b−a)
n , and as

usual let a = x0 < x1 < · · · < xn−1 < xn = b denote the resulting

points of the partition. On each subinterval [xk−1, xk], it holds that

f(xk−1) ≤ f(x) ≤ f(xk) for all x ∈ [xk−1, xk] since f is increasing.

Let α : [a, b] → R be the step-function whose constant value on the

interval [xk−1, xk) is f(xk−1) and similarly let β : [a, b] → R be the

step-function whose constant value on the interval [xk−1, xk) is f(xk),

for all k = 1, . . . , n. Then α(x) ≤ f(x) ≤ β(x) for all x ∈ [a, b]. Both

α and β are Riemann integrable and
∫ b

a

(β − α) =
n∑

k=1

[f(xk)− f(xk−1)]∆x

= (f(xn)− f(xn−1)∆x

=M
(b− a)

n
< ε.

Hence by the Squeeze theorem for integrals (Theorem 7.2.3), f ∈
R[a, b].
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Our las theorem is the additivity property of the integral, the proof

is omitted.

Theorem 7.2.10: Additivity Property

Let f : [a, b] → R be a function and let c ∈ (a, b). Then f ∈ R[a, b]

if and only if its restrictions to [a, c] and [c, b] are both Riemann

integrable. In this case,

∫ b

a

f =

∫ c

a

f +

∫ b

c

f
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Exercises

Exercise 7.2.1. Suppose that f : [a, b] → R is continuous and assume

that f(x) > 0 for all x ∈ [a, b]. Prove that
∫ b

a f > 0. Hint: A contin-

uous function on a closed and bounded interval achieves its minimum

value.

Exercise 7.2.2. Suppose that f is continuous on [a, b] and that f(x) ≥
0 for all x ∈ [a, b].

(a) Prove that if
∫ b

a f = 0 then necessarily f(x) = 0 for all x ∈ [a, b].

(b) Show by example that if we drop the assumption that f is con-

tinuous on [a, b] then it may not longer hold that f(x) = 0 for all

x ∈ [a, b].

Exercise 7.2.3. Show that if f : [a, b] → R is Riemann integrable then

|f | : [a, b] → R is also Riemann integrable.
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7.3 The Fundamental Theorem of Calcu-
lus

Theorem 7.3.1: FTC Part I

Let f : [a, b] → R be a function. Suppose that there exists a

finite set E ⊂ [a, b] and a function F : [a, b] → R such that F is

continuous on [a, b] and F ′(x) = f(x) for all x ∈ [a, b]\E. If f is

Riemann integrable then
∫ b

a f = F (b)− F (a).

Proof. Assume for simplicity that E := {a, b}. Let ε > 0 be arbitrary.

Then there exists δ > 0 such that if ‖Ṗ‖ < ε then |S(f ; Ṗ)−
∫ b

a f | < ε.

For any Ṗ , with intervals Ik = [xk−1, xk] for k = 1, 2, . . . , n, there exists,

by the Mean Value Theorem applied to F on Ik, a point uk ∈ (xk−1, xk)

such that F (xk)− F (xk−1) = F ′(uk)(xk − xk−1). Therefore,

F (b)− F (a) =
n∑

k=1

F (xk)− F (xk−1)

=

n∑

k=1

f(uk)(xk − xk−1)

= S(f ; Ṗu)

where Ṗu has the same intervals as Ṗ but with samples uk. Therefore,

if ‖Ṗ‖ < δ then
∣
∣
∣
∣
F (b)− F (a)−

∫ b

a

f

∣
∣
∣
∣
=

∣
∣
∣
∣
S(f ; Ṗu)−

∫ b

a

f

∣
∣
∣
∣

< ε.

Hence, for any ε we have that
∣
∣
∣F (b)− F (a)−

∫ b

a f
∣
∣
∣ < ε and this shows

that
∫ b

a f = F (b)− F (a).
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Definition 7.3.2: Indefinite Integral

Let f ∈ R[a, b]. The indefinite integral of f with basepoint a is

the function F : [a, b] → R defined by

F (x) :=

∫ x

a

f

for x ∈ [a, b].

Theorem 7.3.3

Let f ∈ R[a, b]. The indefinite integral F : [a, b] → R of f : [a, b] →
R is a Lipschitz function on [a, b], and thus continuous on [a, b].

Proof. For any w, z ∈ [a, b] such that w ≤ z it holds that

F (z) =

∫ z

a

f

=

∫ w

a

f +

∫ z

w

f

= F (w) +

∫ z

w

f

and therefore F (z) − F (w) =
∫ z

w f . Since f is Riemann integrable

on [a, b] it is bounded and therefore |f(x)| ≤ K for all x ∈ [a, b]. In

particular, −K ≤ f(x) ≤ K for all x ∈ [w, z] and thus −K(z − w) ≤
∫ z

w f ≤ K(z − w), and thus

|F (z)− F (w)| =
∣
∣
∣
∣

∫ z

w

f

∣
∣
∣
∣

≤ K|z − w|
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Under the additional hypothesis that f ∈ R[a, b] is continuous, the

indefinite integral of f is differentiable.

Theorem 7.3.4: FTC Part 2

Let f ∈ R[a, b] and let f be continuous at a point c ∈ [a, b]. Then

the indefinite integral F of f is differentiable at c and F ′(c) = f(c).

7.4 Riemann-Lebesgue Theorem

In this section we present a complete characterization of Riemann in-

tegrability for a bounded function. Roughly speaking, a bounded func-

tion is Riemann integrable if the set of points were it is discontinuous

is not too large. We first begin with a definition of “not too large”.

Definition 7.4.1

A set E ⊂ R is said to be of measure zero if for every ε > 0 there

exists a countable collection of open intervals Ik such that

E ⊂
∞⋃

k=1

Ik and

∞∑

k=1

µ(Ik) < ε.

Example 7.4.2. Show that a subset of a set of measure zero also has

measure zero. Show that the union of two sets of measure zero is a set

of measure zero.

Example 7.4.3. Let S ⊂ R be a countable set. Show that S has

measure zero.
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Solution. Let S = {s1, s2, s3, . . .}. Consider the interval

Ik =
(

sk −
ε

2k+1
, sk +

ε

2k+1

)

.

Clearly, sk ∈ Ik and thus S ⊂ ⋃ Ik. Moreover,

∞∑

k=1

µ(Ik) =
∞∑

k=1

ε

2k
= ε.

As a corollary, Q has measure zero.

However, there exists uncountable sets of measure zero.

Example 7.4.4. The Cantor set is defined as follows. Start with I0 =

[0, 1] and remove the middle third J1 = (13,
2
3) yielding the set I1 =

I0\J1 = [0, 1
3
] ∪ [2

3
, 1]. Notice that µ(J1) = 1

3
. Now remove from each

subinterval of I1 the middle third resulting in the set

I2 = I1\
(
(19,

2
9) ∪ (79,

8
9)
)
= [0, 19] ∪ [29,

3
9] ∪ [69,

7
9] ∪ [89, 1]

The two middle thirds J2 = (19,
2
9) ∪ (79,

8
9) removed have total length

µ(J2) = 21
9. By induction, having constructed In which consists of the

union of 2n closed subintervals of [0, 1], we remove from each subinterval

of In the middle third resulting in the set In+1 = In\Jn+1, where Jn+1

is the union of the 2n middle third open intervals and In+1 now consists

of 2n+1 disjoint closed-subintervals. By induction, the total length of

Jn+1 is µ(Jn+1) =
2n

3n+1 . The Cantor set is defined as

C =

∞⋂

n=1

In.

We now state the Riemann-Lebesgue theorem.
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Theorem 7.4.5: Riemann-Lebesgue

Let f : [a, b] → R be a bounded function. Then f is Riemann

integrable if and only if the points of discontinuity of f forms a set

of measure zero.
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8

Sequences of Functions

In the previous sections, we have considered real-number sequences,

that is, sequences (xn) such that xn ∈ R for each n ∈ N. In this sec-

tion, we consider sequences whose terms are functions. Sequences of

functions arise naturally in many applications in physics and engineer-

ing. A typical way that sequences of functions arise is in the problem

of solving an equation in which the unknown is a function f . In many

of these types of problems, one is able to generate a sequence of func-

tions (fn) = (f1, f2, f3, . . .) through some algorithmic process with the

intention that the sequence of functions (fn) converges to the solution

f . Moreover, it would be desirable that the limiting function f inherit

as many properties possessed by each function fn such as, for example,

continuity, differentiability, or integrability. We will see that this latter

issue is rather delicate. In this section, we develop a notion of the limit

of a sequence of functions and then investigate if the fundamental prop-

erties of boundedness, continuity, integrability, and differentiability are

preserved under the limit operation.
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8.1 Pointwise Convergence

Let A ⊂ R be a non-empty subset and suppose that for each n ∈ N we

have a function fn : A → R. We then say that (fn) = (f1, f2, f3, . . . , )

is a sequence of functions on A.

Example 8.1.1. Let A = [0, 1] and let fn(x) = xn for n ∈ N and

x ∈ A. Then (fn) = (f1, f2, f3, . . .) is a sequence of functions on A. As

another example, for n ∈ N and x ∈ A let gn(x) = nx(1− x2)n. Then

(gn) = (g1, g2, g3, . . .) is a sequence of functions on A. Or how about

fn(x) = an cos(nx) + bn sin(nx)

where an, bn ∈ R and x ∈ [−π, π].

Let (fn) be a sequence of functions on A. For each fixed x ∈ A

we obtain a sequence of real numbers (xn) by simply evaluating each

fn at x, that is, xn = fn(x). For example, if fn(x) = xn and we fix

x = 3
4 then we obtain the sequence xn = fn(

3
4) =

(
3
4

)n
. If x ∈ A is

fixed we can then easily talk about the convergence of the sequence of

numbers (fn(x)) in the usual way. This leads to our first definition of

convergence of function sequences.

Definition 8.1.2: Pointwise Convergence

Let (fn) be a sequence of functions on A ⊆ R. We say that (fn)

converges pointwise on A to the function f : A → R if for

each x ∈ A the sequence (fn(x)) converges to the number f(x), that

is,

lim
n→∞

fn(x) = f(x).

In this case, we call the function f the pointwise limit of the

sequence (fn).
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By uniqueness of limits of sequences of real numbers (Theorem 3.1.12),

the pointwise limit of a sequence (fn) is unique. Also, when the domain

A is understood, we will simply say that (fn) converges pointwise to f .

Example 8.1.3. Consider the sequence (fn) defined on R by fn(x) =

(2xn+ (−1)nx2)/n. For fixed x ∈ R we have

lim
n→∞

fn(x) = lim
n→∞

2xn+ (−1)nx2

n
= 2x.

Hence, (fn) converges pointwise to f(x) = 2x on R. In Figure 8.1, we

graph fn(x) for the values n = 1, 2, 3, 4 and the function f(x) = 2x.

Notice that f ′
n(x) = (2n+2(−1)nx)/n and therefore limn→∞ f ′

n(x) = 2,

and for the limit function f(x) = 2x we have f ′(x) = 2. Hence, the

sequence of derivatives (f ′
n) converges pointwise to f

′. Also, after some

basic computations,

∫ 1

−1

fn(x) dx =

∫ 1

−1

2xn+ (−1)nx2

n
dx

=
2(−1)n

3n

and therefore

lim
n→∞

∫ 1

−1

fn(x) dx = lim
n→∞

2(−1)n

3n

= 0.

On the other hand it is clear that
∫ 1

−1 f(x) dx = 0.

Before considering more examples, we state the following result

which is a direct consequence of the definition of the limit of a sequence

of numbers and the definition of pointwise convergence.
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f

Figure 8.1: Graph of fn(x) =
2xn+(−1)nx2

n for n = 1, 2, 3, 4 and f(x) = 2x

Lemma 8.1.4

Let (fn) be a sequence of functions on A. Then (fn) converges

pointwise to f : A→ R if and only if for each x ∈ A and each ε > 0

there exists K ∈ N such that |fn(x)− f(x)| < ε for all n ≥ K.

As the following example shows, it is important to note that the K in

Lemma 8.1.4 depends not only on ε > 0 but in general will also depend

on x ∈ A.

Example 8.1.5. Consider the sequence (fn) defined on A = [0, 1] by

fn(x) = xn. For all n ∈ N we have fn(1) = 1n = 1 and therefore

limn→∞ fn(1) = 1. On the other hand if x ∈ [0, 1) then

lim
n→∞

fn(x) = lim
n→∞

xn = 0.
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Therefore, (fn) converges pointwise on A to the function

f(x) =

{

0, if x ∈ [0, 1)

1, if x = 1.

In Figure 8.2, we graph fn(x) = xn for various values of n. Consider

a fixed x ∈ (0, 1). Since limn→∞ xn = 0 it follows that for ε > 0 there

exists K ∈ N such that |xn − 0| < ε for all n ≥ K. For ε < 1, in order

for |xK| = xK < ε we can choose K > ln(ε)/ ln(x). Notice that K

clearly depends on both ε and x, and in particular, as x get closer to 1

then a larger K is needed. We note that each fn is continuous while f

is not.

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0 f1
f3
f8
f12
f25

Figure 8.2: Graph of fn(x) = xn for n = 1, 3, 8, 12, 25

Example 8.1.5 also illustrates a weakness of pointwise convergence,

namely, that if (fn) is a sequence of continuous functions on A and (fn)
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converges pointwise to f on A then f is not necessarily continuous on

A.

Example 8.1.6. Consider the sequence (fn) defined on A = [−1, 1] by

fn(x) =
√

nx2+1
n . For fixed x ∈ A we have

lim
n→∞

fn(x) = lim
n→∞

√

nx2 + 1

n

= lim
n→∞

√

x2 +
1

n

=
√
x2

= |x|.

Hence, (fn) converges pointwise on A to the function f(x) = |x|. Notice
that each function fn is continuous on A and the pointwise limit f is

also continuous. After some basic calculations we find that

f ′
n(x) =

x
√

nx2+1
n

and f ′
n(x) exists for each x ∈ [−1, 1], in other words, fn is differentiable

on A. However, f(x) = |x| is not differentiable on A since f does not

have a derivative at x = 0. In Figure 8.3, we graph fn for various values

of n.

Example 8.1.6 illustrates another weakness of pointwise conver-

gence, namely, that if (fn) is a sequence of differentiable functions on

A and (fn) converges pointwise to f on A then f is not necessarily

differentiable on A.

Example 8.1.7. Consider the sequence (fn) on A = [0, 1] defined by

fn(x) = 2nxe−nx2

. For fixed x ∈ [0, 1] we find (using l’Hôpital’s rule)
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Figure 8.3: Graph of fn(x) =
√

nx2+1
n

for n = 1, 3, 8, 12, 25 and f(x) =

|x|

that

lim
n→∞

fn(x) = lim
n→∞

2nx

enx2
= 0.

Hence, (fn) converges pointwise to f(x) = 0 on A. Consider

∫ 1

0

fn(x) dx =

∫ 1

0

2nxe−nx2

dx

= −e−nx2

∣
∣
∣

1

0

= 1− e−n

and therefore

lim
n→∞

∫ 1

0

fn(x) = lim
n→∞

(1− e−n) = 1.
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On the other hand,
∫ 1

0 f(x) dx = 0. Therefore,

∫ 1

0

f(x) dx 6= lim
n→∞

∫ 1

0

fn(x) dx

or another way to write this is

lim
n→∞

∫ 1

0

fn(x) dx 6=
∫ 1

0

lim
n→∞

fn(x) dx.

Examples 8.1.5-8.1.6 illustrate that the pointwise limit f of a se-

quence of functions (fn) does not always inherit the properties of con-

tinuity and/or differentiability, and Example 8.1.7 illustrates that un-

expected (or surprising) results can be obtained when combining the

operations of integration and limits, and in particular, one cannot in

general interchange the limit operation with integration.
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Exercises

Exercise 8.1.1. Suppose that fn : [a, b] → R is a sequence of func-

tions such that fn is increasing for each n ∈ N. Suppose that f(x) =

limn→∞ fn(x) exists for each x ∈ [a, b]. Is f an increasing function?

Exercise 8.1.2. Let (an) be a sequence of positive numbers and define

fn : [0, 1] → R as

fn(x) =







2nanx, 0 ≤ x ≤ 1/(2n),

2an − 2nanx, 1/(2n) ≤ x ≤ 1/n,

0, 1/n ≤ x ≤ 1.

(a) Find the pointwise limit f : [0, 1] → R of the sequence (fn).

(b) Find
∫ 1

0 f(x) dx.

(c) If an = 4n, find

lim
n→∞

∫ 1

0

fn(x) dx.

Exercise 8.1.3. Recall that Q is countable and thus there exists a

bijection r : N → Q. Define the sequence (rn) by letting rn = r(n).

Now define fn : R → R as

fn(x) =

{

1, x ∈ {r1, r2, . . . , rn}
0, otherwise.

(a) Find the pointwise limit f : R → R of the sequence (fn).

(b) Is fn Riemann integrable? Explain.

(c) Is f Riemann integrable? Explain.

237



8.2. UNIFORM CONVERGENCE

8.2 Uniform Convergence

In the previous section we saw that pointwise convergence is a rather

weak form of convergence since the limiting function will not in general

inherit any of the properties possessed by the terms of the sequence.

Examining the concept of pointwise convergence one observes that it is

a very localized definition of convergence of a sequence of functions; all

that is asked for is that (fn(x)) converge for each x ∈ A. This allows the

possibility that the “speed” of convergence of (fn(x)) may differ wildly

as x varies in A. For example, for the sequence of functions fn(x) = xn

and x ∈ (0, 1), convergence of (fn(x)) to zero is much faster for values

of x near 0 than for values of x near 1. What is worse, as x → 1

convergence of (fn(x)) to zero is arbitrarily slow. Specifically, recall in

Example 8.1.5 that |xK − 0| < ε if and only if K > ln(ε)/ ln(x). Thus,

for a fixed ε > 0, as x → 1 we have K → ∞. Hence, there is no single

K that will work for all values of x ∈ (0, 1), that is, the convergence is

not uniform.

Definition 8.2.1: Uniform Convergence

Let (fn) be a sequence of functions on A ⊆ R. We say that (fn)

converges uniformly on A to the function f : A→ R if for any

ε > 0 there exists K ∈ N such that if n ≥ K then |fn(x)−f(x)| < ε

for all x ∈ A.

Notice that in Definition 8.2.1, the K only depends on the given

(but fixed) ε > 0 and the inequality |fn(x) − f(x)| < ε holds for all

x ∈ A provided n ≥ K. The inequality |fn(x)− f(x)| < ε for all x ∈ A

is equivalent to

f(x)− ε < fn(x) < f(x) + ε
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for all x ∈ A and can therefore be interpreted as saying that the graph

of fn lies in the tube of radius ε > 0 and centered along the graph of

f , see Figure 8.4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−1

0

1

2

3

4

f(x) + ε

f(x) − ε

A

f
fn

Figure 8.4: ε-tubular neighborhood along the graph of f ; if |fn(x) −
f(x)| < ε for all x ∈ A then the graph of fn is within the ε-tubular
neighborhood of f

The following result is a direct consequence of the definitions but it

is worth stating anyhow.

Proposition 8.2.2

If (fn) converges uniformly to f then (fn) converges pointwise to f .

Example 8.2.3. Let A = [−5, 5] and let (fn) be the sequence of func-

tions on A defined by fn(x) = (2xn + (−1)nx2)/n. Prove that (fn)

converges uniformly to f(x) = 2x.
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Solution. We compute that

lim
n→∞

fn(x) = lim
n→∞

2xn+ (−1)nx2

n
= 2x

and thus (fn) converges pointwise to f(x) = 2x on A. To prove that

the convergence is uniform, consider

|fn(x)− f(x)| =
∣
∣
∣
∣

2xn+ (−1)nx2

n
− 2x

∣
∣
∣
∣

=

∣
∣
∣
∣

(−1)nx2

n

∣
∣
∣
∣

=
|x|2
n

≤ 52

n
.

For any given ε > 0 if K ∈ N is such that 52

K < ε then if n ≥ K then

for any x ∈ A we have

|fn(x)− f(x)| ≤ 52

n

≤ 52

K
< ε.

This proves that (fn) converges uniformly to f(x) = 2x on A = [−5, 5].

Note that a similar argument will not hold if we take A = R.

Example 8.2.4. Show that the sequence of functions fn(x) = sin(nx)/
√
n

converges uniformly to f(x) = 0 on R.
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Solution. We compute

|fn(x)− f(x)| =
∣
∣
∣
∣

sin(nx)√
n

∣
∣
∣
∣

=
| sin(nx)|√

n

≤ 1√
n

and therefore if K ∈ N is such that 1√
K
< ε then if n ≥ K then

|fn(x)− 0| < ε for all x ∈ R. Hence, (fn) converges uniformly to f = 0

on R.

On a close examination of the previous examples on uniform con-

vergence, one observes that in proving that (fn) converges uniformly to

f on A, we used an inequality of the form:

|fn(x)− f(x)| ≤Mn, ∀x ∈ A

for some sequence (Mn) of non-negative numbers such that limn→∞Mn =

0. It follows that

sup
x∈A

|fn(x)− f(x)| ≤Mn.

This observation is worth formalizing.

Theorem 8.2.5

Let fn : A → R be a sequence of functions. Then (fn) converges

uniformly to f on A if and only if there exists a sequence (Mn) of

non-negative numbers converging to zero such that supx∈A |fn(x)−
f(x)| ≤ Mn for n sufficiently large.

Proof. Suppose that (fn) converges uniformly on A to f . There exists

N ∈ N such that |fn(x)− f(x)| < 1 for all n ≥ N and x ∈ A. Hence,
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Mn = supx∈A |fn(x) − f(x)| ≥ 0 is well-defined for all n ≥ N . Define

Mn ≥ 0 arbitrarily for 1 ≤ n ≤ N − 1. Given an arbitrary ε > 0,

there exists K ∈ N such that if n ≥ K then |fn(x) − f(x)| < ε for

all x ∈ A. We can assume that K ≥ N . Therefore, if n ≥ K then

Mn = supx∈A |fn(x)− f(x)| ≤ ε. This prove that limn→∞Mn = 0.

Conversely, suppose that there existsMn ≥ 0 such that limn→∞Mn =

0 and supx∈A |fn(x)−f(x)| ≤Mn for all n ≥ N . Let ε > 0 be arbitrary.

Then there exists K ∈ N such that if n ≥ K then Mn < ε. Hence, if

n ≥ K ≥ N then supx∈A |fn(x)− f(x)| ≤ Mn < ε. This implies that if

n ≥ K then |fn(x) − f(x)| < ε for all x ∈ A, and thus (fn) converges

uniformly to f on A.

Example 8.2.6. Let f be a continuous function on [a, b]. Prove that

there exists a sequence of step functions (sn) on [a, b] that converges

uniformly to f on [a, b].

We end this section by stating and proving a Cauchy criterion for

uniform convergence.

Theorem 8.2.7: Cauchy Criterion for Uniform Convergence

The sequence (fn) converges uniformly on A if and only if for every

ε > 0 there exists K ∈ N such that if n,m ≥ K then |fm(x) −
fn(x)| < ε for all x ∈ A.

Proof. Suppose that (fn) → f uniformly on A and let ε > 0. There

exists K ∈ N such that if n ≥ K then |fn(x) − f(x)| < ε/2 for all
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x ∈ A. Therefore, if n,m ≥ K then for all x ∈ A we have

|fn(x)− fm(x)| = |fn(x)− f(x) + f(x)− fm(x)|
≤ |fn(x)− f(x)|+ |f(x)− fm(x)|
< ε/2 + ε/2

= ε.

To prove the converse, suppose that for every ε > 0 there exists K ∈ N

such that if n,m ≥ K then |fm(x)−fn(x)| < ε for all x ∈ A. Therefore,

for each x ∈ A the sequence (fn(x)) is a Cauchy sequence and therefore

converges. Let f : A → R be defined by f(x) = limn→∞ fn(x). If

ε > 0 let K ∈ N be such that |fm(x) − fn(x)| < ε for all x ∈ A and

n,m ≥ K. Fix m ≥ K and consider the sequence zn = |fm(x)− fn(x)|
and thus zn < ε. Now since limn→∞ fn(x) = f(x) then lim zn exists and

lim zn ≤ ε, that is,

lim
n→∞

zn = lim
n→∞

|fm(x)− fn(x)|
= |fm(x)− f(x)|
≤ ε.

Therefore, if m ≥ K then |fm(x)− f(x)| ≤ ε for all x ∈ A.
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Exercises

Exercise 8.2.1. Let fn : A→ R be a sequence of functions converging

uniformly to f : A→ R. Let g : A→ R be a function and let gn = gfn

for each n ∈ N. Under what condition on g does the sequence (gn)

converge uniformly? Prove it. What is the uniform limit of (gn)?

Exercise 8.2.2. Prove that if (fn) converges uniformly to f on A and

(gn) converges uniformly to g on A then (fn + gn) converges uniformly

to f + g on A.

Exercise 8.2.3. Let fn : [0, 1] → be the sequence defined in Exer-

cise 8.1.2. Show that if limn→∞ an = 0 then (fn) converges uniformly.

Exercise 8.2.4. Let fn(x) = sin(nx)/
√
n for x ∈ R. Prove that (fn)

converges uniformly on R.
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8.3 Properties of Uniform Convergence

A sequence (fn) on A is said to be uniformly bounded on A if there

exists a constant M > 0 such that |fn(x)| < M for all x ∈ A and for

all n ∈ N.

Theorem 8.3.1: Uniform Boundedness

Suppose that (fn) → f uniformly on A. If each fn is bounded on A

then the sequence (fn) is uniformly bounded on A and f is bounded

on A.

Proof. By definition, there exists K ∈ N such that

|f(x)| ≤ |fn(x)− f(x)|+ |fn(x)|
< 1 + |fn(x)|

for all x ∈ A and all n ≥ K. Since fK is bounded, then |f(x)| ≤
1 + maxx∈A |fK(x)| for all x ∈ A and thus f is bounded on A with

upper bound M ′ = 1 + maxx∈A |fK(x)|. Therefore, |fn(x)| ≤ |fn −
f(x)| + |f(x)| < 1 + M ′ for all n ≥ K and all x ∈ A. Let Mn

be an upper bounded for fn on A for each n ∈ N. Then if M =

max{M1, . . . ,MK−1, 1 +M ′} then |fn(x)| < M for all x ∈ A and all

n ∈ N.

Example 8.3.2. Give an example of a set A and a sequence of functions

(fn) on A such that fn is bounded for each n ∈ N, (fn) converges

pointwise to f but (fn) is not uniformly bounded on A.

Unlike the case with pointwise convergence, a sequence of contin-

uous functions converging uniformly does so to a continuous function.
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Theorem 8.3.3: Uniform Convergence and Continuity

Let (fn) be a sequence of functions on A converging uniformly to f

on A. If each fn is continuous on A then f is continuous on A.

Proof. To prove that f is continuous on A we must show that f is

continuous at each c ∈ A. Let ε > 0 be arbitrary. Recall that to prove

that f is continuous at c we must show there exists δ > 0 such that if

|x− c| < δ then |f(x)− f(c)| < ε. Consider the following:

|f(x)− f(c)| = |f(x)− fn(x) + fn(x)− fn(c) + fn(c)− f(c)|

≤ |f(x)− fn(x)|+ |fn(x)− fn(c)|+ |fn(c)− f(c)|.

Since (fn) → f uniformly on A, there exists K ∈ N such that |f(x)−
fK(x)| < ε/3 for all x ∈ A. Moreover, since fK is continuous there

exists δ > 0 such that if |x − c| < δ then |fK(x) − fK(c)| < ε/3.

Therefore, if |x− c| < δ then

|f(x)− f(c)| ≤ |f(x)− fK(x)|+ |fK(x)− fK(c)|+ |fK(c)− f(c)|

< ε/3 + ε/3 + ε/3

= ε.

This proves that f is continuous at c ∈ A.

A direct consequence of Theorem 8.3.3 is that if (fn) → f pointwise and

each fn is continuous then if f is discontinuous then the convergence

cannot be uniform.

Example 8.3.4. Let gn(x) =
x

√

x2 + 1
n

for x ∈ [−1, 1] and n ∈ N.

Each function gn is clearly continuous. Now gn(0) = 0 and thus
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limn→∞ gn(0) = 0. If x 6= 0 then

lim
n→∞

gn(x) = lim
n→∞

x
√

x2 + 1
n

=
x√
x2

=
x

|x|

=

{

1, x > 0

−1, x < 0,

Therefore, (gn) converges pointwise to the function

g(x) =







−1, −1 ≤ x < 0

0, x = 0

1, 0 < x ≤ 1.

The function g is discontinuous and therefore, by Theorem 8.3.3, (gn)

does not converge uniformly to g.

The next property that we can deduce from uniform convergence is

that the limit and integration operations can be interchanged. Recall

from Example 8.1.7 that if (fn) → f pointwise then it is not necessarily

true that

lim
n→∞

∫

A

fn =

∫

A

f

Since limn→∞ fn(x) = f(x), then it in general we can say that

lim
n→∞

∫

A

fn 6=
∫

A

lim
n→∞

fn

However, when the convergence is uniform we can indeed interchange

the limit and integration operations.
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Theorem 8.3.5: Uniform Convergence and Integration

Let (fn) be a sequence of Riemann integrable functions on [a, b]. If

(fn) converges uniformly to f on [a, b] then f ∈ R[a, b] and

lim
n→∞

∫ b

a

fn =

∫ b

a

f.

Proof. Let ε > 0 be arbitrary. By uniform convergence, there exists

K ∈ N such that if n ≥ K then for all x ∈ [a, b] we have

|fn(x)− f(x)| < ε

4(b− a)

or

fn(x)−
ε

4(b− a)
< f(x) < fn(x) +

ε

4(b− a)
.

By assumption, fn ± ε
4(b−a)

is Riemann integrable and thus if n ≥ N

then ∫ b

a

[(fn + ε/4(b− a))− (fn − ε/4(b− a))] =
ε

2
< ε.

By the Squeeze Theorem of Riemann integration (Theorem 7.2.3), f is

Riemann integrable. Moreover, if n ≥ N then

− ε

4(b− a)
< fn(x)− f(x) <

ε

4(b− a)

implies (by monotonicity of integration)

−ε
4
<

∫ b

a

fn −
∫ b

a

f <
ε

4

and thus ∣
∣
∣
∣

∫ b

a

fn −
∫ b

a

f

∣
∣
∣
∣
<
ε

4
.

This proves that the sequence
∫ b

a fn converges to
∫ b

a f .

The following corollary to Theorem 8.3.5 is worth noting.
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Corollary 8.3.6: Uniform Convergence and Integration

Let (fn) be a sequence of continuous functions on the interval [a, b].

If (fn) converges uniformly to f then f ∈ R[a, b] and

lim
n→∞

∫ b

a

fn =

∫ b

a

f.

Proof. If each fn is continuous then fn ∈ R[a, b] and Theorem 8.3.5

applies.

Example 8.3.7. Consider the sequence of functions (fn) defined on

[0, 1] given by

fn(x) =







(n+ 1)2x, 0 ≤ x ≤ 1
n+1

−(n+ 1)2
(
x− 2

n+1

)
, 1

n+1 ≤ x ≤ 2
n+1

0, 2
n+1

< x ≤ 1.

(a) Draw a typical function fn.

(b) Prove that (fn) converges pointwise.

(c) Use Theorem 8.3.5 to show that the convergence is not uniform.

We now consider how the operation of differentiation behaves under

uniform convergence. One would hope, based on the results of Theo-

rem 8.3.3, that if (fn) → f uniformly and each fn is differentiable then

f ′ is also differentiable and maybe even that (f ′
n) → f ′ at least point-

wise and maybe even uniformly. Unfortunately, the property of dif-

ferentiability is not generally inherited under uniform convergence. An

example of this occurred in Example 8.1.6 where fn(x) =
√

(nx2 + 1)/n

and (fn) → f where f(x) = |x| for x ∈ [−1, 1]. The convergence in
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this case is uniform on [−1, 1] but although each fn is differentiable the

limit function f(x) = |x| is not. It turns out that the main assumption

needed for all to be well is that the sequence (f ′
n) converge uniformly.

Theorem 8.3.8: Uniform Convergence and Differentiation

Let (fn) be a sequence of differentiable functions on [a, b]. Assume

that f ′
n is Riemann integrable on [a, b] for each n ∈ N and suppose

that (f ′
n) converges uniformly to g on [a, b]. Suppose there exists

x0 ∈ [a, b] such that (fn(x0)) converges. Then the sequence (fn)

converges uniformly on [a, b] to a differentiable function f and f ′ =

g.

Proof. Let x ∈ [a, b] be arbitrary but with x 6= x0. By the Mean Value

theorem applied to the differentiable function fm− fn, there exists y in

between x and x0 such that

(fm(x)− fn(x))− (fm(x0)− fn(x0))

x− x0
= f ′

m(y)− f ′
n(y)

or equivalently

fm(x)− fn(x) = fm(x0)− fn(x0) + (x− x0)(f
′
m(y)− f ′

n(y))

Therefore,

|fm(x)− fn(x)| ≤ |fm(x0)− fn(x0)|+ (b− a)|f ′
m(y)− f ′

n(y)|.

Since (fn(x0)) converges and (f ′
n) is uniformly convergent, by the Cauchy

criterion, for any ε > 0 there exists K ∈ N such that if n,m ≥ K then

|fm(x0) − fn(x0)| < ε/2 and |f ′
m(y) − f ′

n(y)| < (ε/2)/(b − a) for all

y ∈ [a, b]. Therefore, if m, n ≥ K then

|fm(x)− fn(x)| ≤ |fm(x0)− fn(x0)|+ (b− a)|f ′
m(y)− f ′

n(y)|
< ε
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and this holds for all x ∈ [a, b]. By the Cauchy criterion for uniform

convergence, (fn) converges uniformly. Let f be the uniform limit of

(fn). We now prove that f is differentiable and f ′ = g. By the Funda-

mental theorem of Calculus (FTC), we have that

fn(x) = fn(a) +

∫ x

a

f ′
n(t) dt

for each x ∈ [a, b]. Since (fn) converges to f and (f ′
n) converges uni-

formly to g we have

f(x) = lim
n→∞

fn(x)

= lim
n→∞

(

fn(a) +

∫ x

a

f ′
n(t) dt

)

= lim
n→∞

fn(a) + lim
n→∞

∫ x

a

f ′
n(t) dt

= f(a) +

∫ x

a

g(t) dt.

Thus f(x) = f(a) +
∫ x

a g(t) dt and by the FTC we obtain f ′(x) =

g(x).

Notice that in the statement of Theorem 8.3.8, all that is required

is that (fn(x0)) converge for one x0 ∈ [a, b]. The assumption that

(f ′
n) converges uniformly then guarantees that in fact (fn) converges

uniformly.

Example 8.3.9. Consider the sequence (fn) defined on [−1, 1] by fn(x) =

(2xn + (−1)nx2)/n. We compute that f ′
n(x) = (2n + 2(−1)nx)/n and

clearly f ′
n is continuous on [−1, 1] for each n ∈ N. Now limn→∞ f ′

n(x) =

2 for all x and thus (f ′
n) converges pointwise to g(x) = 2. To prove that
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the convergence is uniform we note that

|f ′
n(x)− g(x)| = |2 + (−1)n

x

n
− 2|

=
|x|
n

≤ 1

n
.

Therefore, (f ′
n) converges uniformly to g on [−1, 1]. Now fn(0) = 0

and thus (fn(0)) converges to 0. By Theorem 8.3.8, (fn) converges

uniformly to say f with f(0) = 0 and f ′ = g. Now by the FTC,

f(x) =
∫
g(x) dx+ C = 2x+ C and since f(0) = 0 then f(x) = 2x.
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Exercises

Exercise 8.3.1. Give an example of a set A and a sequence of functions

(fn) on A such that fn is bounded for each n ∈ N, (fn) converges

pointwise to f but (fn) is not uniformly bounded on A.

Exercise 8.3.2. Suppose that (fn) → f uniformly on A and (gn) → g

uniformly on A. Prove that if (fn) and (gn) are uniformly bounded on

A then (fngn) converges uniformly to fg on A. Then give an example

to show that if one of (fn) or (gn) is not uniformly bounded then the

result is false.

Exercise 8.3.3. Let

fn(x) =
nx2

1 + nx2

for x ∈ R and n ∈ N.

(a) Show that (fn) converges pointwise on R.

(b) Show that (fn) does not converge uniformly on any closed interval

containing 0.

(c) Show that (fn) converges uniformly on any closed interval not con-

taining 0. For instance, take [a, b] with 0 < a < b.

Exercise 8.3.4. Suppose that f : R → R has that property that

|f(x)−f(y)| ≤ K|x−y| for all x, y,∈ R and some K > 0. Prove that if

(gn) converges uniformly on R to g then the sequence (f ◦gn) converges
uniformly to f ◦ g on R. Note: f ◦ gn and f ◦ g are compositions of

functions and not function multiplication.

Exercise 8.3.5. Let fn(x) = nx/(nx + 1) for n ∈ N and x ∈ [a, 1]

where 0 < a < 1.

(a) Prove directly that the sequence (fn) is uniformly Cauchy.

(b) If f is the uniform limit of (fn), find
∫ 1

a f without computing f .
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Exercise 8.3.6. Consider the sequence of functions (fn) on A = [0,∞)

defined as follows:

fn(x) =

{

1/n, 0 ≤ x ≤ n2,

0, x > n2.

(a) Prove that (fn) converges uniformly to f = 0 on A.

(b) For each fixed n ∈ N, find the improper integral

∫ ∞

0

fn

and show that

lim
n→∞

∫ ∞

0

fn = ∞.

(c) The results above seem to contradict Theorem 8.3.5. Explain why

there is no contradiction.
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8.4 Infinite Series of Functions

In this section, we consider series whose terms are functions. You have

already encountered such objects when studying power series in Calcu-

lus. An example of an infinite series of functions (more specifically a

power series) is
∞∑

n=0

(−1)nxn

(2n)!
.

In this case, if we set fn(x) =
(−1)nxn

(2n)! then the above infinite series is
∑∞

n=0 fn(x). Let us give the general definition.

Definition 8.4.1: Infinite Series of Functions

Let A be a non-empty subset of R. An infinite series of functions

on A is a series of the form
∑∞

n=1 fn(x) for each x ∈ A where (fn)

is a sequence of functions on A. The sequence of partial sums

generated by the series
∑
fn is the sequence of functions (sn) on A

defined as sn(x) = f1(x) + · · ·+ fn(x) for each x ∈ A.

Recall that a series of numbers
∑
xn converges if the sequence of partial

sums (tn), defined as tn = x1+ x2+ · · ·+ xn, converges. Hence, conver-

gence of an infinite series of functions
∑
fn is treated by considering

the convergence of the sequence of partial sums (sn) (which are func-

tions). For example, to say that the series
∑
fn converges uniformly to

a function f we mean that the sequence of partial sums (sn) converges

uniformly to f , etc. It is now clear that our previous work in Sections

8.1-8.3 translate essentially directly to infinite series of functions. As

an example:
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Theorem 8.4.2

Let (fn) be a sequence of functions on A and suppose that
∑
fn

converges uniformly to f . If each fn is continuous on A then f is

continuous on A.

Proof. By assumption, the sequence of functions sn(x) =
∑n

k=1 fk(x)

for x ∈ A converges uniformly to f . Since each function fn is continu-

ous, and the sum of continuous functions is continuous, it follows that

sn is continuous. The result now follows by Theorem 8.3.3.

The following translate of Theorem 8.3.5 is worth explicitly writing out.

Theorem 8.4.3: Term-by-Term Integration

Let (fn) be a sequence of functions on [a, b] and suppose that
∑
fn

converges uniformly to f . If each fn is Riemann integrable on [a, b]

then f ∈ R[a, b] and

∫ b

a

( ∞∑

n=1

fn(x)

)

dx =
∞∑

n=1

∫ b

a

fn(x) dx.

Proof. By assumption, the sequence (sn) defined as sn(x) = f1(x)+· · ·+
fn(x) converges uniformly to f . Since each fn is Riemann integrable

then sn is Riemann integrable and therefore f = lim sn =
∑
fn is

Riemann integrable by Theorem 8.3.5. Also by Theorem 8.3.5, we have

∫ b

a

f = lim
n→∞

∫ b

a

sn

or written another way is

∫ b

a

∞∑

n=1

fn = lim
n→∞

∫ b

a

n∑

k=1

fk
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or
∫ b

a

∞∑

n=1

fn = lim
n→∞

n∑

k=1

∫ b

a

fk

or
∫ b

a

∞∑

n=1

fn =
∞∑

n=1

∫ b

a

fn

We now state the derivative theorem (similar to Theorem 8.3.8) for

infinite series of functions.

Theorem 8.4.4: Term-by-Term Differentiation

Let (fn) be a sequence of differentiable functions on [a, b] and sup-

pose that
∑
fn converges at some point x0 ∈ [a, b]. Assume further

that
∑
f ′
n converges uniformly on [a, b] and each f ′

n is continuous.

Then
∑
fn converges uniformly to some differentiable function f on

[a, b] and f ′ =
∑
f ′
n.

We now state a useful theorem for uniform convergence of infinite

series of functions.

Theorem 8.4.5: Weierstrass M-Test

Let (fn) be a sequence of functions on A and suppose that there

exists a sequence of non-negative numbers (Mn) such that |fn(x)| ≤
Mn for all x ∈ A, and all n ∈ N. If

∑
Mn converges then

∑
fn

converges uniformly on A.

Proof. Let ε > 0 be arbitrary. Let tn =
∑n

k=1Mk be the sequence of

partial sums of the series
∑
Mn. By assumption, (tn) converges and

thus (tn) is a Cauchy sequence. Hence, there exists K ∈ N such that
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|tm − tn| < ε for all m > n ≥ K. Let (sn) be the sequence of partial

sums of
∑
fn. Then if m > n ≥ K then for all x ∈ A we have

|sm(x)− sn(x)| = |fm(x) + fm−1(x) + · · ·+ fn+1(x)|

≤ |fm(x)|+ |fm−1(x)|+ · · ·+ |fn+1(x)|

≤ Mm +Mm−1 + · · ·+Mn+1

= |tm − tn|
< ε.

Hence, the sequence (sn) satisfies the Cauchy Criterion for uniform

convergence (Theorem 8.2.7) and the proof is complete.

Example 8.4.6. Prove that

∫ π

0

( ∞∑

n=1

n sin(nx)

en

)

=
2e

e2 − 1

Proof. For any x ∈ R it holds that

∣
∣
∣
∣

n sin(nx)

en

∣
∣
∣
∣
≤ n

en
.

A straightforward application of the Ratio test shows that
∑∞

n=1
n
en

is

a convergent series. Hence, by the M -Test, the given series converges
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uniformly on A = R, and in particular on [0, π]. By Theorem 8.4.3,

∫ π

0

∞∑

n=1

n sin(nx)

en
dx =

∞∑

n=1

∫ π

0

n sin(nx)

en
dx

=
∞∑

n=1

−cos(nx)

en

∣
∣
∣

π

0

=

∞∑

n=1

[(
1
e

)n −
(−1

e

)n]

=
(

1
1−1/e − 1

)

−
(

1
1+1/e − 1

)

=
2e

e2 − 1

Example 8.4.7 (Riemann (1853)). Consider the function r(x) whose

graph is given in Figure 8.5; one can write down an explicit expression

for r(x) but the details are unimportant. Consider the series

∞∑

n=1

r(nx)

n2
.

Since ∣
∣
∣
∣

r(nx)

n2

∣
∣
∣
∣
≤ 1/2

n2

and
∑∞

n=1
1

2n2 converges, then by the M -test the above series converges

uniformly on any interval [a, b]. Let f be the function defined by the

series on [a, b]. Now, on [a, b], the function fn(x) =
r(nx)
n2 has only a finite

number of discontinuities and thus fn is Riemann integrable. Therefore,

by Theorem 8.3.5, the function f is Riemann integrable. The graph of

f is shown in Figure 8.6. One can show that f has discontinuities at

the rational points x = p
2q where gcd(p, q) = 1.
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Figure 8.5: The function r(x)
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Figure 8.6: The function f(x) =
∑∞

n=1
r(nx)
n2

Example 8.4.8 (Power Series). Recall that a power series is a series

of the form
∞∑

n=0

cn(x− a)n

where cn ∈ R and a ∈ R. Hence, in this case if we write the series as
∑
fn(x) then fn(x) = cn(x − a)n for each n ∈ N and f0(x) = c0. In

calculus courses, the main problem you were asked to solve is to find

the interval of convergence of the given power series. The main tool is
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to apply the Ratio test (Theorem 3.7.23):

lim
n→∞

|cn+1||x− a|n+1

|cn||x− a|n = |x− a| lim
n→∞

|cn+1|
|cn|

.

Suppose that limn→∞
|cn+1|
|cn| exists and is non-zero and limn→∞

|cn+1|
|cn| = 1

R

(a similar argument can be done when the limit is zero). Then by

the Ratio test, the power series converges if |x − a| 1R < 1, that is, if

|x− a| < R. The number R > 0 is called the radius of convergence

and the interval (a − R, a + R) is the interval of convergence (if

limn→∞
|cn+1|
|cn| is zero then R > 0 can be chosen arbitrarily and the

argument that follows is applicable). Let ρ < r < R and consider the

closed interval [a− ρ, a+ ρ] ⊂ (a−R, a+R). Then if x ∈ [a− ρ, a+ ρ]

then

|fn(x)| = |cn||x− a|n

= |cn|rn
|x− a|n
rn

≤ |cn|rn
(ρ

r

)n

.

Now if x = a + r ∈ (a − R, a + R) then by assumption the series
∑
cn(x−a)n =

∑
cnr

n converges, and in particular the sequence |cn|rn
is bounded, say by M . Therefore,

|fn(x)| ≤M
(ρ

r

)n

.

Since ρ/r < 1, the geometric series
∑(

ρ
r

)n
converges. Therefore, by

the M -test, the series
∑
cn(x−a)n converges uniformly on the interval

[a− ρ, a+ ρ]. Let f(x) =
∑
fn(x) for x ∈ [a− ρ, a+ ρ]. Now consider

the series of the derivatives

∞∑

n=1

f ′
n(x) =

∞∑

n=1

cnn(x− a)n−1.
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Applying the Ratio test again we conclude that the series of the deriva-

tives converges for each x ∈ (a − R, a + R) and a similar argument

as before shows that the series of derivatives converges uniformly on

any interval [a − ρ, a + ρ] where ρ < R. It follows from the Term-

by-Term Differentiation theorem that f is differentiable and f ′(x) =
∑
cnn(x − a)n−1. By the Term-by-Term Integration theorem, we can

also integrate the series and
∫

I

(∑

fn(x)
)

dx =
∑

∫

I

fn(x) dx

where I ⊂ (a− R, a+ R) is any closed and bounded interval.

Example 8.4.9. Consider the power series

∞∑

n=0

(−1)nx2n+1

(2n+ 1)!
and

∞∑

n=0

(−1)nx2n

(2n)!
.

(a) Prove that the series converges at every x ∈ R.

(b) Let f denote the function defined by the series on the left and let

g denote the function defined by the series on the right. Justifying

each step, show that f ′ exists and that f ′ = g.

(c) Similarly, show that g′ exists and g′ = −f .

Example 8.4.10. A Fourier series is a series of the form

a0
2
+

∞∑

n=1

(an cos(nx) + bn sin(nx))

where an, bn ∈ R.

(a) Suppose that for a given (an) and (bn), the associated Fourier

series converges pointwise on [−π, π] and let f be the pointwise

limit. Prove that in fact the Fourier series converges on R. Hint:

For any y ∈ R there exists x ∈ [−π, π] such that y = x+ 2π.
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(b) Prove that if
∑ |an| and

∑ |bn| are convergent series then the

associated Fourier series converges uniformly on R.

(c) Suppose that for a given (an) and (bn), the associated Fourier

series converges uniformly on [−π, π] and let f be the uniform

limit. Prove the following:

a0 =

∫ π

−π

f(x)dx

an =
1

π

∫ π

−π

f(x) cos(nx)dx

bn =
1

π

∫ π

−π

f(x) sin(nx)dx

You will need the following identities:
∫ π

−π

sin(nx) cos(mx)dx = 0, ∀ n,m ∈ N

∫ π

−π

sin(nx) sin(mx)dx =

∫ π

−π

cos(nx) cos(mx)dx =

{

π, m = n

0, m 6= n

Example 8.4.11 (Dini). (a) By an open cover of an interval [a, b],

we mean a collection of open intervals {Iµ}µ∈X such that Iµ ∩
[a, b] 6= ∅ for each µ ∈ X and

[a, b] ⊂
⋃

µ∈X
Iµ.

Here X is some set, possibly uncountable. Prove that if {Iµ}µ∈X
is any open cover of [a, b] then there there exists finitely many

µ1, µ2, . . . , µN ∈ X such that

[a, b] ⊂
N⋃

k=1

Iµk
.
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(b) Let fn be continuous and suppose that fn+1(x) ≤ fn(x) for all

x ∈ [a, b] and all n ∈ N. Suppose that (fn) converges pointwise to

a continuous function f . Prove that the convergence is actually

uniform. Give an example to show that if f is not continuous

then we only have pointwise convergence.

Proof. We first prove (a). For convenience, write Iµ = (aµ, bµ) for each

µ ∈ X and assume without loss of generality that {bµ | µ ∈ X} is

bounded above. Let b0 = a and let Iµ1
be such that b0 ∈ Iµ1

= (a1, b1)

and

b1 = sup{bµ | b0 ∈ Iµ}.

If b1 > b then we are done because then [a, b] ⊂ Iµ1
. By induction,

having defined bk−1 ∈ [a, b], let Iµk
= (ak, bk) be such that bk−1 ∈ Iµk

and bk = sup{bµ | bk−1 ∈ Iµ}. We claim that bN > b for some N ∈ N

and thus [a, b] ⊂ ∪N
k=1Iµk

. To prove the claim, suppose that bk ≤ b for all

k ∈ N. Then the increasing sequence (bk) converges by the Monotone

Convergence theorem, say to L = sup{b1, b2, . . .}. Since L ∈ [a, b] then

L ∈ Iµ for some µ ∈ X and thus by convergence there exists k ∈ N

such that bk ∈ Iµ = (aµ, bµ). However, by definition of bk+1 we must

have that L < bµ ≤ bk+1 which is a contradiction to the definition of L.

This completes the proof.

Now we prove (b). First of all since fm(x) ≤ fn(x) for all m ≥ n it

holds that f(x) ≤ fn(x) for all n ∈ N and all x ∈ [a, b]. Fix x̃ ∈ [a, b]

and let ε > 0. By pointwise convergence, there exists N ∈ N such that

|fn(x̃) − f(x̃)| < ε/3 for all n ≥ N . By continuity of fN and f , there

exists δx̃ > 0 such that |fN(x)− fN(x̃)| < ε/3 and |f(x)− f(x̃)| < ε/3
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for all x ∈ Ix̃ = (x̃− δx̃, x̃+ δx̃). Therefore, if n ≥ N then

|fn(x)− f(x)| = fn(x)− f(x)

≤ fN(x)− f(x)

≤ |fN(x)− fN(x̃)|+ |fN(x̃− f(x̃)|+ |f(x̃)− f(x)|
< ε

for all x ∈ Ix̃. Hence, (fn) converges uniformly to f on the interval

Ix̃. It is clear that {Ix̃}x̃∈[a,b] is an open cover of [a, b]. Therefore, by

part (a), there exists x̃1, x̃2, . . . , x̃k such that [a, b] ⊂ Ix̃1
∪ · · · ∪ Ix̃k

.

Hence, for arbitrary ε > 0 there exists Nj ∈ N such that if n ≥ Nj then

|fn(x) − f(x)| < ε for all x ∈ Ix̃j
. If N = max{N1, N2, . . . , Nk} then

|fn(x)− f(x)| < ε for all n ≥ N and all x ∈ [a, b]. This completes the

proof. The sequence fn(x) = xn on [0, 1] satisfies fn+1(x) ≤ fn(x) for

all n and all x ∈ [0, 1], and (fn) converges to f(x) = 0 if x ∈ [0, 1) and

f(1) = 1. Since f is not continuous on [0, 1], the convergence is not

uniform.

Example 8.4.12. Let gn be continuous and suppose that gn ≥ 0 for

all n ∈ N. Prove that if
∑∞

n=1 gn converges pointwise to a continuous

function f on [a, b] then in fact the convergence is uniform.
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Exercises

Exercise 8.4.1. Show that
∑∞

n=0 x
n converges uniformly on [−a, a] for

every a such that 0 < a < 1. Then show that the given series does not

converge uniformly on (−1, 1). Hint: This is an important series and

you should know what function the series converges uniformly to.

Exercise 8.4.2. If
∑∞

n=1 |an| < ∞ prove that
∑∞

n=1 an sin(nx) con-

verges uniformly on R.

Exercise 8.4.3. Prove, justifying each step, that

∫ 2

1

( ∞∑

n=1

ne−nx

)

dx =
e

e2 − 1

Exercise 8.4.4. For any number q ∈ R let χq : R → R be the func-

tion defined as χq(x) = 1 if x = q and χq(x) = 0 if x 6= q. Let

{q1, q2, q3, . . .} = Q be an enumeration of the rational numbers. Define

fn : R → R as

fn = χq1 + χq2 + · · ·+ χqn.

Find the pointwise limit f of the sequence (fn). Is the convergence

uniform? Explain.
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Metric Spaces

9.1 Metric Spaces

The main concepts of real analysis on R can be carried over to a general

set M once a notion of “distance” d(x, y) has been defined for points

x, y ∈ M . When M = R, the distance we have been using all along is

d(x, y) = |x− y|. The set R along with the distance function d(x, y) =

|x− y| is an example of a metric space.

Definition 9.1.1: Metric Space

Let M be a non-empty set. A metric on M is a function d :

M ×M → [0,∞) satisfying the following properties:

(i) d(x, y) = 0 if and only if x = y

(ii) d(x, y) = d(y, x) for all x, y ∈M (symmetry)

(iii) d(x, y) ≤ d(x, z)+ d(z, y) for all x, y, z ∈M (triangle inequal-

ity)

A metric space is a pair (M, d) where d is a metric on M .
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If the metric d is understood, then we simply refer to M as a metric

space instead of formally referring to the pair (M, d).

Example 9.1.2. The set M = R and function d(x, y) = |x − y| is a

metric space. To see this, first of all |x− y| = 0 iff x− y = 0 iff x = y.

Second of all, |x− y| = | − (y − x)| = |y − x|, and finally by the usual

triangle inequality on R we have

d(x, y) = |x− y| = |x− z+ y− z| ≤ |x− z|+ |z− y| = d(x, z) + d(z, y)

for all x, y, z ∈ R.

Example 9.1.3. Let B([a, b]) denote the set of bounded functions on

the interval [a, b], that is, f ∈ B([a, b]) if there exists M > 0 such that

|f(x)| ≤M for all x ∈ [a, b]. For f, g ∈ B([a, b]) let

d(f, g) = sup
x∈[a,b]

|f(x)− g(x)|.

We claim that (B([a, b]), d) is a metric space. First of all, if f, g ∈
B([a, b]) then using the triangle inequality it follows that (f − g) ∈
B([a, b]). Therefore, d(f, g) is well-defined for all f, g ∈ B([a, b]). Next,
by definition, we have that 0 ≤ d(f, g) and it is clear that d(f, g) =

d(g, f). Lastly, for f, g, h ∈ B([a, b]) since

|f(x)− g(x)| ≤ |f(x)− h(x)|+ |h(x)− g(x)|
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then

d(f, g) = sup
x∈[a,b]

|f(x)− g(x)|

≤ sup
x∈[a,b]

(|f(x)− h(x)|+ |h(x)− g(x)|)

≤ sup
x∈[a,b]

(|f(x)− h(x)|) + sup
x∈[a,b]

(|h(x)− g(x)|)

= d(f, h) + d(h, g).

This proves that (B[a, b], d) is a metric space. It is convention to denote

the metric d(f, g) as d∞(f, g), and we will follow this convention.

Example 9.1.4. LetM be a non-empty set. Define d(x, y) = 1 if x 6= y

and d(x, y) = 0 if x = y. It is straightforward to show that (M, d) is a

metric space. The metric d is called the discrete metric and (M, d)

is a discrete space.

Example 9.1.5. Let (M, d) be a metric space and let M ′ ⊂ M be

a non-empty subset. Let d′ be the restriction of d onto M ′, that is,

d′ : M ′ ×M ′ → [0,∞) is defined as d′(x, y) = d(x, y) for x, y ∈ M ′.

Then (M ′, d′) is a metric space. We may therefore say that M ′ is a

metric subspace of M .

Example 9.1.6. Let C([a, b]) denote the set of continuous functions

on the inteval [a, b]. Then C([a, b]) ⊂ B([a, b]) and thus (C([a, b]), d∞)

is a metric subspace of (B([a, b]), d∞).

Example 9.1.7. For f, g ∈ C([a, b]) let d(f, g) =
∫ b

a |f(t) − g(t)| dt.
Prove that d defines a metric on C([a, b]).

269



9.1. METRIC SPACES

Example 9.1.8. Let Rn×n denote the set of n × n matrices with real

entries. For A,B ∈ Rn×n define

d(A,B) = max
1≤i,j≤n

|ai,j − bi,j|.

It is clear that d(A,B) = d(B,A) and d(A,B) = 0 if and only if A = B.

For A,B, C ∈ Rn×n we have that

d(A,B) = max
1≤i,j≤n

|ai,j − bi,j|

= max
1≤i,j≤n

|ai,j − ci,j + ci,j − bi,j|

≤ max
1≤i,j≤n

(|ai,j − ci,j|+ |ci,j − bi,j|)

≤ max
1≤i,j≤n

|ai,j − ci,j|+ max
1≤i,j≤n

|ci,j − bi,j|

= d(A,C) + d(C,B).

Hence, (Rn×n, d) is a metric space.

An important class of metric spaces are normed vector spaces.
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Definition 9.1.9: Norms

Let V be a vector space over R (or C). A norm on V is a function

ψ : V → [0,∞) satisfying the following properties:

(i) ψ(x) = 0 if and only if x = 0,

(ii) ψ(αx) = |α|ψ(x) for any scalar α ∈ R and any x ∈ V , and

(iii) ψ(x+ y) ≤ ψ(x) + ψ(y) for all x, y ∈ V .

The number ψ(x) is called the norm of x ∈ V . A vector space V

together with a norm ψ is called a normed vector space.

Instead of using the generic letter ψ to denote a norm, it is convention to

use instead ‖ · ‖. Hence, using ‖x‖ to denote the norm ψ(x), properties

(i)-(iii) are:

(i) ‖x‖ = 0 if and only if x = 0,

(ii) ‖αx‖ = |α| ‖x‖ for any scalar α ∈ R and any x ∈ V , and

(iii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ V .

Let (V, ‖·‖) be a normed vector space and define d : V ×V → [0,∞)

by

d(x, y) = ‖x− y‖ .

It is a straightforward exercise (which you should do) to show that

(V, d) is a metric space. Hence, every normed vector space induces a

metric space.

Example 9.1.10. The real numbers V = R form a vector space over R

under the usual operations of addition and multiplication. The absolute
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value function x 7→ |x| is a norm on R. The induced metric is then

(x, y) 7→ |x− y|.

Example 9.1.11. The Euclidean norm on Rn is defined as

‖x‖2 =
√

x21 + x22 + · · ·+ x2n

for x = (x1, x2, . . . , xn) ∈ Rn. It can be verified that ‖·‖2 is indeed a

norm on Rn. Hence, we define the distance between x, y ∈ Rn as

‖x− y‖2 =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xn − yn)2.

Notice that when n = 1, ‖·‖2 is the absolute value function since ‖x‖2 =√
x2 = |x| for x ∈ R. When not specified otherwise, whenever we refer

to Rn as a normed vector space we implicitly assume that the norm is

‖·‖2 and simply use the notation ‖·‖.

Example 9.1.12 (Important). The set B([a, b]) of bounded functions

forms a vector space over R with addition defined as (f + g)(x) =

f(x) + g(x) for f, g ∈ B([a, b]) and scalar multiplication defined as

(αf)(x) = αf(x) for α ∈ R and f ∈ B([a, b]). For f ∈ B([a, b]) let

‖f‖∞ = sup
a≤x≤b

|f(x)|.

It is left as an (important) exercise to show that ‖·‖∞ is indeed a norm

on B([a, b]). The induced metric is

d∞(f, g) = ‖f − g‖∞ = sup
a≤x≤b

|f(x)− g(x)|.

The norm ‖f‖∞ is called the sup-norm of f . Notice that the metric

in Example 9.1.3 is induced by the norm ‖·‖∞.
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Example 9.1.13. Two examples of norms on C([a, b]) are

‖f‖1 =
∫ b

a

|f(x)| dx

and

‖f‖2 =
(∫ b

a

|f(x)|2 dx
)1/2

.

These norms are important in the analysis of Fourier series.

Example 9.1.14. For A ∈ Rn×n let

‖A‖∞ = max
1≤i,j≤n

|ai,j|.

It is left as an exercise to show that ‖·‖∞ defined above is a norm on

Rn×n.

Let (M, d) be a metric space. For x ∈M and r > 0, the open ball

centered at x of radius r is by definition the set

Br(x) = {y ∈M | d(x, y) < r}.

Example 9.1.15. Interpret geometrically the open balls in the normed

spaces (Rn, ‖·‖) for n ∈ {1, 2, 3}.

Example 9.1.16. Give a graphical/geometric description of the open

balls in the normed space (C([a, b]), ‖·‖∞).

A subset S of a metric space M is called bounded if S ⊂ Br(x) for

some x ∈M and r > 0.

Example 9.1.17. Let (M, d) be a metric space. Prove that if S is

bounded then there exists y ∈ S and r > 0 such that S ⊂ Br(y).
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Exercises

Exercise 9.1.1. LetH be the set of all real sequences x = (x1, x2, x3, . . .)

such that |xn| ≤ 1 for all n ∈ N. For x, y ∈ H let

d(x, y) =
∞∑

n=1

2−n|xn − yn|.

Prove that d is a metric on H. Note: Part of what you have to show is

that d(x, y) is well-defined which means to show that
∑∞

n=1 2
−n|xn−yn|

converges if x, y ∈ H.
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9.2 Sequences and Limits

Let M be a metric space. A sequence in M is a function z : N →M .

As with sequences of real numbers, we identify a sequence z : N → M

with the infinite list (zn) = (z1, z2, z3, . . .) where zn = z(n) for n ∈ N.

Definition 9.2.1: Convergence of Sequences

Let (M, d) be a metric space. A sequence (zn) in M is said to

converge if there exists p ∈M such that for any given ε > 0 there

exists K ∈ N such that d(zn, p) < ε for all n ≥ K. In this case, we

write

lim
n→∞

zn = p

or (zn) → p, and we call p the limit of (zn). If (zn) does not converge

then we say it is divergent.

One can indeed show, just as in Theorem 3.1.12 for sequences of real

numbers, that the point p in Definition 9.2.1 is indeed unique.

Remark 9.2.2. Suppose that (zn) converges to p and let xn = d(zn, p) ≥
0. Hence, (xn) is a sequence of real numbers. If (zn) → p then for any

ε > 0 there exists K ∈ N such that xn < ε. Thus, xn = d(zn, p) → 0.

Conversely, if d(zn, p) → 0 then clearly (zn) → p.

Example 9.2.3 (Important). Prove that a sequence (fn) converges to f

in the normed vector space (B([a, b], ‖ ·‖∞) if and only if (fn) converges

uniformly to f on [a, b].

Several of the results for sequences of real numbers carry over to

sequences on a general metric space. For example, a sequence (zn) in

M is said to be bounded if the set {zn | n ∈ N} is bounded in M .

Then:
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Lemma 9.2.4

In a metric space, a convergent sequence is bounded.

Proof. Suppose that p is the limit of (zn). There existsK ∈ N such that

d(zn, p) < 1 for all n ≥ K. Let r = 1+max{d(z1, p), . . . , d(zK−1, p)} and
we note that r ≥ 1. Then {zn | n ∈ N} ⊂ Br(p). To see this, if n ≥ K

then d(zn, p) < 1 ≤ r and thus zn ∈ Br(p). On the other hand, for zj ∈
{z1, . . . , zK−1} we have that d(zj, p) ≤ max{d(z1, p), . . . , d(zK−1, p)} <
r, and thus zj ∈ Br(p). This proves that (zn) is bounded.

A subsequence of a sequence (zn) is a sequence of the form (yk) =

(znk
) where n1 < n2 < n3 < · · · . Then (compare with Theorem 3.4.5):

Lemma 9.2.5

LetM be a metric space and let (zn) be a sequence inM . If (zn) → p

then (znk
) → p for any subsequence (znk

) of (zn).

A sequence (zn) inM is called a Cauchy sequence if for any given

ε > 0 there exists K ∈ N such that d(zn, zm) < ε for all n,m ≥ K.

Then (compare with Lemma 3.6.3-3.6.4):
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Lemma 9.2.6

Let M be a metric space and let (zn) be a sequence in M . The

following hold:

(i) If (zn) is convergent then (zn) is a Cauchy sequence.

(ii) If (zn) is a Cauchy sequence then (zn) is bounded.

(iii) If (zn) is a Cauchy sequence and if (zn) has a convergent sub-

sequence then (zn) converges.

Proof. Proofs for (i) and (ii) are left as exercises (see Lemma 3.6.3-

3.6.4). To prove (iii), let (znk
) be a convergent subsequence of (zn), say

converging to p. Let ε > 0 be arbitrary. There exists K ∈ N such

that d(zn, zm) < ε/2 for all n,m ≥ K. By convergence of (znk
) to p,

by increasing K if necessary we also have that d(znk
, p) < ε/2 for all

k ≥ K. Therefore, if n ≥ K, then since nK ≥ K then

d(zn, p) ≤ d(zn, znK
) + d(znK

, p)

< ε/2 + ε/2

= ε.

Hence, (zn) → p.

The previous lemmas (that were applicable on a general metric

space) show that some properties of sequences in R are due entirely to

the metric space structure of R. There are, however, important results

on R, most notably the Bolzano-Weierstrass theorem and the Cauchy

criterion for convergence, that do not generally carry over to a general

metric space. The Bolzano-Weierstrass theorem and the Cauchy crite-

rion rely on the completeness property of R and there is no reason to
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believe that a general metric space comes equipped with a similar com-

pleteness property. Besides, the completeness axiom of R (Axiom 2.4.6)

relies on the order property of R (i.e., ≤) and there is no reason to be-

lieve that a general metric space comes equipped with an order. We

will have more to say about this in Section 9.4. For now, however, we

will consider an important metric space where almost all the results for

sequences in R carry over (an example of a result not carrying over is

the Monotone convergence theorem), namely, the normed vector space

(Rn, ‖·‖).
Denoting a sequence in Rn is notationally cumbersome. Formally,

a sequence in Rn is a function z : N → Rn. How then should we

denote z(k) as a vector in Rn? One way is to simply write z(k) =

(z1(k), z2(k), . . . , zn(k)) for each k ∈ N and this is the notation we will

adopt. It is clear that a sequence (z(k)) in Rn induces n sequences

in R, namely, (zi(k)) for each i ∈ {1, 2, . . . , n} (i.e., the component

sequences). The following theorem explains why Rn inherits almost all

the results for sequences in R.

Theorem 9.2.7: Convergence in Euclidean Spaces

Let (z(k)) = (z1(k), z2(k), . . . , zn(k)) be a sequence in the normed

vector space (Rn, ‖·‖). Then (z(k)) converges if and only if for

each i ∈ {1, 2, . . . , n} the component sequence (zi(k)) converges.

Moreover, if (z(k)) converges then

lim
k→∞

z(k) = ( lim
k→∞

z1(k), lim
k→∞

z2(k), . . . , lim
k→∞

zn(k)).

Proof. Suppose first that (z(k)) converges, say to p = (p1, p2, . . . , pn).

For any i ∈ {1, 2, . . . , n} it holds that

|zi(k)− pi| ≤
√

(z1(k)− p1)2 + (z2(k)− p2)2 + · · ·+ (zn(k)− pn)2
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in other words, |zi(k) − pi| ≤ ‖z(k)− p‖. Since (z(k)) → p then

limk→∞ ‖z(k)− p‖ = 0 and consequently limk→∞ |zi(k)− pi| = 0, that

is, limk→∞ zi(k) = pi.

Conversely, now suppose that (zi(k)) converges for each i ∈ {1, 2, . . . , n}.
Let pi = limk→∞ zi(k) for each i ∈ {1, 2, . . . , n} and let p = (p1, p2, . . . , pn).

By the basic limit laws of sequences in R, the sequence

xk = ‖z(k)− p‖
=
√

(z1(k)− p1)2 + (z2(k)− p2)2 + · · ·+ (zn(k)− pn)2

converges to zero since limk→∞(zi(k) − pi)
2 = 0 and the square root

function x 7→ √
x is continuous. Thus, limk→∞ z(k) = p as desired.

Corollary 9.2.8

Every Cauchy sequence in Rn is convergent.

Proof. Let (z(k)) be a Cauchy sequence in Rn. Hence, for ε > 0 there

exists K ∈ N such that ‖z(k)− z(m)‖ < ε for all k,m ≥ K. Thus, for

any i ∈ {1, 2, . . . , n}, if k,m ≥ K then

|zi(k)− zi(m)| ≤ ‖z(k)− z(m)‖ < ε.

Thus, (zi(k)) is a Cauchy sequence in R, and is therefore convergent

by the completeness property of R. By Theorem 9.2.7, this proves that

(z(k)) is convergent.

Corollary 9.2.9: Bolzano-Weierstrass in Euclidean Space

Every bounded sequence in (Rn, ‖·‖) has a convergent subsequence.

279



9.2. SEQUENCES AND LIMITS

Proof. Let (z(k)) be a bounded sequence in Rn. There exists x =

(x1, . . . , xn) ∈ Rn and r > 0 such that z(k) ∈ Br(x) for all k ∈ N, that

is, ‖z(k)− x‖ < r for all k ∈ N. Therefore, for any i ∈ {1, 2 . . . , n} we

have

|zi(k)− xi| ≤ ‖z(k)− x‖ < r, ∀ k ∈ N.

This proves that (zi(k)) is a bounded sequence in R for each i ∈
{1, 2, . . . , n}. We now proceed by induction. If n = 1 then (z(k)) is just

a (bounded) sequence in R and therefore, by the Bolzano-Weierstrass

theorem on R, (z(k)) has a convergent subsequence. Assume by in-

duction that for some n ≥ 1, every bounded sequence in Rn has a

convergent subsequence. Let (z(k)) be a bounded sequence in Rn+1.

Let (z̃(k)) be the sequence in Rn such that z̃(k) ∈ Rn is the vector

of the first n components of z(k) ∈ Rn+1. Then (z̃(k)) is a bounded

sequence in Rn (why?). By induction, (z̃(k)) has a convergent subse-

quence, say it is (z̃(kj)). Now, the real sequence yj = zn+1(kj) ∈ R is

bounded and therefore by the Bolzano-Weierstrass theorem on R, (yj)

has a convergent subsequence which we denote by (uℓ) = (yjℓ), that

is, uℓ = zn+1(kjℓ). Now, since wℓ = z̃(kjℓ) is a subsequence of the con-

vergent sequence (z̃(kj)), (wℓ) converges in Rn. Thus, each component

of the sequence (z(kjℓ)) in Rn+1 is convergent and since (z(kjℓ)) is a

subsequence of the sequence (z(k))) the proof is complete.

Definition 9.2.10

Let M be a metric space.

(a) A subset U ofM is said to be open if for any x ∈ U there exists

ε > 0 such that Bε(x) ⊂ U .

(b) A subset E of M is closed if Ec =M\E is open.
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Example 9.2.11. Prove that an open ball Bε(x) ⊂ M is open. In

other words, prove that for each y ∈ Bε(x) there exists δ > 0 such that

Bδ(y) ⊂ Bε(x).

Example 9.2.12. Below are some facts that are easily proved; once

(a) and (b) are proved use DeMorgan’s Laws to prove (c) and (d).

(a) If U1, . . . , Un is a finite collection of open sets then
⋂n

k=1Uk is

open.

(b) If {Uk} is collection of open sets indexed by a set I then
⋃

k∈I Uk

is open.

(c) If E1, . . . , En is a finite collection of closed sets then
⋃n

k=1Ek is

closed.

(d) If {Ek} is collection of closed sets indexed by a set I then
⋂

k∈I Ek

is closed.

Below is a characterization of closed sets via sequences.

Theorem 9.2.13: Closed Sets via Sequences

Let M be a metric space and let E ⊂ M . Then E is closed if and

only if every sequence in E that converges does so to a point in E,

that is, if (xn) → x and xn ∈ E then x ∈ E.

Proof. Suppose that E is closed and let (xn) be a sequence in E. If

x ∈ Ec then there exists ε > 0 such that Bε(x) ⊂ Ec. Hence, xn /∈
Bε(x) for all n and thus (xn) does not converge to x. Hence, if (xn)

converges then it converges to a point in E. Conversely, assume that

every sequence in E that converges does so to a point in E and let

x ∈ Ec be arbitrary. Then by assumption, x is not the limit point of

281



9.2. SEQUENCES AND LIMITS

any converging sequence in E. Hence, there exists ε > 0 such that

Bε(x) ⊂ Ec otherwise we can construct a sequence in E converging to

x (how?). This proves that Ec is open and thus E is closed.

Example 9.2.14. Show that C([a, b]) is a closed subset of B([a, b]).

Example 9.2.15. Let M be an arbitrary non-empty set and let d be

the discrete metric, that is, d(x, y) = 1 if x 6= y and d(x, y) = 0 if

x = y. Describe the converging sequences in (M, d). Prove that every

subset of M is both open and closed.

Example 9.2.16. For a ≤ b, prove that [a, b] = {x ∈ R | a ≤ x ≤ b} is

closed.

282



9.2. SEQUENCES AND LIMITS

Exercises

Exercise 9.2.1. Let M be a metric space and suppose that (zn) con-

verges in M . Prove that the limit of (zn) is unique. In other words,

prove that if p and q satisfy the convergence definition for (zn) then

p = q.

Exercise 9.2.2. Let (M, d) be a metric space.

(a) Let y ∈ M be fixed. Prove that if (zn) converges to p then

lim
n→∞

d(zn, y) = d(p, y).

(b) Prove that if (zn) converges to p and (yn) converges to q then

lim
n→∞

d(zn, yn) = d(p, q).

Exercise 9.2.3. Let M be a metric space. Prove that if U1, . . . , Un ⊂
M are open then

⋂n
k=1Uk is open in M .

Exercise 9.2.4. Let (M, d) be a metric space and let E ⊂M . A point

x ∈M is called a limit point (or cluster point) of E if there exists a

sequence (xn) in E, with xn 6= x for all n, converging to x. The closure

of E, denoted by cl(E), is the union of E and the limit points of E. If

cl(E) = M then we say that E is dense in M . As an example, Q is

dense in R since every irrational number is the limit of a sequence of

rational numbers.

(a) Prove that E is dense in M if and only if E ∩ U 6= ∅ for every

open set U of M .

(b) Let E be the set of step functions on [a, b]. Then clearly E ⊂
B([a, b]). Prove that the set of continuous function C([a, b]) is

contained in the closure of E. (Hint: See Example 8.2.6)
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(c) Perform an internet search and find dense subsets of (C([a, b]), ‖·‖∞)

(you do not need to supply proofs).

Exercise 9.2.5. For x ∈ Rn define ‖x‖∞ = max1≤i≤n |xi| and ‖x‖1 =
∑n

i=1 |xi|. It is not hard to verify that these are norms on Rn. Prove

that:

(a) ‖x‖∞ ≤ ‖x‖2 ≤ ‖x‖1,

(b) ‖x‖1 ≤ n ‖x‖∞, and

(c) ‖x‖1 ≤
√
n ‖x‖2

Two metrics d and ρ on a set M are equivalent if they generate the

same convergent sequences, in other words, (xn) converges in (M, d) if

and only if (xn) converges in (M, ρ). Prove that ‖·‖1 , ‖·‖2 , ‖·‖∞ are

equivalent norms on Rn.

Exercise 9.2.6. How do we (Riemann) integrate functions from [a, b]

to Rn? Here is how. First, we equip Rn with the standard Euclidean

norm ‖ · ‖2. For any function F : [a, b] → Rn and any tagged partition

Ṗ = {([tk−1, tk], ck)}nk=1 of [a, b], define the Riemann sum

S(F ; Ṗ) =
n∑

k=1

F (ck)(xk − xk−1).

We then say that F is Riemann integrable if there exists v ∈ Rn such

that for any ε > 0 there exists δ > 0 such that for any tagged partition

Ṗ of [a, b] with ‖Ṗ‖ < δ it holds that

‖S(F ; Ṗ)− v‖2 < ε.

We then also write that
∫ b

a F = v. If F has component functions

F = (f1, f2, . . . , fn), prove that F is Riemann integrable on [a, b] if and
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only if the component functions f1, f2, . . . , fn are Riemann integrable

on [a, b], and in this case,

∫ b

a

F =
(∫ b

a

f1,

∫ b

a

f2, . . . ,

∫ b

a

fn

)

.

Hint: Recall that for any x = (x1, x2, . . . , xn) ∈ Rn it holds that |xi| ≤
‖x‖2.

Exercise 9.2.7. Let R∞ denote the set of infinite sequences in R. It is

not hard to see that R∞ is a R-vector space with addition and scalar

multiplication defined in the obvious way. Let ℓ1 ⊂ R∞ denote the

subset of sequences x = (x1, x2, x3, . . .) such that
∑∞

n=1 |xn| converges,
that is, ℓ1 denotes the set of absolutely convergent series.

(a) Prove that ℓ1 is a subspace of R∞, i.e., prove that ℓ1 is closed

under addition and scalar multiplication.

(b) For x ∈ ℓ1 let ‖x‖1 =
∑∞

n=1 |xn|. Prove that ‖·‖1 defines a norm

on ℓ1.
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9.3 Continuity

Using the definition of continuity for a function f : R → R as a guide,

it is a straightforward task to formulate a definition of continuity for a

function f : M1 → M2 where (M1, d1) and (M2, d2) are metric spaces.

Definition 9.3.1: Continuity

Let (M1, d1) and (M2, d2) be metric spaces. A function f :M1 →M2

is continuous at x ∈M1 if given any ε > 0 there exists δ > 0 such

that if d1(y, x) < δ then d2(f(y), f(x)) < ε. We say that f is

continuous if it is continuous at each point of M1.

Using open balls, f :M1 →M2 is continuous at x ∈M1 if for any given

ε > 0 there exists δ > 0 such that f(y) ∈ Bε(f(x)) whenever y ∈ Bδ(x).

We note that Bε(f(x)) is an open ball in M2 while Bδ(x) is an open

ball in M1.

Below we characterize continuity using sequences (compare with

Theorem 5.1.2).

Theorem 9.3.2: Sequential Criterion for Continuity

Let (M1, d1) and (M2, d2) be metric spaces. A function f :M1 →M2

is continuous at x ∈M1 if and only if for every sequence (xn) in M1

converging to x the sequence (f(xn)) in M2 converges to f(x).

Proof. Assume that f is continuous at x ∈ M1 and let (xn) be a se-

quence inM1 converging to x. Let ε > 0 be arbitrary. Then there exists

δ > 0 such that f(y) ∈ Bε(f(x)) for all y ∈ Bδ(x). Since (xn) → x,

there exists K ∈ N such that xn ∈ Bδ(x) for all n ≥ K. Therefore, for
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n ≥ K we have that f(xn) ∈ Bε(f(x)). Since ε > 0 is arbitrary, this

proves that (f(xn)) converges to f(x).

Suppose that f is not continuous at x. Then there exists ε∗ > 0

such that for every δ > 0 there exists y ∈ Bδ(x) with f(y) /∈ Bε∗(f(x)).

Hence, if δn = 1
n then there exists xn ∈ Bδn(x) such that f(xn) /∈

Bε∗(f(x)). Since d(xn, x) < δn then (xn) → x. On the other hand, it is

clear that (f(xn)) does not converge to f(x). Hence, if f is not contin-

uous at x then there exists a sequence (xn) converging to x such that

(f(xn)) does not converge to f(x). This proves that if every sequence

(xn) in M1 converging to x it holds that (f(xn)) converges to f(x) then

f is continuous at x.

Example 9.3.3. A level set of a function f : M → R is a set of the

form E = {x ∈ M | f(x) = k} for some k ∈ R. Prove that if f is

continuous then the level sets of f are closed sets.

As a consequence of Theorem 9.3.2, if f is continuous at p and

limn→∞ xn = p then limn→∞ f(xn) = f(p) can be written as

lim
n→∞

f(xn) = f( lim
n→∞

xn)

The sequential criteria for continuity can be conveniently used to show

that the composition of continuous function is a continuous function.

Lemma 9.3.4

Let f :M1 →M2 and let g :M2 →M3, where M1,M2, and M3 are

metric spaces. If f is continuous at x ∈ M1 and g is continuous at

f(x) then the composite mapping (g ◦ f) : M1 → M3 is continuous

at x ∈M1.
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Proof. If limn→∞ xn = p then by Theorem 9.3.2, and using the fact that

f is continuous at p, and g is continuous at g(p):

(g ◦ f)(p) = g(f(p))

= g(f( lim
n→∞

xn))

= g( lim
n→∞

f(xn))

= lim
n→∞

g(f(xn))

= lim
n→∞

(g ◦ f)(xn)

In general, given functions f, g :M1 →M2 on metric spacesM1 and

M2, there is no general way to define the functions f±g or fg sinceM2

does not come equipped with a vector space structure nor is it equipped

with a product operation. However, when M2 = R then f(x) and g(x)

are real numbers which can therefore be added/subtracted/multiplied.

Proposition 9.3.5

Let (M, d) be a metric space and let f, g : M → R be continuous

functions, where R is equipped with the usual metric. If f and g

are continuous at x ∈ M then f + g, f − g, and fg are continuous

at x ∈M .

Proof. In all cases, the most economical proof is to use the sequential

criterion. The details are left as an exercise.

Recall that for any function f : A → B and S ⊂ B the set f−1(S)
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is defined as

f−1(S) = {x ∈ A | f(x) ∈ S}.

Example 9.3.6. For any function f : A → B prove that (f−1(S))c =

f−1(Sc) for any S ⊂ B.

Proposition 9.3.7: Continuity via Open and Closed Sets

For a given function f : (M1, d1) → (M2, d2) the following are equiv-

alent:

(i) f is continuous on M1.

(ii) f−1(U) is open in M1 for every open subset U ⊂ M2.

(iii) f−1(E) is closed in M1 for every closed subset E ⊂M2.

Proof. (i) =⇒ (ii): Assume that f is continuous onM1 and let U ⊂M2

be open. Let x ∈ f−1(U) and thus f(x) ∈ U . Since U is open, there

exists ε > 0 such that Bε(f(x)) ⊂ U . By continuity of f , there exists

δ > 0 such that if y ∈ Bδ(x) then f(y) ∈ Bε(f(x)). Therefore, Bδ(x) ⊂
f−1(U) and this proves that f−1(U) is open.

(ii) =⇒ (i): Let x ∈M1 and let ε > 0 be arbitrary. Since Bε(f(x)) is

open, by assumption f−1(Bε(f(x))) is open. Clearly x ∈ f−1(Bε(f(x)))

and thus there exists δ > 0 such that Bδ(x) ⊂ f−1(Bε(f(x))), in other

words, if y ∈ Bδ(x) then f(y) ∈ Bε(f(x)). This proves that f is

continuous at x.

(ii) ⇐⇒ (iii): This follows from the fact that (f−1(U))c = f−1(U c)

for any set U . Thus, for instance, if f−1(U) is open for every open set

U then if E is closed then f−1(Ec) is open, that is, (f−1(E))c is open,

i.e., f−1(E) is closed.
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Example 9.3.8. Use Proposition 9.3.7 to prove that the level sets of

a function f :M → R on a metric space M are closed sets.

Example 9.3.9. A function f : (M1, d1) → (M2, d2) is called Lipschitz

on M1 if there exists K > 0 such that d2(f(x), f(y)) ≤ Kd1(x, y) for

all x, y ∈M1. Prove that a Lipschitz function is continuous.

Example 9.3.10. For A ∈ Rn×n recall that ‖A‖∞ = sup1≤i,j≤n |ai,j|.
Let tr : Rn×n → R be the trace function on Rn×n, that is, tr(A) =
∑n

i=1 ai,i. Show that tr is Lipschitz and therefore continuous.

Let ℓ∞ denote the set of all real sequences (xn) that are bounded,

that is, {|xn| : n ∈ N} is a bounded set. If x = (xn) ∈ ℓ∞, it is

straightforward to verify that ‖x‖∞ = supn∈N |xn| defines a norm on ℓ∞
with addition and scalar multiplication defined in the obvious way. Let

ℓ1 be the set of absolutely summable sequences (xn), that is, (xn) ∈ ℓ1

if and only if
∑∞

n=1 |xn| converges. It is not too hard to verify that ℓ1

is a normed vector space with norm defined as ‖x‖1 =
∑∞

n=1 |xn|. If
∑∞

n=1 |xn| converges then (|xn|) converges to zero and thus (xn) ∈ ℓ∞,

thus ℓ1 ⊂ ℓ∞.

Example 9.3.11. Fix y = (yn)
∞
n=1 ∈ ℓ∞ and let h : ℓ1 → ℓ1 be defined

as h(x) = (xnyn)
∞
n=1 for x = (xn)

∞
n=1. Verify that h is well-defined and

prove that h is continuous.

Example 9.3.12. Let det : Rn×n → R denote the determinant func-

tion. Prove that det is continuous; you may use the formula

det(A) =
∑

σ∈Sn

(

sgn(σ)
n∏

i=1

ai,σ(i)

)

where Sn is the set of permutations on {1, 2, . . . , n} and sgn(σ) = ±1

is the sign of the permutation σ ∈ Sn.
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Exercises

Exercise 9.3.1. Let (M, d) be a metric space. Fix y ∈ M and define

the function f :M → R by f(x) = d(x, y). Prove that f is continuous.

Exercise 9.3.2. Let (V, ‖·‖) be a normed vector space. Prove that f :

V → R defined by f(x) = ‖x‖ is continuous. Hint: ‖a‖ ≤ ‖a− b‖+‖b‖
for all a, b, c ∈ V .

Exercise 9.3.3. ConsiderC([a, b]) with norm ‖·‖∞. Define the functionΨ :

C([a, b]) → R by Ψ(f) =
∫ b

a f(x) dx. Prove that Ψ is continuous in two

ways, using the definition and the sequential criterion for continuity.

Exercise 9.3.4. Let M be a metric space and let f : M → R be

continuous. Prove that E = {x ∈M | f(x) = 0} is closed.

Exercise 9.3.5. Consider Rn×n as a normed vector space with norm

‖A‖∞ = sup1≤i,j≤n |ai,j| for A ∈ Rn×n.

(a) Let (A(k))∞k=1 be a sequence in Rn×n and denote the (i, j) entry

of the matrix A(k) as ai,j(k). Prove that (A(k))∞k=1 converges to

B ∈ Rn×n if and only if for all i, j ∈ {1, 2, . . . , n} the real sequence
(ai,j(k))

∞
k=1 converges to bi,j ∈ R.

(b) Given matrices X,Y ∈ Rn×n, recall that the entries of the prod-

uct matrix XY are (XY)i,j =
∑n

ℓ=1 xi,ℓyℓ,j. Let (A(k))∞k=1 be a

sequence in Rn×n converging to B and let (C(k))∞k=1 be the se-

quence whose kth term is C(k) = A(k)A(k) = [A(k)]2. Prove

that (C(k))∞k=1 converges to B2. Hint: By part (a), it is enough

to prove that the (i, j) component of C(k) converges to the (i, j)

component of B2.

(c) Deduce that if C(k) = [A(k)]m where m ∈ N then the sequence

(C(k))∞k=1 converges to the matrix Bm.
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(d) A polynomial matrix function is a function f : Rn×n → Rn×n

of the form

f(A) = cmA
m + cm−1A

m−1 + · · ·+ c1A+ c0I

where cm, . . . , c0 are constants and I denotes the n × n identity

matrix. Prove that a polynomial matrix function is continuous.

Exercise 9.3.6. According to the sequential criterion for continuity, if

(zn) and (wn) are sequences in M converging to the same point p ∈M

and f : M → R is a function such that sequences (f(zn)) and (f(wn))

do not have the same limit f(p) (or worse one of them is divergent!)

then f is discontinuous at p. Consider f : R2 → R given by

f(x, y) =

{
2xy

x2+y2 , (x, y) 6= (0, 0)

0, (x, y) = (0, 0).

Show that f is discontinuous at p = (0, 0).
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9.4 Completeness

Consider the space P [a, b] of polynomial functions on the interval [a, b].

Clearly, P [a, b] ⊂ C([a, b]), and thus (P [a, b], ‖·‖∞) is a metric space.

The sequence of functions fn(x) =
∑n

k=0
1
k!x

k is a sequence in P [a, b]

and it can be easily verified that (fn) converges in the metric ‖·‖∞, that

is, (fn) converges uniformly in [a, b] (see Example 8.4.8). However, the

limiting function f is not an element of P [a, b] because it can be verified

that f ′(x) = f(x) and the only polynomial equal to its derivative is the

zero polynomial, however, it is clear that f(0) = limn→∞ fn(0) = 1, i.e.,

f is not the zero function (you may recognize, of course, that f(x) = ex).

We do know, however, that f is in C([a, b]) because the uniform limit of

a sequence of continuous functions is continuous. The set P [a, b] then

suffers from the same “weakness” as do the rationals Q relative to R,

namely, there are sequences in P [a, b] that converge to elements not

in P [a, b]. On the other hand, because (fn) converges it is a Cauchy

sequence in C([a, b]) and thus also in P [a, b] (the Cauchy condition

only depends on the metric) and thus (fn) is a Cauchy sequence in

P [a, b] that does not converge to an element of P [a, b]. The following

discussion motivates the following definition.

Definition 9.4.1: Complete Metric Space

A metric space M is called complete if every Cauchy sequence in

M converges in M .

This seems like a reasonable starting definition of completeness since

in R it can be proved that the Cauchy criterion (plus the Archimedean

property) implies the Completeness property of R (Theorem 3.6.8).

Based on our characterization of closed sets via sequences, we have
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the following first theorem regarding completeness.

Theorem 9.4.2

Let (M, d) be a complete metric space and let P ⊂M . Then (P, d)

is a complete metric space if and only if P is closed.

Proof. If (zn) is a Cauchy sequence in (P, d) then it is also a Cauchy

sequence in (M, d). Since (M, d) is complete then (zn) converges. If P

is closed then by Theorem 9.2.13 the limit of (zn) is in P . Hence, (P, d)

is a complete metric space.

Now suppose that (P, d) is a complete metric space and let (zn)

be a sequence in P that converges to z ∈ M . Then (zn) is a Cauchy

sequence in M and thus also Cauchy in P . Since P is complete then

z ∈ P . Hence, by Theorem 9.2.13 P is closed.

We now consider how to formulate the Bolzano-Weierstrass (BW)

property in a general metric space. The proof in Theorem 3.6.8 can

be easily modifield to prove that the BW property, namely that ev-

ery bounded sequence in R has a convergent subsequence, implies the

completeness property of R. We therefore want to develop a BW-type

condition in a general metric spaceM that implies thatM is complete.

Our first order of business is to develop the correct notion of bounded-

ness. We have already defined what it means for a subset E ⊂ M to

be bounded, namely, that there exists r > 0 such that E ⊂ Br(x) for

some x ∈ M . However, this notion is not enough as the next example

illustrates.

Example 9.4.3. Consider P [0, 1] with induced metric ‖·‖∞ and let

E = {f ∈ P [0, 1] : ‖f‖∞ < 3}, in other words, E is the open ball of

radius r = 3 centered at the zero function. Clearly, E is bounded and

294



9.4. COMPLETENESS

thus any sequence in E is bounded. The sequence fn(x) =
∑n

k=0
1
k!x

k

is in E, that is, ‖fn‖∞ < 3 for all n (see Example 3.3.6). However,

as already discussed, (fn) converges in C[0, 1] but not to a point in

P [0, 1]. On the other hand, (fn) is a Cauchy sequence in P [0, 1] and

thus (fn) cannot have a converging subsequence in P [0, 1] by part (iii)

of Lemma 9.2.6. Thus, (fn) is a bounded sequence in P [0, 1] with no

converging subsequence in P [0, 1].

The correct notion of boundedness that is needed is the following.

Definition 9.4.4

Let (M, d) be a metric space. A subset E ⊂ M is called totally

bounded if for any given ε > 0 there exists z1, . . . , zN ∈ E such

that E ⊂ ⋃N
i=1Bε(zi).

Example 9.4.5. Prove that a subset of a totally bounded set is also

totally bounded.

Example 9.4.6. A totally bounded subset E of a metric space M is

bounded. If E ⊂ Bε(x1)∪· · ·∪Bε(xk) then if r = max2≤j≤k d(x1, xj)+ε

then if x ∈ E ∩ Bε(xj) then d(x1, x) ≤ d(x1, xj) + d(xj, x) < r. Hence,

E ⊂ Br(x1).

The following shows that the converse in the previous example does

not hold.

Example 9.4.7. Consider ℓ1 and let E = {e1, e2, e3, . . .} where ek is

the infinite sequence with entry k equal to 1 and all other entries zero.

Then ‖ek‖1 = 1 for all k ∈ N and therefore E is bounded, in particular

E ⊂ Br(0) for any r > 1. Now, ‖ek − ej‖1 = 2 for all k 6= j and thus if

ε ≤ 2 then no finite collection of open balls Bε(ek1), Bε(ek2), . . . , Bε(ekN )

can cover E. Hence, E is not totally bounded.
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Example 9.4.8. Prove that a bounded subset E ofR is totally bounded.

Theorem 9.4.9: Bolzano-Weierstrass

Let M be a metric space. Then M is complete if and only if every

infinite totally bounded subset of M has a limit point in M .

Proof. Suppose that (M, d) is a complete metric space. Let E be an

infinite totally bounded subset of M . Let εn = 1
2n for n ∈ N. For ε1

there exists z1, . . . , zm1
∈ E such that E ⊂ ⋃m1

j=1Bε1(zj). Since E is

infinite, we can assume without loss of generality that E1 = E∩Bε1(z1)

contains infinitely many points of E. Let then x1 = z1. Now, E1

is totally bounded and thus there exists w1, . . . , wm2
∈ E1 such that

E1 ⊂ ⋃m2

j=1Bε2(wj). Since E1 is infinite, we can assume without loss

of generality that E2 = E1 ∩ Bε2(w1) contains infinitely many points

of E1. Let x2 = w1 and therefore d(x2, x1) < ε1. Since E2 is totally

bounded there exists u1, . . . , um3
∈ E2 such that E2 ⊂

⋃m3

j=1Bε3(uj). We

can assume without loss of generality that E3 = E2 ∩ Bε3(u1) contains

infinitely many elements of E2. Let x3 = u1 and thus d(x3, x2) < ε2. By

induction, there exists a sequence (xn) in E such that d(xn+1, xn) <
1
2n .

Therefore, if m > n then by the triangle inequality (and the geometric

series) we have

d(xm, xn) ≤ d(xm, xm−1) + · · ·+ d(xn+1, xn)

<
1

2m−1
+ · · ·+ 1

2n

<
1

2n−1
.

Therefore, (xn) is a Cauchy sequence and since M is complete (xn)

converges in M . Thus E has a limit point in M .
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Conversely, assume that every infinite totally bounded subset of M

has a limit point in M . Let (xn) be a Cauchy sequence in M and let

E = {xn | n ∈ N}. For any given ε > 0 there exists K ∈ N such that

|xn − xK| < ε for all n ≥ K. Therefore, xn ∈ Bε(xK) for all n ≥ K

and clearly xj ∈ Bε(xj) for all j = 1, 2, . . . , K1. Thus, E is totally

bounded. By assumption, E has a limit point, that is, there exists a

subsequence of (xn) that converges inM . By part (iii) of Lemma 9.2.6,

(xn) converges in M . Thus, M is a complete metric space.

The proof in Theorem 9.4.9 that completeness implies that every

infinite totally bounded subset has a limit point is reminiscent of the

bisection method proof that a bounded sequence in R contains a conver-

gent subsequence. Also, the proof showed the following.

Lemma 9.4.10

If E is an infinite totally bounded subset of (M, d) then E contains

a Cauchy sequence (xn) such that xn 6= xm for all n 6= m.

A complete normed vector space is usually referred to as a Banach

space in honor of Polish mathematician Stefan Banach (1892-1945)

who, in his 1920 doctorate dissertation, laid the foundations of these

spaces and their applications in integral equations. An important ex-

ample of a Banach space is the following. LetX be a non-empty set and

let B(X) be the set of bounded functions from X to R with sup-norm

‖f‖∞ = supx∈X |f(x)|. Then convergence in (B(X), ‖·‖∞) is uniform

convergence (Example 9.2.3). We have all the tools necessary to prove

that B(X) is a Banach space.
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Theorem 9.4.11

Let X be a non-empty set. The normed space (B(X), ‖·‖∞) is a

Banach space.

Proof. First of all, it is clear that B(X) is a real vector space and thus

we need only show it is complete. The proof is essentially contained

in the Cauchy criterion for uniform convergence for functions on R

(Theorem 8.2.7). Let fn : X → R be a Cauchy sequence of bounded

functions. Then for any given ε > 0 there exists K ∈ N such that if

n,m ≥ K then ‖fn − fm‖∞ < ε. In particular, for any fixed x ∈ X it

holds that

|fn(x)− fm(x)| ≤ ‖fn − fm‖∞ < ε.

Therefore, the sequence of real numbers (fn(x)) is a Cauchy sequence

and thus f(x) = limn→∞ fn(x) exists for each x ∈ X. Now, since (fn)

is a Cauchy sequence in B(X) then (fn) is bounded in B(X). Thus,

there exists M > 0 such that ‖fn‖∞ ≤ M for all n ≥ 1. Thus, for all

x ∈ X and n ≥ 1 it holds that

|fn(x)| ≤ ‖fn‖∞ ≤ M

and by continuity of the absolute value function it holds that

|f(x)| = lim
n→∞

|fn(x)| ≤ M.

Thus, f is a bounded function, that is, f ∈ B(X). Now, for any fixed

ε > 0, let K ∈ N be such that |fn(x)− fm(x)| < ε/2 for all x ∈ X and

n,m ≥ K. Therefore, for any x ∈ X we have that

lim
m→∞

|fn(x)− fm(x)| = |fn(x)− f(x)|
≤ ε/2.
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Therefore, ‖fn − f‖∞ < ε for all n ≥ K. This proves that (fn) con-

verges to f in (B(X), ‖·‖∞).

Corollary 9.4.12

The space of continuous functions C([a, b]) on the interval [a, b] with

sup-norm is a Banach space.

Proof. A continuous function on the interval [a, b] is bounded and thus

C([a, b]) ⊂ B([a, b]). Convergence in B([a, b]) with sup-norm is uniform

convergence. A sequence of continuous functions that converges uni-

formly on [a, b] does so to a continuous function. Hence, Theorem 9.2.13

implies that C([a, b]) is a closed subset of the complete metric space

B([a, b]) and then Theorem 9.4.2 finishes the proof.

Example 9.4.13. Prove that ℓ∞ and ℓ1 are complete and hence Banach

spaces.

In a Banach space, convergence of series can be decided entirely

from the convergence of real series.

Theorem 9.4.14: Absolute Convergence Test

Let (V, ‖·‖) be a Banach space and let (zn) be a sequence in V . If the

real series
∑∞

n=1 ‖zn‖ converges then the series
∑∞

n=1 zn converges

in V .

Proof. Suppose that
∑∞

n=1 ‖zn‖ converges, that is, suppose that the

sequence of partial sums tn =
∑n

k=1 ‖zn‖ converges (note that (tn) is

increasing). Then (tn) is a Cauchy sequence. Consider the sequence of
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partial sums sn =
∑n

k=1 zk. For n > m we have

‖sn − sm‖ =

∥
∥
∥
∥
∥

n∑

k=m+1

zn

∥
∥
∥
∥
∥

≤
n∑

k=m+1

‖zn‖

= tn − tm

= |tn − tm|

and since (tn) is Cauchy then |tn − tm| can be made arbitrarily small

provided n,m are sufficiently large. This proves that (sn) is a Cauchy

sequence in V and therefore converges since V is complete.

Remark 9.4.15. Wemake two remarks. The converse of Theorem 9.4.14

is also true, that is, if every series
∑
zn in (V, ‖·‖) converges whenever

∑ ‖zn‖ converges in R then V is a Banach space. Notice that the proof

of Theorem 9.4.14 is essentially the same as the proof of the Weierstrass

M -test.

Example 9.4.16. Consider the set of matrices Rn×n equipped with the

2-norm

‖A‖2 =
(

n∑

i,j=1

a2i,j

)1/2

The norm ‖A‖2 is called the Frobenius norm or theHilbert-Schmidt

norm.

(a) Prove that (Rn×n, ‖·‖2) is complete.

(b) Use the Cauchy-Schwarz inequality

(
N∑

ℓ=1

xℓyℓ

)2

≤
(

N∑

ℓ=1

x2ℓ

)(
N∑

ℓ=1

y2ℓ

)
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to prove that ‖AB‖2 ≤ ‖A‖2 ‖B‖2. Conclude that
∥
∥Ak

∥
∥
2
≤

(‖A‖2)k for all k ∈ N.

(c) Let f(x) =
∑∞

k=1 ckx
k be a power series converging on R. Define

the function f : Rn×n → Rn×n as

f(A) =

∞∑

k=1

ckA
k.

Prove that f is well-defined and that if ck ≥ 0 then ‖f(A)‖2 ≤
f(‖A‖2), that is, that

∥
∥
∥
∥
∥

∞∑

k=1

ckA
k

∥
∥
∥
∥
∥
2

≤
∞∑

k=1

ck ‖A‖k2

Proof. (a) The norm ‖A‖2 is simply the standard Euclidean norm on

(RN , ‖·‖2) with N = n2 and identifying matrices as elements of

RN . Hence, (Rn×n, ‖·‖2) is complete.

(b) From the Cauchy-Schwarz inequality we have

(AB)2i,j =

(
n∑

ℓ=1

ai,ℓbℓ,j

)2

≤
(

n∑

ℓ=1

a2i,ℓ

)(
n∑

ℓ=1

b2ℓ,j

)
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and therefore

‖AB‖2 =
(
∑

1≤i,j≤n

(AB)2i,j

)1/2

≤
(
∑

1≤i,j≤n

(
n∑

ℓ=1

a2i,ℓ

)(
n∑

ℓ=1

b2ℓ,j

))1/2

=





n∑

i,ℓ=1

a2i,ℓ





1/2



n∑

j,ℓ=1

b2ℓ,j





1/2

= ‖A‖2 ‖B‖2

(c) We first note that for any power series
∑∞

k=1 akx
k that converges

in (−R,R), the power series∑∞
k=1 |ak|xk also converges in (−R,R).

The normed space (Rn×n, ‖·‖2) is complete and thus
∑∞

k=1 ckA
k

converges whenever
∑∞

k=1

∥
∥ckA

k
∥
∥
2
converges. Now by part (b),

∥
∥ckA

k
∥
∥
2
= |ck|

∥
∥Ak

∥
∥
2
≤ |ck| ‖A‖k2 and since

∑∞
k=1 |ck| ‖A‖k2 con-

verges then by the comparison test for series in R, the series
∑∞

k=1

∥
∥ckA

k
∥
∥
2
converges. Therefore, f(A) is well-defined by The-

orem 9.4.14. To prove the last inequality, we note that the norm

function on a vector space is continuous and thus if ck ≥ 0 then

∥
∥
∥
∥
∥

m∑

k=1

ckA
k

∥
∥
∥
∥
∥
2

≤
m∑

k=1

|ck| ‖A‖k2

≤
m∑

k=1

ck ‖A‖k2
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and therefore
∥
∥
∥
∥
∥

∞∑

k=1

ckA
k

∥
∥
∥
∥
∥
2

= lim
m→∞

∥
∥
∥
∥
∥

m∑

k=1

ckA
k

∥
∥
∥
∥
∥
2

≤ lim
m→∞

m∑

k=1

ck ‖A‖k2

=
∞∑

k=1

ck ‖A‖k2 ,

in other words, ‖f(A)‖2 ≤ f(‖A‖2).

Example 9.4.17. In view of the previous example, we can define for

A ∈ Rn×n the following:

eA =
∞∑

k=0

1

k!
Ak

sin(A) =

∞∑

k=0

(−1)n

(2n+ 1)!
A2n+1

cos(A) =
∞∑

k=0

(−1)n

(2n)!
A2n

arctan(A) =
∞∑

k=0

(−1)n

(2n+ 1)
A2n+1

and for instance
∥
∥eA
∥
∥
2
≤ e‖A‖2, etc.
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Exercises

Exercise 9.4.1. Let (M1, d1) and (M2, d2) be metric spaces. There

are several ways to define a metric on the Cartesian product M1 ×M2.

One way is to imitate what was done in R2 = R × R. We can define

d :M1 ×M2 → [0,∞) as

d((x, u), (y, v)) =
√

d1(x, y)2 + d2(u, v)2

(a) Prove that d is a metric on M1 ×M2.

(b) Prove that ((xn, un))
∞
n=1 converges in M1 × M2 if and only if

(xn)
∞
n=1 and (yn)

∞
n=1 converge in M1 and M2, respectively. (Hint:

Theorem 9.2.7)

(c) Prove that M1 ×M2 is complete if and only if M1 and M2 are

complete. (Hint: Corollary 9.2.8)

Exercise 9.4.2. Let M be a complete metric space and let (zn) be a

sequence in M such that d(zn, zn+1) < rn for all n ∈ N for some fixed

0 < r < 1. Prove that (zn) converges. (See Exercise 3.6.6.)

Exercise 9.4.3. Let
∑∞

n=1 xn be a convergent series in a normed vector

space (V, ‖·‖) and suppose that
∑∞

n=1 ‖xn‖ converges. Show that
∥
∥
∥
∥
∥

∞∑

n=1

xn

∥
∥
∥
∥
∥
≤

∞∑

n=1

‖xn‖.

Note: The △-inequality can only be used on a finite sum. (See Exer-

cise 9.3.2.)

Exercise 9.4.4. Consider the normed space (B(X), ‖ · ‖∞) where X

is a non-empty set. Let K(X) be the set of constant functions on X.

Prove that (K(X), ‖ · ‖∞) is a Banach space. (Hint: Theorem 9.4.2)
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9.5 Compactness

Important results about continuous functions, such as the Extreme

Value Theorem (Theorem 5.3.7) and uniform continuity (Theorem 5.4.7),

depended heavily on the domain being a closed and bounded interval.

On a bounded interval, any sequence (xn) contains a Cauchy subse-

quence (xnk
) (use the bisection algorithm), and if the interval is also

closed then we are guaranteed that the limit of (xnk
) is contained in the

interval. We have already seen that a totally bounded subset E of a

metric space M contains a Cauchy sequence (Lemma 9.4.10) and thus

if E is complete then Cauchy sequences converge in E. This motivates

the following definition.

Definition 9.5.1: Compactness

A metric space M is called compact if M is totally bounded and

complete.

A closed and bounded subset E of R is compact. Indeed, E is complete

because it is closed (Theorem 9.4.2) and it is easy to see how to cover

E with a finite number of open intervals of any given radius ε > 0.

Conversely, if E ⊂ R is compact then E is bounded and E is closed

by Theorem 9.4.2. A similar argument shows that E ⊂ Rn is compact

if and only if E is closed and bounded. This is called the Heine-Borel

theorem.

Theorem 9.5.2: Heine-Borel

A subset E ⊂ Rn is compact if and only if E is closed and bounded.
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Example 9.5.3. The unit n-sphere Sn in Rn+1 is the set

Sn = {x = (x1, x2, . . . , xn, xn+1) ∈ Rn | x21 + x22 + · · ·+ x2n+1 = 1}.

Explain why Sn is compact subset of Rn+1.

Example 9.5.4. ConsiderRn×n with norm ‖A‖2 =
(
∑

i,j a
2
i,j

)1/2

. Then

Rn×n is complete. A matrix Q ∈ Rn×n is called orthogonal if QTQ = I,

where QT denotes the transpose of Q and I is the identity matrix.

Prove that the set of orthogonal matrices, which we denote by O(n), is

compact.

A useful characterization of compactness is stated in the language

of sequences.

Theorem 9.5.5: Sequential Criterion for Compactness

A metric space M is compact if and only if every sequence in M

has a convergent subsequence.

Proof. Assume that M is compact. If (xn) is a sequence in M then

{xn | n ∈ N} is totally bounded and thus has a Cauchy subsequence

which converges by completeness of M .

Conversely, assume that every sequence inM has a convergent sub-

sequence. If (xn) is a Cauchy sequence then by assumption it has a

convergent subsequence and thus (xn) converges. This proves M is

complete. Suppose that M is not totally bounded. Then there exists

ε > 0 such that M cannot be covered by a finite number of open balls

of radius ε > 0. Hence, there exists x1, x2 ∈M such that d(x1, x2) ≥ ε.

By induction, suppose x1, . . . , xk are such that d(xi, xj) ≥ ε for i 6= j.

Then there exists xk+1 such that d(xi, xk+1) ≥ ε for all i = 1, . . . , k.

By induction then, there exists a sequence (xn) such that d(xi, xj) ≥ ε
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if i 6= j. Clearly, (xn) is not a Cauchy sequence and therefore cannot

have a convergent subsequence.

Example 9.5.6. Let M be a metric space.

(a) Prove that if E ⊂ M is finite then E is compact.

(b) Is the same true if E is countable?

(c) What if M is compact?

We now describe how compact sets behave under continuous func-

tions.

Theorem 9.5.7

Let f : M1 → M2 be a continuous mapping. If E ⊂ M1 is compact

then f(E) ⊂M2 is compact.

Proof. We use the sequential criterion for compactness. Let yn = f(xn)

be a sequence in f(E). Since E is compact, by Theorem 9.5.5, there is

a convergent subsequence (xnk
) of (xn). By continuity of f , the subse-

quence ynk
= f(xnk

) of (yn) is convergent. Hence, f(E) is compact.

We now prove a generalization of the Extreme value theorem 5.3.7.

Theorem 9.5.8: Extreme Value Theorem

Let (M, d) be a compact metric space. If f : M → R is continuous

then f achieves a maximum and a minimum on M , that is, there

exists x∗, x∗ ∈M such that f(x∗) ≤ f(x) ≤ f(x∗) for all x ∈M . In

particular, f is bounded.
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Proof. By Theorem 9.5.7, f(M) is a compact subset of R and thus

f(M) is closed and bounded. Let y∗ = inf f(M) and let y∗ = sup f(M).

By the properties of the supremum, there exists a sequence (yn) in f(M)

converging to y∗. Since f(M) is closed, then y∗ ∈ f(M) and thus y∗ =

f(x∗) for some x∗ ∈M . A similar argument shows that y∗ = f(x∗) for

some x∗ ∈ M . Hence, inf f(M) = f(x∗) ≤ f(x) ≤ f(x∗) = sup f(M)

for all x ∈M .

Let M be a metric space and let E ⊂ M . A cover of E is a

collection {Ui}i∈I of subsets of M whose union contains E. The index

set I may be countable or uncountable. The cover {Ui}i∈I is called an

open cover if each set Ui is open. A subcover of a cover {Ui} of E

is a cover {Uj}j∈J of E such that J ⊂ I.

Theorem 9.5.9: Compactness via Open Covers

A metric space M is compact if and only if every open cover of M

has a finite subcover.

Proof. Assume that M is compact. Then by Theorem 9.5.5, every

sequence inM has a convergent subsequence. Let {Ui} be an open cover

of M . We claim there exists ε > 0 such that for each x ∈ M it holds

that Bε(x) ⊂ Ui for some Ui. If not, then then for each n ∈ N there

exists xn ∈ M such that B1/n(xn) is not properly contained in a single

set Ui. By assumption, the sequence (xn) has a converging subsequence,

say it is (xnk
) and y = limxnk

. Hence, for each k ∈ N, B1/nk
(xnk

) is

not properly contained in a single Ui. Now, y ∈ Uj for some j, and

thus since Uj is open there exists δ > 0 such that Bδ(y) ⊂ Uj. Since

(xnk
) → y, there exists K sufficiently large such that d(xnK

, y) < δ/2

and 1
nK

< δ/2. Then B1/nK
(xnK

) ⊂ Uj which is a contradiction. This

proves that such an ε > 0 exists. Now since M is totally bounded,
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there exists z1, z2, . . . , zp ∈M such that Bε(z1)∪ · · ·∪Bε(zp) = M , and

since Bε(zj) ⊂ Uij for some Uij it follows that {Ui1, Ui2, . . . , Uip} is a

finite subcover of {Ui}.
For the converse, we prove the contrapositive. Suppose then thatM

is not compact. Then by Theorem 9.5.5, there is a sequence (xn) in M

with no convergent subsequence. In particular, there is a subsequence

(yk) of (xn) such that all yk’s are distinct and (yk) has no convergent

subsequence. Then there exists εi > 0 such that Bεi(yi) contains only

the point yi from the sequence (yk), otherwise we can construct a sub-

sequence of (yk) that converges. Hence, {Bεk(yk)}k∈N is an open cover

of the set E = {y1, y2, y3, . . . , } that has no finite subcover. The set E is

clearly closed since it consists entirely of isolated points of M . Hence,

{Bεk(yk)}k∈N∪M\E is an open cover ofM with no finite subcover.

Definition 9.5.10: Uniform Continuity

A function f : (M1, d1) → (M2, d2) is uniformly continuous if

for any ε > 0 there exists δ > 0 such that if d1(x, y) < δ then

d2(f(x), f(y)) < ε.

Example 9.5.11. A function f : (M1, d1) → (M2, d2) is Lipschitz if

there is a constant K > 0 such that d2(f(x), f(y)) ≤ Kd(x, y). Show

that a Lipschitz map is uniformly continuous.

Example 9.5.12. If f :M1 →M2 is uniformly continuous and (xn) is

a Cauchy sequence in M1, prove that (f(xn)) is a Cauchy sequence in

M2.
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Theorem 9.5.13

If f : (M1, d1) → (M2, d2) is continuous and M1 is compact then f

is uniformly continuous.

Proof. Let ε > 0. For each x ∈M1, there exists rx > 0 such that if y ∈
Brx(x) then f(y) ∈ Bε/2(f(x)). Now {Brx/2(x)}x∈M1

is an open cover

of M1 and since M1 is compact there exists finite x1, x2, . . . , xN such

that {Bδi(xi)}Ni=1 is an open cover of M1, where we have set δi = rxi
/2.

Let δ = min{δ1, . . . , δN}. If d1(x, y) < δ, and say x ∈ Bδi(xi), then

d1(y, xi) ≤ d1(y, x) + d1(x, xi) < δ + δi < rxi
and thus

d2(f(x), f(y)) ≤ d2(f(x), f(xi)) + d2(f(xi), f(y))

< ε/2 + ε/2

= ε.

This proves that f is uniformly continuous.
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Exercises

Exercise 9.5.1. Prove that if E ⊂ R is compact then sup(E) and

inf(E) are elements of E.

Exercise 9.5.2. Recall that ℓ∞ is the set of sequences in R that are

bounded and equipped with the norm ‖(xn)‖∞ = supn∈N |xn|. Show

that the unit ball B = {(xn) : ‖(xn)‖∞ ≤ 1} (which is clearly bounded)

is not compact in ℓ∞. (see Example 9.4.7)

Exercise 9.5.3. Let (xn) be a sequence in a metric space M and sup-

pose that (xn) converges to p. Prove that S = {p} ∪ {xn |n ∈ N} is a

compact subset of M .

Exercise 9.5.4. Prove that if M is compact then there exists a count-

able subset E ⊂M that is dense in M .

Exercise 9.5.5. Let E be a compact subset ofM and fix p ∈M . Prove

that there exists z ∈ E such that d(z, p) ≤ d(x, p) for all x ∈ E.

9.6 Fourier Series

Motivated by problems involving the conduction of heat in solids and

the motion of waves, a major problem that spurred the development of

modern analysis (and mathematics in general) was whether an arbitrary

function f can be represented by a series of the form

a0
2
+

∞∑

n=1

(an cos(nx) + bn sin(nx))

for appropriately chosen coefficients an and bn. A central character

in this development was mathematician and physicist Joseph Fourier

and for this reason such a series is now known as a Fourier series.
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Fourier made the bold claim (Theorie analytique de la Chaleur, 1822 )

that “there is no function f(x) or part of a function, which cannot be

expressed by a trigonometric series”. Fourier’s claim led B. Riemann

(1854) to develop what we now call the Riemann integral. After Rie-

mann, Cantor’s (1872) interest in trigonometric series led him to the

investigation of the derived set of a set S (which nowadays we call the

limit points of S) and he subsequently developed set theory. The gen-

eral problem of convergence of a Fourier series led to the realization that

by allowing “arbitrary” functions into the picture the theory of integra-

tion developed by Riemann would have to be extended to widened the

class of “integrable functions”. This extension of the Riemann integral

was done by Henri Lebesgue (1902) and spurred the development of

the theory of measure and integration. The Lebesgue integral is widely

accepted as the “official” integral of modern analysis.

In this section, our aim is to present a brief account of Fourier series

with the tools that we have already developed. To begin, suppose that

f : [−π, π] → R is Riemann integrable and can be represented by a

Fourier series, that is,

f(x) =
a0
2

+
∞∑

n=1

(an cos(nx) + bn sin(nx)) (9.1)

for x ∈ [−π, π]. In other words, the series on the right of (9.1) converges

pointwise to f on [−π, π]. The first question we need to answer is what

are the coefficients an and bn in terms of f? To that end, we use the

following facts. Let n,m ∈ N:

(i) For all n:
∫ π

−π

sin(nx)dx =

∫ π

−π

cos(nx)dx = 0.
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(ii) If n 6= m then
∫ π

−π

sin(nx) sin(mx)dx =

∫ π

−π

cos(nx) cos(mx)dx = 0.

(iii) For all n and m:
∫ π

−π

sin(nx) cos(mx)dx = 0.

(iv) For all n and m:
∫ π

−π

sin2(nx)dx =

∫ π

−π

cos2(nx)dx = π.

Then, using these facts, and momentarily ignoring the interchange of

the integral and infinite sum,
∫ π

−π

f(x) cos(nx)dx =

∫ π

−π

[a0
2
cos(nx)

+
∞∑

k=1

(ak cos(kx) cos(nx) + bk sin(kx) cos(nx))
]

dx

=
a0
2

∫ π

−π

cos(nx)dx+
∞∑

k=1

ak

∫ π

−π

cos(kx) cos(nx)dx

+

∞∑

k=1

bk

∫ π

−π

sin(kx) cos(nx)dx

= anπ.

Therefore,

an =
1

π

∫ π

−π

f(x) cos(nx)dx.

A similar calculation shows that

bn =
1

π

∫ π

−π

f(x) sin(nx)dx.
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Finally,

∫ π

−π

f(x)dx =
a0
2

∫ π

−π

dx+

∞∑

k=1

ak

∫ π

−π

cos(kx)dx+

∞∑

k=1

bk

∫ π

−π

sin(kx)dx

=
a0
2
2π

= a0π

and therefore

a0 =
1

π

∫ π

−π

f(x)dx.

Of course, the above calculations are valid provided that the Fourier se-

ries converges uniformly to f on [−π, π] since if all we have is pointwise
convergence then in general we cannot interchange the integral sign and

the infinite sum. Since the functions fn(x) = an cos(nx) + bn sin(nx)

in the Fourier series are clearly continuous, and if we insist that the

convergence is uniform, then we have restricted our investigation of

Fourier series to continuous functions! Relaxing this restriction led to

the development of what we now call the Lebesgue integral; Lebesgue

was interested in extending the notion of integration beyond Riemann’s

development so that a wider class of functions could be integrated and,

more importantly, this new integral would be more robust when it came

to exchanging limits with integration, i.e., uniform convergence would

not be needed. A full development of Lebesgue’s theory of integra-

tion is beyond the scope of this book, however, we can still say some

interesting things about Fourier series.

Motivated by our calculations above, suppose that f ∈ C[−π, π]
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and define

a0 =
1

π

∫ π

−π

f(x)dx

an =
1

π

∫ π

−π

f(x) cos(nx)dx

bn =
1

π

∫ π

−π

f(x) sin(nx)dx.

Assume that the Fourier series of f converges uniformly on C[−π, π]
and let

g(x) =
a0
2
+

∞∑

n=1

(an cos(nx) + bn sin(nx)).

Then g is continuous on [−π, π]. Does f = g? To answer this question,

our computations above show that

1

π

∫ π

−π

g(x) cos(nx)dx =
1

π

∫ π

−π

f(x) cos(nx)dx

and therefore ∫ π

−π

[f(x)− g(x)] cos(nx)dx = 0

for all n ∈ N ∪ {0}. Similarly, for all n ∈ N ∪ {0} we have
∫ π

−π

[f(x)− g(x)] sin(nx)dx = 0.

Let sn(x) =
a0
2 +

∑n
k=1 ak cos(kx) + bk sin(kx) and recall that (sn) con-

verges uniformly to g. Consider for the moment
∫ π

−π

[f(x)− sn(x)]
2dx =

∫ π

−π

f(x)2dx−2

∫ π

−π

f(x)sn(x)dx+

∫ π

−π

s2n(x)dx.

A straightforward computation shows that

∫ π

−π

f(x)sn(x)dx = π

[

a20
2
+

n∑

k=1

(a2k + b2k)

]
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and
∫ π

−π

s2n(x)dx = π

[

a20
2
+

n∑

k=1

(a2k + b2k)

]

.

Therefore,

1

π

∫ π

−π

[f(x)− sn(x)]
2dx =

1

π

∫ π

−π

f(x)2dx− 1

π

∫ π

−π

s2n(x)dx

Now since
∫ π

−π[f(x)− sn(x)]
2dx ≥ 0 it follows that

1

π

∫ π

−π

s2n(x)dx ≤ 1

π

∫ π

−π

f(x)2dx,

or equivalently that

a20
2
+

n∑

k=1

(a2k + b2k) ≤
1

π

∫ π

−π

f(x)2dx.

This proves that the series a20
2 +

∑∞
k=1(a

2
k + b2k) converges and

a20
2
+

∞∑

k=1

(a2k + b2k) ≤
1

π

∫ π

−π

f(x)2dx.

In particular, limk→∞(a2k+b
2
k) = 0 and thus limk→∞ ak = limk→∞ bk = 0.
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10

Multivariable Differential Calculus

In this chapter, we consider the differential calculus of mappings from

one Euclidean space to another, that is, mappings F : Rn → Rm. In

first-year calculus, you considered the case n = 2 or n = 3 and m = 1.

Examples of functions that you might have encountered were of the

type F (x1, x2) = x21 − x22, F (x1, x2, x3) = x21 + x22 + x23, or maybe even

F (x1, x2) = sin(x1) sin(x2), etc. If now F : Rn → Rm with m ≥ 2 then

F has m component functions since F (x) ∈ Rm. We can therefore

write

F (x) = (f1(x), f2(x), . . . , fm(x))

and fj : R
n → R is called the jth component of F .

In this chapter, unless stated otherwise, we equip Rn with the Eu-

clidean 2-norm ‖x‖2 =
√

x21 + x22 + · · ·+ x2n. For this reason, we will

omit the subscript in ‖x‖2 and simply write ‖x‖.

10.1 Differentiation

Let U ⊂ Rn and let F : U → Rn be a function. How should we define

differentiability of F at some point a ∈ U? Recall that for a function
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f : I → R, where I ⊂ R, we say that f is differentiable at a ∈ I if

lim
x→a

f(x)− f(a)

x− a

exists. In this case, we denote f ′(a) = limx→a
f(x)−f(a)

x−a and we call f ′(a)

the derivative of f at a. As it is written, the above definition does not

make sense for F since division of vectors is not well-defined (or at least

we have not defined it). An equivalent definition of differentiability of

f at a is that there exists a number m ∈ R such that

lim
x→a

f(x)− f(a)−m(x− a)

x− a
= 0

which is equivalent to asking that

lim
x→a

|f(x)− f(a)−m(x− a)|
|x− a| = 0.

The numberm is then denoted by m = f ′(a) as before. Another way to

think about the derivativem is that the affine function g(x) = f(a)+mx

is a good approximation to f(x) for points x near a. The linear part

of the affine function g is ℓ(x) = mx. Thought of in this way, the

derivative of f at a is a linear function.

Definition 10.1.1: The Derivative

Let U be a subset of Rn. A mapping F : U → Rm is said to be

differentiable at a ∈ U if there exists a linear mapping L : Rn →
Rm such that

lim
x→a

‖F (x)− F (a)− L(x− a)‖
‖x− a‖ = 0.

In the definition of differentiability, the expression L(x−a) denotes the
linear mapping L applied to the vector (x − a) ∈ Rn. An equivalent
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definition of differentiability is that

lim
h→0

‖F (x+ h)− F (a)− L(h)‖
‖h‖ = 0

where again L(h) denotes h ∈ Rn evaluated at L. It is not hard to show

that the linear mapping L in the above definition is unique when U ⊂
Rm is an open set. For this reason, we will deal almost exclusively with

the case that U is open without further mention. We therefore call L

the derivative of F at a and denote it instead by L = DF (a). Hence,

by definition, the derivative of F at a is the unique linear mapping

DF (a) : Rn → Rm satisfying

lim
x→a

‖F (x)− F (a)−DF (a)(x− a)‖
‖x− a‖ = 0.

Applying the definition of the limit, given arbitrary ε > 0 there exists

δ > 0 such that if ‖x− a‖ < δ then

‖F (x)− F (a)−DF (a)(x− a)‖
‖x− a‖ < ε

or equivalently

‖F (x)− F (a)−DF (a)(x− a)‖ < ε ‖x− a‖ .

If F : U → Rm is differentiable at each x ∈ U then x 7→ DF (x) is a

mapping from U to the space of linear maps from Rn to Rm. In other

words, if we denote by L(Rn;Rm) the space of linear maps from Rn to

Rm then we have a well-defined mapping DF : U → L(Rn;Rm) called

the derivative of F on U which assigns the derivative of F at each

x ∈ U .

We now relate the derivative of F with the derivatives of its com-

ponent functions. To that end, we need to recall some basic facts from
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linear algebra and the definition of the partial derivative. For the lat-

ter, recall that a function f : U ⊂ Rn → R, has partial derivative at

a ∈ U with respect to xi, if the following limit exists

lim
t→0

f(a1, . . . , ai−1, ai + t, ai+1, . . . , an)− f(a)

t

or equivalently, if there exists a number mi ∈ R such that

0 = lim
t→0

f(a+ eit)− f(a)−mit

t

where ei = (0, . . . , 0, 1, 0, . . . , 0) denotes the ith standard basis vector in

Rn. We then denote mi =
∂f
∂xi

(a). Now, given any linear map L : Rn →
Rm, the action of L on vectors in Rn can be represented as matrix-vector

multiplication once we choose a basis for Rn and Rm. Specifically, if we

choose the most convenient bases in Rn and Rm, namely the standard

bases, then

L(x) = Ax

where A ∈ Rm×n and the the (j, i) entry of the matrix A is the jth

component of the vector Aei ∈ Rm. We can now prove the following.
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Theorem 10.1.2: Jacobian Matrix

Let U ⊂ Rn be open and suppose that F : U → Rm is differentiable

at a ∈ U , and write F = (f1, f2, . . . , fm). Then the partial deriva-

tives
∂fj
∂xi

(a) exist, and the matrix representation of DF (a) in the

standard bases in Rn and Rm is







∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
... . . . ...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn








where all partial derivatives are evaluated at a. The matrix above

is called the Jacobian matrix of F at a.

Proof. Let mj,i denote the (j, i) entry of the matrix representation of

DF (a) in the standard bases in Rn and Rm, that is, mj,i is the jth

component of DF (a)ei. By definition of differentiability, it holds that

0 = lim
x→a

‖F (x)− F (a)−DF (a)(x− a)‖
‖x− a‖ .

Let x = a+ tei where ei ∈ Rn is the ith standard basis vector. Since U

is open, x ∈ U provided t is sufficiently small. Then since ‖x− a‖ =

‖tei‖ = |t| → 0 iff ‖x− a‖ → 0 we have

0 = lim
t→0

‖F (a+ tei)− F (a)−DF (a)eit‖
|t|

= lim
t→0

∥
∥
∥
∥

1

t

[
F (a+ tei)− F (a)−DF (a)eit

]
∥
∥
∥
∥
.

It follows that each component of the vector 1
t

[
F (a + tei) − F (a) −

DF (a)eit
]
tends to 0 as t → 0. Hence, for each j ∈ {1, 2, . . . , m} we

have

0 = lim
t→0

1

t
(fj(a+ tei)− fj(a)−mj,it).
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Hence,
∂fj
∂xi

(a) exists and mj,i =
∂fj
∂xi

(a) as claimed.

It is customary to write

DF (a) =








∂f1
∂x1

∂f1
∂x2

· · · ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

· · · ∂f2
∂xn

...
... . . . ...

∂fm
∂x1

∂fm
∂x2

· · · ∂fm
∂xn








since for any x ∈ Rn the vector DF (a)x is the Jacobian matrix of

F at a multiplied by x (all partials are evaluated at a). When not

explicitly stated, the matrix representation of DF (a) will always mean

the Jacobian matrix representation.

We now prove that differentiability implies continuity. To that end,

we first recall that if A ∈ Rm×n and B ∈ Rn×p then

‖AB‖2 ≤ ‖A‖2 ‖B‖2 .

The proof of this fact is identical to the one in Example 9.4.16. In

particular, if x ∈ Rn then ‖Ax‖2 ≤ ‖A‖2 ‖x‖.

Theorem 10.1.3: Differentiability implies Continuity

Let U ⊂ Rn be an open set. If F : U → Rm is differentiable at

a ∈ U then F is continuous at a.

Proof. Let ε1 = 1. Then there exists δ1 > 0 such that if ‖x− a‖ < δ1

then

‖F (x)− F (a)−DF (a)(x− a) +DF (a)(x− a)‖ < 1 · ‖x− a‖ .
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Then if ‖x− a‖ < δ1 then

‖F (x)− F (a)‖ = ‖F (x)− F (a)−DF (a)(x− a) +DF (a)(x− a)‖

≤ ‖F (x)− F (a)−DF (a)(x− a)‖+ ‖DF (a)(x− a)‖

≤ ‖x− a‖+ ‖DF (a)‖2 ‖x− a‖

and thus ‖F (x)− F (a)‖ < ε provided

‖x− a‖ < min{δ1, ε/(1 + ‖DF (a)‖2)}.

Hence, F is continuous at a.

Notice that Theorem 10.1.2 says that if DF (a) exists then all the

relevant partials exist. However, it does not generally hold that if all

the relevant partials exist then DF (a) exists. The reason is that partial

derivatives are derivatives along the coordinate axes whereas, as seen

from the definition, the limit used to defineDF (a) is along any direction

that x→ a.

Example 10.1.4. Consider the function f : R2 → R defined as

f(x, y) =

{
2xy

x2+y2 , (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

We determine whether ∂f
∂x
(0, 0) and ∂f

∂y
(0, 0) exist. To that end, we

compute

lim
t→0

f(x+ t, 0)− f(0, 0)

t
= lim

t→0

0

t
= 0

lim
t→0

f(0, y + t)− f(0, 0)

t
= lim

t→0

0

t
= 0

323



10.1. DIFFERENTIATION

Therefore, ∂f
∂x(0, 0) and

∂f
∂y (0, 0) exist and are both equal to zero. It is

straightforward to show that f is not continuous at (0, 0) and therefore

not differentiable at (0, 0).

The previous examples shows that existence of partial derivatives is

a fairly weak assumption with regards to differentiability, in fact, even

with regards to continuity. The following theorem gives a sufficient

condition for DF to exist in terms of the partial derivatives.

Theorem 10.1.5: Condition for Differentiability

Let U ⊂ Rn be an open set and consider F : U → Rm with F =

(f1, f2, . . . , fm). If each partial derivative function
∂fj
∂xi

exists and is

continuous on U then F is differentiable on U .

We will omit the proof of Theorem 10.1.5.

Example 10.1.6. Let F : R2 → R3 be defined by

F (x) = (x1 sin(x2), x1x
2
2, ln(x

2
1 + 1) + 2x2).

Explain why DF (x) exists for each x ∈ R2 and find DF (x).

Solution. It is clear that the component functions of F that are given

by f1(x) = x1 sin(x2), f2(x) = x1x
2
2, and f3(x) = ln(x21 + 1) + 2x2

have partial derivatives that are continuous on all of R2. Hence, F is

differentiable on R2. Then

DF (x) =





sin(x2) x1 cos(x2)
x22 2x1x2
2x1

x2
1+1

2




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Example 10.1.7. Prove that the given function is differentiable on R2.

f(x, y) =

{
x2y2√
x2+y2

, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

Solution. We compute

lim
t→0

f(0 + t, 0)− f(0, 0)

t
= lim

t→

0√
t2

t
= 0

and thus ∂f
∂x(0, 0) = 0. A similar computations shows that ∂f

∂y (0, 0) = 0.

On the other hand, if (x, y) 6= (0, 0) then

∂f

∂x
(x, y) =

xy2(x2 + 2y2)

(x2 + y2)3/2

∂f

∂y
(x, y) =

x2y(2x2 + y2)

(x2 + y2)3/2
.

To prove that Df(x, y) exists for any (x, y) ∈ R2, it is enough to show

that ∂f
∂x and ∂f

∂y are continuous on R2 (Theorem 10.1.5). It is clear that
∂f
∂x and ∂f

∂y are continuous on the open set U = R2\{(0, 0)} and thus Df

exists on U . Now consider the continuity of ∂f
∂x at (0, 0). Using polar

coordinates x = r cos(θ) and y = r sin(θ), we can write

∂f

∂x
(x, y) =

xy2(x2 + 2y2)

(x2 + y2)3/2

=
r3 cos(θ) sin2(θ)(r2 cos2(θ) + 2r2 sin2(θ)

r3

= r2 cos(θ) sin2(θ)(cos2(θ) + 2 sin2(θ))

Now (x, y) → (0, 0) if and only if r → 0 and thus

lim
(x,y)→(0,0)

∂f

∂x
(x, y) = lim

r→0

[
r2 cos(θ) sin2(θ)(cos2(θ) + 2 sin2(θ))

]

= 0
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In other words, lim(x,y)→(0,0)
∂f
∂x(x, y) = ∂f

∂x(0, 0) and thus ∂f
∂x is contin-

uous at (0, 0). A similar computation shows that ∂f
∂y is continuous at

(0, 0). Hence, by Theorem 10.1.5, Df exists on R2.

If F : U ⊂ Rn → Rm is differentiable on U and m = 1, then DF is

called the gradient of F and we write ∇F instead of DF . Hence, in

this case,

∇F (x) =
[
∂F
∂x1

∂F
∂x2

· · · ∂F
∂xn

]

On the other hand, if n = 1 and m ≥ 2 then F : U ⊂ R → Rm is

a curve in Rm. In this case, it is customary to use lower-case letters

such as c, α, or γ instead of F , and use I for the domain instead of

U . In any case, since c : I ⊂ R → Rm is a function of one variable we

use the notation c(t) = (c1(t), c2(t), . . . , cm(t)) and the derivative of c

is denoted by

dc

dt
= c′(t) = (c′1(t), c

′
2(t), . . . , c

′
m(t))

where all derivatives are derivatives of single-variable-single-valued func-

tions.
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Exercises

Exercise 10.1.1. Let f, g : U ⊂ Rn → Rm be differentiable functions

at a ∈ U . Prove by definition that h = f + g is differentiable at a and

that Dh = Df +Dg.

Exercise 10.1.2. Recall that a mapping F : Rn → Rm is said to be

linear if F (x+y) = F (x)+F (y) and F (αx) = αF (x), for all x, y ∈ Rn

and α ∈ R. Prove that if F is linear then DF (a) = F for all a ∈ Rn.

Exercise 10.1.3. Let F : Rn → Rm and suppose that there exists

M > 0 such that ‖F (x)‖ ≤ M ‖x‖2 for all x ∈ Rn. Prove that F is

differentiable at a = 0 ∈ Rn and that DF (a) = 0.

Exercise 10.1.4. Determine if the given function is differentiable at

(x, y) = (0, 0).

f(x, y) =

{
xy√
x2+y2

, (x, y) 6= (0, 0)

0, (x, y) = (0, 0)

Exercise 10.1.5. ComputeDF (x, y, z) if F (x, y, z) = (zxy, x2, tan(xyz)).
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10.2 Differentiation Rules and the MVT

Theorem 10.2.1: Chain Rule

Let U ⊂ Rn and W ⊂ Rm be open sets. Suppose that F : U → Rm

is differentiable at a, F (U) ⊂ W , and G : W → Rp is differentiable

at F (a). Then (G ◦ F ) : U → Rp is differentiable at a and

D(G ◦ F )(a) = DG(F (a)) ◦DF (a)

Example 10.2.2. Verify the chain rule for the composite function H =

G ◦ F where F : R3 → R2 and G : R2 → R2 are

F (x1, x2, x3) =

[
x1 − 3x2
x1x2x3

]

G(y1, y2) =

[
2y1 + y2
sin(y2)

]

.

An important special case of the chain rule is the composition of a

curve γ : I ⊂ R → Rn with a function f : U ⊂ Rn → R. The composite

function f ◦ γ : I → R is a single-variable and single-valued function.

In this case, if γ ′(t) is defined for all t ∈ I and ∇f(x) exists at each

x ∈ U then

D(f ◦ γ)(t) = ∇f(γ(t)) · γ ′(t)

=
[

∂f
∂x1

∂f
∂x2

· · · ∂f
∂xn

]







γ ′1(t)
γ ′2(t)
...

γ ′n(t)







=

n∑

i=1

∂f

∂xi
(γ(t))γ ′i(t).
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In the case that γ(t) = a + te and e ∈ Rn is a unit vector, that is,

‖e‖ = 1, then

lim
t→0

f(a+ te)− f(a)

t
= D(f ◦ γ)(0)
= ∇f(γ(0)) · γ ′(0)
= ∇f(a) · e

is called the directional derivative of f at a in the direction

e ∈ Rn.

Example 10.2.3. Let f : R → R and F : R2 → R be differentiable and

suppose that F (x, f(x)) = 0. Prove that if ∂F
∂y 6= 0 then f ′(x) = −∂F/∂x

∂F/∂y

where y = f(x).

Below is a version of the product rule for multi-variable functions.

Theorem 10.2.4: Product Rule

Let U ⊂ Rn be open and suppose that F : U → Rm and g : U → R

are differentiable at a ∈ U . Then the function G = gF : U → Rm

is differentiable at a ∈ U and

D(gF )(a) = F (a) · ∇g(a) + g(a)DF (a).

Example 10.2.5. Verify the product rule for G = gF if g : R3 → R

and F : R3 → R3 are

g(x1, x2, x3) = x21x3 − ex2

F (x1, x2, x3) =





x1x2
ln(x23 + 1)

3x1 − x2 − x3




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Example 10.2.6. Let f, g : Rn → R be differentiable functions. Find

an expression of ∇(fg) in terms of f, g,∇f , and ∇g.

Example 10.2.7. Let f : U ⊂ Rn → R be a differentiable function.

Suppose that γ : [a, b] → Rn is differentiable. Prove that f(γ(t)) =

f(γ(a)) for all t ∈ [a, b] if and only if ∇f(γ(t)) · γ ′(t) = 0 for all

t ∈ [a, b].

Recall the mean value theorem (MVT) on R. If f : [a, b] → R

is continuous on [a, b] and differentiable on (a, b) then there exists c ∈
(a, b) such that f(b)−f(a) = f ′(c)(b−a). The MVT does not generally

hold for a function F : U ⊂ Rn → Rm without some restrictions on U

and, more importantly, on m. For instance, consider f : [0, 1] → R2

defined by f(x) = (x2, x3). Then f(1)− f(0) = (1, 1)− (0, 0) = (1, 1)

while f ′(c)(1− 0) = (2c, 3c2) and there is no c ∈ R such that (1, 1) =

(2c, 3c2). With regards to the domain U , we will be able to generalize

the MVT for points a, b ∈ U provided all points on the line segment

joining a and b are contained in U . Specifically, the line segment

joining x, y ∈ U is the set of points

{z ∈ Rn | z = (1− t)x+ ty, t ∈ [0, 1]}.

Hence, the image of the curve γ : [0, 1] → Rn given by γ(t) = (1−t)x+ty
is the line segment joining x and y. Even if U ⊂ Rn is open, the line

segment joining x, y ∈ U may not be contained in U (see Figure 10.1).
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U
x

y

Figure 10.1: Line segment joining x and y not in U

Theorem 10.2.8: Mean Value Theorem

Let U ⊂ Rn be open and assume that f : U → R is differentiable on

U . Let x, y ∈ U and suppose that the line segment joining x, y ∈ U

is contained entirely in U . Then there exists c on the line segment

joining x and y such that f(y)− f(x) = Df(c)(y − x).

Proof. Let γ(t) = (1− t)x + ty for t ∈ [0, 1]. By assumption, γ(t) ∈ U

for all 0 ≤ t ≤ 1. Consider the function h(t) = f(γ(t)) on [0, 1].

Then h is continuous on [0, 1] and by the chain rule is differentiable

on (0, 1). Hence, applying the MVT on R to h there exists t∗ ∈ (0, 1)

such that h(1)− h(0) = h′(t∗)(1− 0). Now h(0) = f(γ(0)) = f(x) and

h(1) = f(γ(1)) = f(y), and by the chain rule,

h′(t∗) = Df(γ(t∗))γ ′(t∗)

= Df(γ(t∗))(y − x).

Hence,

f(y)− f(x) = Df(γ(t∗))(y − x)

and the proof is complete.
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Corollary 10.2.9

Let U ⊂ Rn be open and assume that F = (f1, f2, . . . , fm) : U → Rm

is differentiable on U . Let x, y ∈ U and suppose that the line

segment joining x, y ∈ U is contained entirely in U . Then there

exists c1, c2, . . . , cm ∈ U on the line segment joining x and y such

that fi(y)− fi(x) = Dfi(ci)(y − x) for i = 1, 2, . . . , m.

Proof. Apply the MVT to each component function fi : U → R

Example 10.2.10. A set U ⊂ Rn is said to be convex if for any

x, y ∈ U the line segment joining x and y is contained in U . Let

F : U → Rm be differentiable. Prove that if U is an open convex set

and DF = 0 on U then F is constant on U .
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Exercises

Exercise 10.2.1. Let U ⊂ Rn be an open set satisfying the following

property: for any x, y ∈ U there is a continuous curve γ : [0, 1] → Rn

such that γ is differentiable on (0, 1) and γ(0) = x and γ(1) = y.

(a) Give an example of a non-convex set U ⊂ R2 satisfying the

above property.

(b) Prove that if U satisfies the above property and f : U → R is

differentiable on U with Df = 0 then f is constant on U .
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10.3 The Space of Linear Maps

Let U be an open subset of Rn. Recall that if F : U → Rn is differen-

tiable at each x ∈ U then DF : U → L(Rn;Rn) denotes the derivative

of F on U . The space of linear maps L(Rn;Rn) is a vector space which

after

10.4 Solutions to Differential Equations

A differential equation on Rn is an equation of the form

x′(t) = F (x(t)) (10.1)

where F : Rn → Rn is a given function and x : R → Rn is the unknown

in (10.1). A solution to (10.1) is a curve γ : I → Rn such that

γ ′(t) = F (γ(t))

where I ⊂ R is an interval, possibly infinite. If F is defined

Theorem 10.4.1

Let U ⊂ Rn be an open set and let F : U → Rn be a differentiable

function with a continuous derivative

10.5 High-Order Derivatives

In this section, we consider high-order derivatives of a differentiable

mapping F : U ⊂ Rn → Rm. To do this, we will need to make an

excursion into the world of multilinear algebra. Even though we will

discuss high-order derivatives for functions on Euclidean spaces, it will

be convenient to first work with general vector spaces.
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Definition 10.5.1: Multilinear Maps

Let V1, V2, . . . , Vk andW be vector spaces. A mapping T : V1×V2×
· · · × Vk → W is said to be a k-multilinear map if T is linear in

each variable separately. Specifically, for any i ∈ {1, 2, . . . , k}, and
any vj ∈ Vj for j 6= i, the mapping Ti : Vi →W defined by

Ti(x) = T (v1, v2, . . . , vi−1, x, vi+1, . . . , vk)

is a linear mapping.

A 1-multilinear mapping is just a linear mapping. A 2-multilinear map-

ping is called a bilinear mapping. Hence, T : V1×V2 →W is bilinear

if

T (αu+ βv, w) = T (αu, w) + T (βv, w)

= αT (u, w) + βT (v, w)

and

T (u, αw + βy) = T (u, αw) + T (u, βy)

= αT (u, w) + βT (u, y)

for all u, v ∈ V1, w ∈ V2, and α, β ∈ R. Roughly speaking, a multi-

linear mapping is essentially a special type of polynomial multivariable

function. We will make this precise after presenting a few examples.

Example 10.5.2. Consider T : R× R → R defined as T (x, y) = 2xy.

As can be easily verified, T is bilinear. On the other hand, if T (x, y) =

x2+ y2 then T is not bilinear since for example T (αx, y) = α2x2+ y2 6=
αT (x, y) in general, or T (a+ b, y) = (a+ b)2+ y2 6= T (a, y) + T (b, y) in

general. What about T (x, y) = 2xy + y3?
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Example 10.5.3. Let {v1, v2, . . . , vp} be a set of vectors in Rn and

suppose that x =
∑p

i=1 xivi and y =
∑p

i=1 yivi. If T : Rn × Rn → Rm

is bilinear then expand T (x, y) so that it depends only on xi, yj and

T (vi, vj) for 1 ≤ i, j ≤ p.

Example 10.5.4. LetM be a n×n matrix and define T : Rn×Rn → R

as T (u, v) = uTMv. Show that T is bilinear. For instance, if say

M = [ 1 −3
2 1 ] then

T (u, v) = [u1 u2]

[
1 −3
0 1

] [
v1
v2

]

= u1v1 − 3u1v2 + u2v2.

Notice that T (u, v) is a polynomial in the components of u and v.

Example 10.5.5. The function that returns the determinant of a ma-

trix is multilinear in the columns of the matrix. Specifically, if say

A = [a1 + b1 a2 · · · an] ∈ Rn×n then

det(A) = det([a1 a2 · · · an]) + det([b1 a2 · · · an])

and if A = [αa1 a2 · · · an] then

det(A) = α det([a1 a2 · · · an]).

These facts are proved by expanding the determinant along the first

column. The same is true if we perform the same computation with a

different column of A. In the case of a 2×2 matrix A = [ x1 y1
x2 y2 ] we have

det(A) = x1y2 − y1x2

and if A is a 3×3 matrix with columns x = (x1, x2, x3), y = (y1, y2, y3),

and z = (z1, z2, z3) then

det(A) = det([x y z])

= x1y2z3 − x1y3z2 − x2y1z3 + x2y3z1 + x3y1z2 − x3y2z1.
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We now make precise the statement that a multilinear mapping is

a (special type of) multivariable polynomial function. For simplicity,

and since this will be the case when we consider high-order derivatives,

we consider k-multilinear mappings T : Rn × Rn × · · · × Rn → Rm.

For a positive integer k ≥ 1 let (Rn)k = Rn × Rn × · · · × Rn where

on the right-hand-side Rn appears k-times. Let Lk(Rn,Rm) denote the

space of k-multilinear maps from (Rn)k to Rm. It is easy to see that

Lk(Rn,Rm) is a vector space under the natural notion of addition and

scalar R-multiplication. In what follows we consider the case k = 3, the

general case is similar but requries more notation. Hence, suppose that

T : (Rn)3 → Rm is a multilinear mapping and let x = (x1, x2, . . . , xn),

y = (y1, y2, . . . , yn), and z = (z1, z2, . . . , zn). Then x =
∑n

i=1 xiei where

ei is the ith standard basis vector of Rn, and similarly for y and z.

Therefore, by multilinearity of T we have

T (x, y, z) = T

(
n∑

i=1

xiei,
n∑

i=1

yiei, . . . ,
n∑

i=1

ziei

)

=

n∑

i=1

n∑

j=1

n∑

k=1

xiyjzk · T (ei, ej, ek).

Thus, to compute T (x, y, z) for any x, y, z ∈ Rn, we need only know

the values T (ei, ej, ek) ∈ Rm for all triples (i, j, k) with 1 ≤ i, j, k ≤ n.

If we set

T (ei, ej, ek) = (A1
i,j,k, A

2
i,j,k, . . . , A

m
i,j,k)

where the superscripts are not exponents but indices, then from our
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computation above

T (x, y, z) =

















n∑

i,j,k=1

A1
i,j,k · xiyjzk

n∑

i,j,k=1

A2
i,j,k · xiyjzk
...

n∑

i,j,k=1

Am
i,j,k · xiyjzk

















.

Notice that the component functions of T are multilinear, specifically,

the mapping

(x, y, z) 7→ Tr(x, y, z) =
n∑

i,j,k=1

Ar
i,j,k · xiyjzk

is multilinear for each r = 1, 2, . . . , m. The n3m numbers Ar
i,j,k ∈ R

for 1 ≤ i, j, k ≤ n and 1 ≤ r ≤ m completely determine the multilin-

ear mapping T , and we call these the coefficients of the multilinear

mapping T in the standard bases.

Remark 10.5.6. The general case k ≥ 1 is just more notation. If T :

(Rn)k → Rm is k-multilinear then there exists nkm unique coefficients

Ar
i1,i2,...,ik

, where 1 ≤ i1, i2, . . . , ik ≤ n and 1 ≤ r ≤ m, such that for any

vectors u1, u2, . . . , uk ∈ Rn it holds that

T (u1, u2, . . . , uk) =
m∑

r=1

(
n∑

i1=1

n∑

i2=1

· · ·
n∑

ik=1

Ar
i1,i2,...,ik

· u1,i1u2,i2 · · ·uk,ik

)

er

where e1, e2, . . . , em are the standard basis vectors in Rm.

A multilinear mapping T ∈ Lk(Rn,Rm) is said to be symmetric if

the value of T is unchanged after an arbitrary permutation of the inputs
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to T . In other words, T is symmetric if for any v1, v2, . . . , vk ∈ Rn it

holds that

T (v1, v2, . . . , vk) = T (vσ(1), vσ(2), . . . , vσ(n))

for any permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n}. For instance, if

T : (Rn)3 → Rm is symmetric then for any u1, u2, u3 ∈ Rn it holds that

T (u1, u2, u3) = T (u1, u3, u2)

= T (u2, u1, u3)

= T (u2, u3, u2)

= T (u3, u1, u2, )

= T (u3, u2, u1).

Example 10.5.7. Consider T : R2 × R2 → R defined by

T (x, y) = 2x1y1 + 3x1y2 + 3y1x2 − x2y2.

Then

T (y, x) = 2y1x1 + 3y1x2 + 3x1y2 − y2x2

= T (x, y)

and therefore T is symmetric. Notice that

T (x, y) = [x1 x2]

[
2 3
3 −1

] [
y1
y2

]

= xTMy

and the matrix M = [ 2 3
3 −1 ] is symmetric.

Having introduced the very basics of multilinear mappings, we can

proceed with discussing high-order derivatives of vector-valued multi-

variable functions. Suppose then that F : U → R is differentiable on
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the open set U ⊂ Rn and as usual let DF : U → L(Rn,Rm) denote

the derivative. Now L(Rn,Rm) is a finite dimensional vector space and

can be equipped with a norm (all norms on a given finite dimensional

vector space are equivalent). Thus, we can speak of differentiability

of DF , namely, DF is differentiable at a ∈ U if there exists a linear

mapping L : Rn → L(Rn,Rm) such that

lim
x→a

‖DF (x)−DF (a)− L(x− a)‖
‖x− a‖ = 0.

If such an L exists then we denote it by L = D(DF )(a). To simplify

the notation, we write instead D(DF )(a) = D2F (a). Hence, DF is

differentiable at a ∈ U if there exists a linear mapping D2F (a) : Rn →
L(Rn,Rm)) such that

lim
x→a

∥
∥DF (x)−DF (a)−D2F (a)(x− a)

∥
∥

‖x− a‖ = 0.

To say that D2F (a) is a linear mapping from Rn to L(Rn,Rm) is to say

that

D2F (a) ∈ L(Rn,L(Rn,Rm)).

Let us focus our attention on the space L(Rn,L(Rn,Rm)). If L ∈
L(Rn,L(Rn,Rm)) then L(v) ∈ L(Rn,Rm) for each v ∈ Rn, and more-

over the assignment v 7→ L(v) is linear, i.e., L(αv + βu) = αL(v) +

βL(u). Now, since L(v) ∈ L(Rn,Rm), we have that

L(v)(αu+ βw) = αL(v)(u) + βL(v)(w).

In other words, the mapping

(u, v) 7→ L(u)(v)

is bilinear! Hence, L defines (uniquely) a bilinear map T : Rn × Rn →
Rm by

T (u, v) = L(u)(v)
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and the assignment L 7→ T is linear. Conversely, to any bilinear map

T : Rn × Rn → Rm we associate an element L ∈ L(Rn,L(Rn,Rm))

defined as

L(u)(v) = T (u, v)

and the assignment T 7→ L is linear. We have therefore proved the

following.

Lemma 10.5.8

Let V and W be vector spaces. The vector space L(V,L(V,W )) is

isomorphic to the vector space L2(V,W ) of multilinear maps from

V × V to W .

The punchline is that D2F (a) ∈ L(Rn,L(Rn,Rm)) can be viewed in

a natural way as a bilinear mapping D2F (a) : Rn×Rn → Rm and thus

from now on we write D2F (a)(u, v) instead of the more cumbersome

D2F (a)(u)(v).

We now determine a coordinate expression for D2F (a)(u, v). First

of all, if F = (f1, f2, . . . , fm) then F (x) =
∑m

j=1 fj(x)ej where {e1, e2,
. . . , em} is the standard basis of Rm. By linearity of the derivative and

the product rule of differentiation, we have that DF =
∑m

j=1Dfj(x)ej

and also D2F =
∑m

j=1D
2fj(x)ej. Therefore,

D2F (a)(u, v) =

m∑

j=1

D2fj(a)(u, v)ej.

This shows that we need only consider D2f for R-valued functions

f : U ⊂ Rn → R. Now,

Df =
[

∂f
∂x1

∂f
∂x2

. . . , ∂f
∂xn

]

341



10.5. HIGH-ORDER DERIVATIVES

and thus the Jacobian of Df : U → Rn is (Theorem 10.1.2)

D2f =









∂2f
∂x1x1

∂2f
∂x2x1

· · · ∂2f
∂xnx1

∂2f
∂x1x2

∂2f
∂x2x2

· · · ∂2f
∂xnx2

...
... . . . ...

∂2f
∂x1xn

∂2f
∂x2xn

· · · ∂2f
∂xnxn









.

Therefore,

D2f(a)(ei, ej) =
∂2f

∂xjxi
(a).

Therefore, for any u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn), by mul-

tilinearity we have

D2f(a)(u, v) =
n∑

i=1

n∑

j=1

∂2f

∂xixj
(a)uivj.

Now, if all second order partials of f are defined and continuous on U

we can say more. Let us first introduce some terminology. We say that

f : U ⊂ Rn → R is of class Ck if all partial derivatives up to and

including order k of f are continuous functions on U .

Theorem 10.5.9: Symmetry of Partial Derivatives

Let U ⊂ Rn be an open set and suppose that f : U → R is of class

C2. Then
∂2f

∂xixj
=

∂2f

∂xjxi

on U for all 1 ≤ i, j ≤ n. Consequently, D2f(a) is a symmetric

bilinear map on Rn × Rn.

If we now go back to a multi-valued function F : U → Rm with com-
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ponents F = (f1, f2, . . . , fm), then if D2F (a) exists at a ∈ U then

D2F (a)(u, v) =









∑n
i,j=1

∂2f1
∂xixj

(a)uivj
∑n

i,j=1
∂2f2
∂xixj

(a)uivj
...

∑n
i,j=1

∂2fm
∂xixj

(a)uivj









Higher-order derivatives of F : U → Rm can be treated similarly. If

Dk−1F : U → Lk−1(Rn,Rm) is differentiable at a ∈ U then we denote

the derivative at a by D(Dk−1)F (a) = DkF (a). Then DkF (a) : Rn →
Lk−1(Rn,Rm) is a linear map, that is,

DkF (a) ∈ L(Rn,Lk−1(Rn,Rm)).

The vector space L(Rn,Lk−1(Rn,Rm)) is isomorphic to the space of k-

multilinear maps Lk(Rn,Rm). The value of DkF (a) at u1, u2, . . . , uk ∈
Rn is denoted by DkF (a)(u1, u2, . . . , uk). Moreover, DkF (a) is a sym-

metric k-multilinear map at each a ∈ U if F is of class Ck. If f : U ⊂
Rn → R is of class Ck then for vectors u1, u2, . . . , uk ∈ Rn we have

Dkf(a)(u1, u2, . . . , uk) =
∑

1≤i1,i2,...,ik≤n

∂kf

∂xi1∂xi2 · · · ∂xik
(a)u1,i1u2,i2 · · ·uk,ik

where the summation is over all k-tuples (i1, i2, . . . , ik) where ij ∈
{1, 2, . . . , n}. Hence, there are nk terms in the above summation. In

the case that u1 = u2 = · · · = uk = x, the above expression takes the

form

Dkf(a)(x, x, . . . , x) =
∑

1≤i1,i2,...,ik≤n

∂kf

∂xi1∂xi2 · · · ∂xik
(a)xi1xi2 · · ·xik

Example 10.5.10. Compute D3f(a)(u, v, w) if f(x, y) = sin(x− 2y),

a = (0, 0), and u, v, w ∈ R2. Also compute D2f(a)(u, u, u).
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Solution. We compute that f(0, 0) = 0 and

fx = cos(x− 2y)

fy = −2 cos(x− 2y)

and then

fxx = − sin(x− 2y)

fxy = fyx = 2 sin(x− 2y)

fyy = −4 sin(x− 2y)

and then

fxxx = − cos(x− 2y)

fyyy = 8 cos(x− 2y)

fxxy = fxyx = fyxx = 2 cos(x− 2y)

fxyy = fyxy = fyyx = −4 cos(x− 2y)

Then,

D3f(a)(u, v, w) = fxxx(a)u1v1w1 + fxxy(a)u1v1w2 + fxyx(a)u1v2w1

+ fxyy(a)u1v2w2 + fyxx(a)u2v1w1 + fyxy(a)u2v1w2

+ fyyx(a)u2v2w1 + fyyy(a)u2v2w2

= −u1v1w1 + 2u1v1w2 + 2u1v2w1 − 4u1v2w2

+ 2u2v1w1 − 4u2v1w2 − 4u2v2w1 + 8u2v2w2

= −u1v1w1 + 2(u1v1w2 + u1v2w1 + u2v1w1)

− 4(u1v2w2 + u2v1w2 + u2v2w1) + 8u2v2w2

If u = v = w then

D3f(a)(u, u, u) = −u31 + 6u21u2 − 12u1u
2
2 + 8u32
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10.6 Taylor’s Theorem

Taylor’s theorem for a function f : Rn → R is as follows.

Theorem 10.6.1: Taylor’s Theorem

Let U ⊂ Rn be an open set and suppose that f : U → R if of class

Cr+1 on U . Let a ∈ U and suppose that the line segment between

a and x ∈ U lies entirely in U . Then there exists c ∈ U on the line

segment such that

f(x) = f(a) +
r∑

k=1

1

k!
Dkf(a)(x− a, x− a, . . . , x− a) + Rr(x)

where

Rr(x) =
1

(r + 1)!
Dr+1f(c)(x− a, x− a, . . . , x− a).

Furthermore,

lim
x→a

Rr(x)

‖x− a‖r = 0

If x = a+ h in Taylor’s theorem then

f(a+ h) = f(a) +

r∑

k=1

1

k!
Dkf(a)(h, h, . . . , h)

+
1

(r + 1)!
Dr+1f(c)(h, h, . . . , h)

and

lim
h→0

Rr(h)

‖h‖r = 0.

We call

Tr(x) = f(a) +

r∑

k=1

1

k!
Dkf(a)(x− a, x− a, . . . , x− a)
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the rth order Taylor polynomial of f centered at a and

Rr(x) =
1

(r + 1)!
Dr+1f(c)(x− a, x− a, . . . , x− a)

the rth order remainder term. Hence, Taylor’s theorem says that

f(x) = Tr(x) + Rr(x)

Since limx→aRr(x) = 0, for x close to a we get an approximation

f(x) ≈ Tr(x).

Moreover, since Dr+1f is continuous, there is a constant M > 0 such

that if x is sufficiently close to a then the remainder term satisfies the

bound

|Rr(x)| ≤M ‖x− a‖r+1 .

From this it follows that

lim
x→a

Rr(x)

‖x− a‖r = 0

Example 10.6.2. Compute the third-order Taylor polynomial of f(x, y) =

sin(x− 2y) centered at a = (0, 0).

Solution. Most of the work has been done in Example 10.5.10. Evalu-

ating all derivatives at a we find that

Df(a)(u) = fx(a)u1 + fy(a)u2 = u1 − 2u2

D2f(a)(u, u) = 0

D3f(a)(u, u, u) = −u31 + 6u21u2 − 12u1u
2
2 + 8u32

Therefore,

Tr(u) = u1 − 2u2 − u31 + 6u21u2 − 12u1u
2
2 + 8u32.
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Exercises

Exercise 10.6.1. Find the 2nd order Taylor polynomial of the function

f(x, y, z) = cos(x+ 2y)ez centered at a = (0, 0, 0).

Exercise 10.6.2. A function L : Rn → R is called a homogeneous

function of degree k ∈ N if for all α ∈ R and x ∈ Rn it holds that

L(αx) = αkL(x). Prove that if f : Rn → R is differentiable at a ∈ Rn

then the mapping

L(x) = Dkf(a)(x, x, . . . , x)

is a homogeneous function of degree k ∈ N.
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10.7 The Inverse Function Theorem

A square linear system

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = y1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = y2
...

... =
...

an,1x1 + an,2x2 + · · ·+ an,nxn = yn

or in vector form

Ax = y,

where the unknown is x = (x1, x2, . . . , xn) ∈ Rn, has a unique solution

if and only if A−1 exists if and only if det(A) 6= 0. In this case, the

solution is y = A−1x. Another way to say this is that the mapping

F (x) = Ax has a global inverse given by F−1(x) = A−1x. Hence,

invertibility of DF = A completely determines whether F is invertible.

Consider now a system of equations

F (x) = y

where F : Rn → Rn is nonlinear. When is it possible to solve for x

in terms of y, that is, when does F−1(x) exists? In general, this is a

difficult problem and we cannot expect global invertibility even when

assuming the most desirable conditions on F . Even in the 1D case,

we cannot expect global invertibility. For instance, f(x) = cos(x) is

not globally invertible but is so on any interval where f ′(x) 6= 0. For

instance, on the interval I = (0, π), we have that f ′(x) = sin(x) 6= 0

and f−1(x) = arcsin(x). In any neighborhood where f ′(x) = 0, for

instance, at x = 0, f(x) = cos(x) is not invertible. However, having a
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non-zero derivative is not necessary for invertibility. For instance, the

function f(x) = x3 has f ′(0) = 0 but f(x) has an inverse locally around

x = 0; in fact it has a global inverse f−1(x) = x1/3.

Let’s go back to the 1D case and see if we can say something about

the invertibility of f : R → R locally about a point a such that f ′(a) 6=
0. Assume that f ′ is continuous on R (or on an open set containing a).

Then there is an interval I = [a − δ, a + δ] such that f ′(x) 6= 0 for all

x ∈ I. Now if x, y ∈ I and x 6= y, then by the Mean Value Theorem,

there exists c in between x and y such that

f(y)− f(x) = f ′(c)(y − x).

Since f ′(c) 6= 0 and (y−x) 6= 0 then f(y) 6= f(x). Hence, if x 6= y then

f(y) 6= f(x) and this proves that f is injective on I = [c − δ, c + δ].

Therefore, the function f : I → R has an inverse f−1 : J → R where

J = f(I). Hence, if f(a) 6= 0, f has a local inverse at a. In fact, we

can say even more, namely, one can show that f−1 is also differentiable.

Then, since f−1(f(x)) = x for x ∈ I, by the chain rule we have

(f−1)′(f(x)) · f ′(x) = 1

and therefore since f ′(x) 6= 0 for all x ∈ I we have

(f−1)′(f(x)) =
1

f ′(x)
.

The following theorem is a generalization of this idea.
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Theorem 10.7.1: Inverse Function Theorem

Let V ⊂ Rn be an open set and let F : V → Rn be of class C1.

Suppose that det(DF (a)) 6= 0 for a ∈ V . Then there exists an open

set U ⊂ Rn containing a such that W = F (U) is open and F : U →
W is invertible. Moreover, the inverse function F−1 : W → U is

also C1 and for y ∈ W and x = F−1(y) we have

DF−1(y) = [DF (x)]−1 .

Example 10.7.2. Prove that F (x, y) = (f1(x, y), f2(x, y)) = (x2 −
y2, 2xy) is locally invertible at all points a 6= (0, 0).

Proof. Clearly, DF (x, y) exists for all (x, y) since all partials of the

components of F are continuous on R2. A direct computation gives

DF (x, y) =

[
2x −2y
2y 2x

]

and thus det(DF (x, y)) = 2x2+2y2. Clearly, det(DF (x, y)) = 0 if and

only if (x, y) = (0, 0). Therefore, by the Inverse Function theorem, for

each non-zero a ∈ R2 there exists an open set U ⊂ R2 containing a such

that F : U → F (U) is invertible. In this very special case, we can find

the local inverse of F about some a ∈ R2. Let (u, v) = F (x, y), that is,

x2 − y2 = u

2xy = v

If x 6= 0 then y = v
2x and therefore x2− v2

4x2 = u and therefore 4x4−v2 =
4ux2 or

4x4 − 4ux2 − v2 = 0.
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By the quadratic formula,

x2 =
4u±

√
16u2 + 16v2

8

Since x ∈ R we must take

x =

√

4u+
√
16u2 + 16v2

8

=

√

u+
√
u2 + v2

2

and therefore

y =
v

2x
=

√
2v

2
√

u+
√
u2 + v2

Hence, provided u 6= 0 and v 6= 0 then

F−1(u, v) =





√

u+
√
u2+v2

2√
2v

2
√

u+
√
u2+v2



 .
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Exercises

Exercise 10.7.1. Let F : R2 → R2 be defined by

F (x, y) = (f1(x, y), f2(x, y)) = (ex cos(y), ex sin(y))

for (x, y) ∈ R2.

(a) Prove that the range of F is R2\{0}. Hint: Think polar coordi-

nates.

(b) Prove that F is not injective.

(c) Prove that F is locally invertible at every a ∈ R2.

Exercise 10.7.2. Can the system of equations

x+ xyz = u

y + xy = v

z + 2x+ 3z2 = w

be solved for x, y, z in terms of u, v, w near (0, 0, 0)?
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