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Abstract— In this paper we develop a numerical method
to compute high-order approximate solutions to Bellman’s
dynamic programming equation that arises in the optimal
regulation of discrete-time nonlinear control systems. The
method uses a patchy technique to build Taylor polynomial
approximations defined on small domains which are then
patched together to create a piecewise-smooth approximation.
Using the values of the computed cost function as the step-
size, levels of patches are constructed such that their radial
boundaries are level sets of the computed cost functions and
their lateral boundaries are invariants sets of the closed-loop
dynamics. To minimize the computational effort, an adaptive
scheme is used to determine the number of patches on each level
depending on the relative error of the computed solutions.

I. INTRODUCTION

Consider the discrete-time nonlinear control system

x+ = f(x, u) (1)

where x ∈ R
n is the state,u ∈ R

m is the control,f :
R

n × R
m → R

n are the dynamics (assumed to be smooth),
and x+ denotes the successor state. Given a stage costℓ :
R

n × R
m → R, the optimal regulator problemfor (1) is to

find a feedback controlκ : Rn → R
m such that

π(x0) , min
u(0),u(1),...

∞
∑

k=0

ℓ(x(k), u(k))

=

∞
∑

k=0

ℓ(x(k), κ(x(k)))

for all initial conditionsx0 = x(0). If they exist, theoptimal
cost functionπ and optimal regulatorκ satisfy Bellman’s
dynamic programming equation [2]

π(x) = π(f(x, κ(x))) + ℓ(x, κ(x)). (2)

If the cost functionπ is differentiable andu 7→ π(f(x, u))+
ℓ(x, u) is strictly convex about(x, u) = (0, 0), then the
following first order condition for a minimum is satisfied:

0 =
∂π

∂x
(f(x, κ(x))

∂f

∂u
(x, κ(x)) +

∂ℓ

∂u
(x, κ(x)). (3)

If f is linear inx andu, sayf(x, u) = Ax+Bu, where
A ∈ R

n×n andB ∈ R
n×m, andℓ is quadratic of the form

ℓ(x, u) = 1
2x

′Qx + 1
2u

′Ru, whereQ � 0 andR ≻ 0 are
symmetric matrices of appropriate dimensions, then from
the classical linear quadratic regulator problem [3], there
exists a unique, symmetric, and positive definite matrixP
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such thatπ(x) = 1
2x

′Px and κ(x) = Kx, whereK =
−(B′PB + R)′B′PA, provided(A,B) is stabilizable and
(A,Q1/2) is detectable. Moreover, the closed-loop matrix
A+BK has eigenvalues inside the unit circle and thus the
closed-loop system is (globally) asymptotically stable. The
matrixP is the unique solution to the discrete-time algebraic
Riccati equation (DARE)

P = A′PA+A′PB(B′PB +R)−1B′PA+Q.

When f and ℓ are nonlinear and have Taylor expansions
of the form

f(x, u) = Ax+Bu+ f [2](x, u) + · · ·

ℓ(x, u) = 1
2x

′Qx+ 1
2u

′Ru+ ℓ[3](x, u) + · · ·

wheref [2](x, u) are the quadratric terms off andℓ[3](x, u)
are the cubic terms ofℓ, etc., a method, originating in
[1], is presented in [4] for computing Taylor polynomial
approximations aboutx = 0 to the solutions(π, κ) of (2)-
(3). The basic idea is to Taylor expand (2)-(3) aboutx = 0
and gather terms of the same order resulting in equations for
the unknown Taylor coefficients ofπ and κ. One assumes
that the Taylor expansion ofπ begins with quadratic terms
and that ofκ with linear terms, that is,

π(x) = 1
2x

′Px+ π[3](x) + · · ·

κ(x) = Kx+ κ[2](x) + · · ·

For eachd ≥ 1, the resulting equations are for thed + 1
order coefficients ofπ and thed order coefficients ofκ.
As shown in [4], it is possible to solve for the Taylor
coefficients of π and κ to any desired degree provided
A + BK has eigenvalues inside the unit circle. Hence, in
this paper we implicitly assume the stated stabilizabilityand
detectability properties for the linearization of the optimal
regulator problem forf andℓ.

Let π0 andκ0 denote the Taylor polynomial functions of
π andκ to degreed + 1 andd, respectively, atx = 0. In a
neighborhood of the origin, the polynomials(π0, κ0) serve as
good approximations to(π, κ). If one desires more accurate
approximations to(π, κ), one can increase the degree of
approximationd, but there are two main drawbacks in doing
so. First, increasingd increases the accuracy of(π0, κ0)
but on a possiblysmaller domain because of the rapidly
growing behavior of high-order polynomials away from the
origin. Second, the number of Taylor coefficients of degree
d in n variables is

(

n+d−1
d

)

and this number grows rapidly
in d. Even with current personal computers, the symbolic
computations needed to execute the algorithm in [4] requires
significant computational time as can be verified with even



small state dimensions such asn = 2 or n = 3 andd ≥ 5.
For these reasons it is natural to seek alternative methods for
computing approximations to(π, κ).

In this paper, we present a numerical algorithm that ex-
tends the approximations(π0, κ0) and produces a piecewise
smooth approximations to(π, κ) by patching together local
approximations to(π, κ) on disjoint domains. Our method is
based on the ideas in [5] in which a patchy type algorithm is
developed for the numerical computation of approximate so-
lutions to the Hamilton–Jacobi–Bellman equation. Roughly
speaking, our method can be described as follows. The
initial polynomial approximations(π0, κ0) are accepted on
a sublevel setP0 = {x ∈ R

n : π0(x) ≤ c}, with c > 0
chosen sufficiently small so thatP0 ∼= D

n, whereDn denotes
the closed unit disk inRn. We partition the boundary ofP0,
select points inside each set of the partition, and compute
new polynomial approximations of(π, κ) by using (2)-(3),
the previously computed approximations(π0, κ0), and a
Cauchy-Kowalevski type algorithm to compute the high-
order derivatives of the new polynomial approximations.
Each new approximation is accepted on a domain radiating
outward from the boundary ofP0. The domains of the
new approximations are pairwise disjoint and their outer-
most boundaries define a piecewise smooth hypersurface.
The outer-most boundaries are chosen as level sets of the
newly computed cost functions. We then repeat the whole
procedure on the newly computed outer-most boundaries.

Throughout the paper, we assume that for eachu ∈ R
m,

x 7→ f(x, u) defines a local diffeomorphism onRn. That is,
for eachu ∈ R

m and x ∈ R
n there is a neighborhoodΩ

of x such thatf(·, u) : Ω → f(Ω, u) is a diffeomorphism.
An important example where such discrete-systems arise is
in the sampling of continuous-time control systems.

II. COMPUTATION OF NEW SOLUTIONS

In this section we describe a Cauchy-Kowalevski type
algorithm for computing new polynomial approximations
to (π, κ) from a previously computed polynomial solution
(π0, κ0). We assume thatπ0 is of degreed+1 andκ0 is of
degreed, whered ≥ 1.

The polynomialπ0(x) begins with the quadratic term
1
2x

′Px whereP ≻ 0, and thereforeπ0 has x = 0 as a
non-degenerate local minimum. Hence, by Morse’s lemma,
there is a neighborhoodΩ0 ⊂ R

n of the origin such that the
sublevel sets{x ∈ Ω0 : π0(x) ≤ c1} are diffeomorphic to
the unit discDn, providedc1 > 0 is sufficiently small, and
therefore the level sets{x ∈ Ω0 : π0(x) = c ≤ c1} are
diffeomorphic to the sphereSn−1. Hence, we assumec1 > 0
is such that

P0 := {x ∈ R
n : π0(x) ≤ c1} ∼= D

n

and we letS1 := ∂P0 ∼= S
n−1. By making c1 smaller

if necessary, we can assume thatP0 is contained in the
domain of attraction of the closed-loop dynamics resulting

by applying the feedbackκ0, that is,

x+ = f(x, κ0(x))

x(0) ∈ P0

is an asymptotically stable system, and furthermoreπ0 is a
Liapunov function for the closed-loop dynamics, that is,

π0(f(x, κ0(x))) − π0(x) < 0

for x ∈ P0. In particular, for allx ∈ S1 we have

π0(f(x, κ0(x))) < π0(x) = c1

and thusf(x, κ0(x)) will lie in the interior of P0 for all
x ∈ S1.

Now let x∗ ∈ S1 and we seek to augment to(π0, κ0) new
polynomial approximations(π∗, κ∗) defined in a neighbor-
hood of x∗ and radiating outward from the boundaryS1.
To do so, we ask that nearx∗, the new feedback controlκ∗

drive the state into the interior of the domainP0 after one
time-step. Consequently, we ask that the pair(π∗, κ∗) satisfy

π∗(x) = π0(f(x, κ∗(x))) + ℓ(x, κ∗(x)) (4)

for all x nearx∗. The first order necessary condition for a
minimum then becomes

0 =
∂π0

∂x
(f(x, κ∗(x))

∂f

∂u
(x, κ∗(x)) +

∂ℓ

∂u
(x, κ∗(x)). (5)

Using (4)-(5) and a Cauchy-Kowalevski technique, we now
describe how one can compute Taylor approximations to
(π∗, κ∗) centered atx∗ order-by-order to degreed + 1 and
d, respectively.

To compute the zeroth order terms of(π∗, κ∗) at x∗,
we first use (5) to solve forκ∗(x∗). In practice, this can
be done using Newton’s method with initial guessκ0(x∗).
Having computedκ∗(x∗), we can determineπ∗(x∗) directly
by evaluating the right-hand-side of (4) atx∗. For later use
and to ease notation, letu∗ = κ∗(x∗) andy∗ = f(x∗, u∗).

Now we compute the first order terms of(π∗, κ∗) atx∗. To
do so, differentiate (4) with respect toxi yielding (we omit
evaluation at(x, u) andf(x, u) for notational simplicity)

∂π∗

∂xi
=

∂π0

∂xa

∂fa

∂xi
+

∂ℓ

∂xi
+

[

∂π0

∂xa

∂fa

∂uα
+

∂ℓ

∂uα

]

∂κ∗
α

∂xi
(6)

for i = 1, . . . , n, and where we have used the summation
convention. Now notice that, by construction ofu∗ from (5),
the coefficient of∂κ

∗

α

∂xi
in (6) vanishes at(x∗, u∗) and we can

therefore compute∂π
∗

∂xi
(x∗) directly as

∂π∗

∂xi
(x∗) =

∂π0

∂xa
(y∗)

∂fa

∂xi
(x∗, u∗) +

∂ℓ

∂xi
(x∗, u∗). (7)

Now consider the computation of∂κ
∗

α

∂xj
, for j = 1, . . . ,m.

First, write (5) in component form

0 =
∂π0

∂xa

∂fa

∂uα
+

∂ℓ

∂uα
, α = 1, . . . ,m



and then differentiate with respect toxj yielding

0 = Mαβ

∂κ∗
β

∂xj
+

∂2π0

∂xa∂xb

∂fb

∂xj

∂fa

∂uα
+
∂π0

∂xa

∂2fa

∂uα∂xj
+

∂2ℓ

∂uα∂xj
(8)

where

Mαβ =
∂2π0

∂xa∂xb

∂fb

∂uβ

∂fa

∂uα
+

∂π0

∂xa

∂2fa

∂uα∂uβ
+

∂2ℓ

∂uα∂uβ
(9)

for 1 ≤ α, β ≤ m. The number of unknowns
∂κ∗

β

∂xj
is

mn and (8) producesmn equations. Assuming that the
symmetric matrixM(x, u) ∈ R

m×m with entriesMαβ(x, u)
is invertible at (x∗, u∗), we can solve uniquely for the
unknowns

∂κ∗

β

∂xj
from (8).

Next, to comptue the quadratic terms of(π∗, κ∗) at x∗,
differentiate (6) with respect toxj yielding

∂2π∗

∂xi∂xj
= Sij +

[

∂π0

∂xa

∂fa

∂uα
+

∂ℓ

∂uα

]

∂2κ∗
α

∂xi∂xj
(10)

whereSij is an expression involving the derivatives ofπ0 to
degree 2 and derivatives ofκ∗ to degree 1. By construction
of u∗ from (5), the coefficient of ∂

2κ∗

α

∂xi∂xj
in (10) vanishes at

(x∗, u∗) and we can therefore compute∂
2π∗

∂xi∂xj
(x∗) directly

as
∂2π∗

∂xi∂xj
(x∗) = Sij(x

∗, u∗).

Next, to get equations for
∂2κ∗

β

∂xj∂xk
, we differentiate (8) with

respect toxk yielding

0 = Mαβ

∂2κ∗
β

∂xj∂xk
+ Tjk (11)

whereTjk is an expression involving the derivatives ofπ0 to
degree 3 and derivatives ofκ∗ to degree 1. The number of

unknowns
∂2κ∗

β

∂xj∂xk
is m

n(n+1)
2 and (11) producesmn(n+1)

2

equations. Assuming that the symmetric matrixM(x, u) ∈
R

m×m with entriesMαβ(x, u) is invertible at(x∗, u∗), we

can solve uniquely for the unknowns
∂2κ∗

β

∂xj∂xk
from (11).

To compute the higher-order terms of(π∗, κ∗) at x∗, as-
sume by induction that we have computed the derivatives of
π∗ andκ∗ at x = x∗ to degreed−1. To compute thed order
derivatives ofπ∗, say ∂dπ∗

∂xI
, where I = (i1, i2, . . . , id) ∈

{1, 2, . . . , n}d is a multi-index and we use the notation
∂dπ∗

∂xI
= ∂dπ∗

∂xi1
···∂xid

, we apply ∂d

∂xI
to (4) and obtain by

induction an expression of the form

∂dπ∗

∂xI
= SI +

[

∂π0

∂xa

∂fa

∂uα
+

∂ℓ

∂uα

]

∂dκ∗
α

∂xI
(12)

whereSI is an expression involving the derivatives ofπ0

to degreed and derivatives ofκ∗ to degreed − 1. By
construction ofu∗ from (5), the coefficient of∂

dκ∗

α

∂xI
in (12)

vanishes at(x∗, u∗) and we can therefore compute∂
dπ∗

∂xI
(x∗)

directly as
∂dπ∗

∂xI
(x∗) = SI(x

∗, u∗). (13)

Next, to compute∂
dκ∗

∂xI
atx∗, we apply ∂d

∂xI
to (5) and obtain

by induction an expression of the form

0 = Mαβ

∂dκ∗
β

∂xI
+ TI (14)

whereTI is an expression involving the derivatives ofπ0 to
degreed+1 and derivatives ofκ∗ to degreed−1. The number

of unknowns
∂dκ∗

β

∂xI
is m

(

n+d−1
d

)

and (14) produces the same
number of equations. Assuming that the symmetric matrix
M(x, u) ∈ R

m×m with entriesMαβ(x, u) is invertible at

(x∗, u∗), we can solve uniquely for
∂dκ∗

β

∂xI
from (14).

Finally, for consistency with the order ofπ0, we continue
computingπ∗ to degreed+1. This can be done easily without
the need to computeκ∗ to degreed+ 1 since from (12) the
d+1 order derivatives ofκ∗ will vanish from the equations
for the d + 1 order derivatives ofπ∗. In summary, we have
proved the following.

Theorem 2.1: Let (π0, κ0) be the Taylor polynomial
approximations to(π, κ) at x = 0 to degreesd+1 andd ≥ 1,
respectively. Suppose that(x∗, u∗) ∈ R

n × R
m satisfies

0 =
∂π0

∂x
(f(x∗, u∗))

∂f

∂u
(x∗, u∗) +

∂ℓ

∂u
(x∗, u∗)

and that them × m symmetric matrixM given by(9) is
invertible at (x∗, u∗). Then the Taylor coefficients atx∗ of
(π∗, κ∗) solving (4)-(5) can be computed order-by-order to
degreesd+ 1 and d, respectively.

Having computed(π∗, κ∗) to degreesd + 1 and d, re-
spectively, we can extend the initial approximation(π0, κ0)
by defining a domain on which(π∗, κ∗) will be accepted
and adjoining it toP0. The domain of(π∗, κ∗) will radiate
outward from S1. This process can then be repeated at
distinct points onS1 in such a way that the initial domain
P0 is covered by the patch domains of the newly computed
approximations. In the next section we give the details of
this process.

III. E XTENDING THE INITIAL POLYNOMIAL

APPROXIMATION

A. Level one extension

In this section we describe how to extend the initial
polynomial approximations(π0, κ0) defined onP0 to an
extended domainP0 ∪P1, whereP1 radiates outward from
the boundaryS1 = ∂P0 and surroundsP0 in the sense that
P0 ∩ P1 = ∂P0.

Let S1,1, . . . ,S1,p1 be a partition of the boundaryS1

such that eachS1,j has a non-empty interior relative to the
subspace topology onS1 ⊂ R

n. Suppose that the algorithm
described in§II has been executed at distinct pointsx1,j ∈
S1,j ∩ (∂S1,j)c, for j = 1, . . . , p1, resulting in the polyno-
mial approximations(π1,1, κ1,1), . . . , (π1,p1 , κ1,p1) centered
at x1,1, . . . , x1,p1 of degreesd + 1 and d, respectively. We
call the pointsx1,j patch points. We assume that the image
of S1,j under the corresponding closed-loop dynamics

x+ = f1,j(x) := f(x, κ1,j(x))



is contained in the interior ofP0.
We now describe how to construct a domainP1,j for

each new solution(π1,j , κ1,j). In words, the domainP1,j

will be the union ofS1,j , lateral boundaries radiating from
S1,j , and an outer-most boundary contained in the level set
{x | π1,j(x) = c2}, wherec2 > c1. For z ∈ S1,j let

v1,j(z) :=
z − f1,j(z)

‖z − f1,j(z)‖
,

that is,−v1,j(z) is the direction vector fromz to its image
under the closed-loop dynamics. To build the domainP1,j

of (π1,j , κ1,j), we take eachz ∈ S1,j and follow the curve

t 7→ x(t; z) := (f1,j)−1(f1,j(z) + v1,j(z)t) (15)

in positive time until reaching for the first time the level set
{x | π1,j(x) = c2}. In other words,

P1,j =
⋃

z∈S1,j

{

x(t; z) | π1,j(x(t; z)) ≤ c2, t ∈ [0, tz]
}

wheretz = min{t > 0 |π1,j(x(t; z)) = c2}. Let

S2 =

p1
⋃

j=1

{

x(tz ; z) | z ∈ S1,j
}

.

By construction,P1,j∩S1 = S1,j , and thus we defineS1,j as
the inner boundaryof P1,j, P1,j∩S2 as theouter boundary
of P1,j, and the remaining component of∂P1,j as the
lateral boundaryof P1,j. In practice, the lateral boundaries
between patchesP1,j will not generally match or willS2

be a smooth hypersurface. Hence, it will in general be nec-
essary to redefine the patch domainsP1,j to avoid overlaps
between adjacent patches. In any case, we can augment to
the original polynomial approximation(π0, κ0) defined on
P0 the domainsP1,j and the corresponding approximations
(π1,j , κ1,j), for j = 1, . . . , p1, thereby obtaining a piecewise
smooth approximation toπ andκ defined onP0∪P1, where
P1 := ∪p1

j=1P
1,j.

Remark 3.1:The computation of the curve (15) is facili-
tated by the fact that it satisfies an ODE. Indeed, we have

∂x

∂t
(t; z) = D((f1,j)−1)(f1,j(z) + v1,j(z)t)v1,j(z)

= D((f1,j)−1)(f1,j(x(t; z)))v1,j(z)

= (Df1,j(x(t; z)))−1v1,j(z).

Hence, we can compute the curvet 7→ x(t; z) using standard
high-order numerical ODE solvers that require onlyevalu-
ations of the mappingx 7→ (Df1,j(x))−1v1,j(z), such as
Runge-Kutta methods. For example, up-to first order

x(t; z) ≈ z + (Df1,j(z))−1v1,j(z)t

where

Df1,j(z) =
∂f

∂x
(z, κ1,j(z)) +

∂f

∂u
(z, κ1,j(z))

∂κ1,j

∂x
(z)

can be easily computed. �

Having extended the initial approximations(π0, κ0) to
P0∪P1, in the next section we develop an iterative procedure
to extend it further beyond the outer boundary ofP1.

B. Level two and beyond extensions

Suppose that we have extended the initial polynomial
approximation(π0, κ0) defined onP0 to P0∪P1∪· · ·∪Pr,
r ≥ 1, and we wish to extend it further in the radial direction
from the outer-most boundarySr+1 of ∂Pr. Thepatch level
domainsP i, for i = 1, . . . , r, are the union of patches
P i,j , j = 1, . . . , pi, with pi ≤ pi+1. In what follows, for
notational consistency we defineP0,1 := P0, κ0,1 := κ0,
andπ0,1 := π0, andp0 = 1.

We begin by partitioning Sr+1 into sets
Sr+1,1, . . . ,Sr+1,pr+1 and choose distinct points
xr+1,j ∈ Sr+1,j not on the boundaries ofSr+1,j .
More precisely, the setsSr+1,j are the result of partitioning
the outer boundaries ofPr,1, . . . ,Pr,pr so that each
Sr+1,j ⊂ Pr,σj for some uniqueσj ∈ {1, 2, . . . , pr}. For
example, a trivial partition ofSr+1 would involve taking
the outer boundaries ofPr,1, . . . ,Pr,pr to serve as the
Sr+1,1, . . . ,Sr+1,pr+1 , that is, Sr,j = Sr+1 ∩ Pr,j , and
thuspr+1 = pr. In §IV we describe an adaptive method for
partitioning Sr+1 that takes into account the error of the
currently computed solution. In any case, we assume that
eachSr+1,j is mapped into the interior ofP0∪P1∪· · ·∪Pr

under the corresponding closed-loop dynamics. In other
words, x ∈ Sr+1,j implies that f(x, κr,σj (x)) is in the
interior of P0 ∪ P1 ∪ · · · ∪ Pr. Now, for eachxr+1,j there
exists a uniquePαj,βj , with 0 ≤ αj ≤ r and1 ≤ βj ≤ pαj

,
such thatyr+1,j := f(x, κr,σj (x)) ∈ Pαj ,βj and yr+1,j

does not lie in the outer boundary ofPαj,βj . Hence, to
compute a new polynomial approximation(πr+1,j , κr+1,j)
centered atxr+1,j using the algorithm in§II, we ask that

πr+1,j(x) = παj ,βj (f(x, κr+1,j(x))) + ℓ(x, κr+1,j(x)).
(16)

The first order necessary condition for a minimum then
becomes

0 =
∂παj ,βj

∂x
(f(x, κr+1,j(x)))

∂f

∂u
(x, κr+1,j(x))

+
∂ℓ

∂u
(x, κr+1,j(x)). (17)

We can then use (16)-(17) and the algorithm in§II to
compute polynomial approximations to(πr+1,j , κr+1,j) of
degreesd+ 1 andd, respectively.

We now construct patch domainsPr+1,j for each new
solution (πr+1,j , κr+1,j). As before, the patchPr+1,j will
be the union ofSr+1,j, lateral boundaries radiating from
Sr+1,j , and an outer-most boundary contained in the level set
{x | πr+1,j(x) = cr+1}, wherecr+1 > cr. Let f r+1,j(x) :=
f(x, κr+1,j(x)) denote the closed-loop dynamics. As in the
case of the level one extension, to build the domainPr+1,j

we take eachz ∈ Sr+1,j and follow the curve

x(t; z) = (f r+1,j)−1(f r+1,j(z) + tvr+1,j(z))

in positive time until reaching for the first time the level set



{x | πr+1,j(x) = cr+1}. In other words,

Pr+1,j =
⋃

z∈Sr+1,j

{

x(t; z) | πr+1,j(x(t; z)) ≤ cr+1,

t ∈ [0, tz]}

wheretz = min{t > 0 | πr+1,j(x(t; z)) = cr+1}. Let

Sr+2 =

pr+1
⋃

j=1

{

x(tz ; z) | z ∈ Sr+1,j
}

.

By construction,Pr+1,j∩Sr+1 = Sr+1,j , and thus we define
Sr+1,j as the inner boundary ofPr+1,j, Pr+1,j∩Sr+2 as the
outer boundary ofPr+1,j, and the remaining component of
∂Pr+1,j as the lateral boundary ofPr+1,j. We now augment
to the running approximation defined onP0 ∪P1 ∪ · · · ∪Pr

the domainsPr+1,j and the corresponding approximations
(πr+1,j , κr+1,j), for j = 1, . . . , pr+1, thereby extending the
approximations toP0 ∪ P1 ∪ · · · ∪ Pr+1, wherePr+1 :=
∪
pr+1

j=1 Pr+1,j

The final piecewise-smooth approximations to(π, κ), de-
noted(πpch, κpch), are given by

πpch(x) = πi,j(x), if x ∈ P i,j ∩ (Si+1)c

κpch(x) = κi,j(x), if x ∈ P i,j ∩ (Si+1)c

where0 ≤ i ≤ r + 1 and1 ≤ j ≤ pi.

IV. A DAPTIVE PARTITIONING OF OUTER BOUNDARIES

In this section we outline an adaptive method for parti-
tioning the outer boundaries of a newly constructed domain
levelPr. The main advantage of the method, compared to a
pre-determined partitioning scheme, is to reduce the number
of patch points at where the algorithm in§II is executed, and
to determine the regions of the state space where the error
of the computed solutions is growing more rapidly.

Suppose that therth level domainPr has been computed
and we seek to extend the approximation from the outer
boundarySr+1 of ∂Pr. The boundarySr+1 is the union
of the outer boundaries ofPr,1, . . . ,Pr,pr . Therefore, to
construct the(r + 1) level domainPr+1, we first need to
partition the outer boundary of eachPr,j . This can be done
in a pre-determined manner. For example, we can partition
each outer boundary ofPr,j into two sets so that the number
of patches from level-to-level doubles. Instead, one could
partition the outer boundary ofPr,j in an adaptive way
by considering how well the solutions(πr,j , κr,j) satisfy
Bellman’s equation (4). To this end, we define therelative
error ρr,j : Pr,j → R by

ρr,j(x) =
|πr,j(x) − παj ,βj (f(x, κr,j(x))) − ℓ(x, καj ,βj (x))|

πr,j(x)

where0 ≤ αj ≤ r, 1 ≤ βj ≤ pαj
, andPαj ,βj is the patch

domain that contains the image of the patch pointxr,j under
the closed-loop dynamics. The total relative error on the outer
boundary ofPr,j is given as

sr,j =

∫

Pr,j∩Sr+1

ρr,j(x) dx

and the total relative error on the outer boundary ofPr is
sr =

∑pr

j=1 sr,j . If sr,j
sr

≈ 1
pr

, for all j = 1, . . . , pr, then the
computed solutions(πr,j , κr,j) all contribute approximately
the same relative error on the outer boundaries of their
domains. In this case, if the relative errorssr,j are within
some desired tolerance levelεr > 0, we can simply use
the outer boundaries of thePr,j as the inner boundaries of
the patches on the next level domainPr+1, and therefore
pr = pr+1. If, on the other hand, the coefficient of variation
cv of the distribution of the relative errorssr,j is above
some desired maximum tolerance, saycv ≥ 1, then for those
sr,j such thatsr,jsr

> 1
pr
mr, for some chosenmr > 1, we

can partition the outer boundary ofPr,j into two sets of
approximately equal size. This process can then be iterated
on the newly created partitions until we have obtained a final
partition of each outer boundary ofPr,j, and consequently a
partitionSr+1,1, . . . ,Sr+1,pr+1 of the boundarySr+1. With
this method, the number of sets used to partition the outer
boundary of eachPr,j will vary. In particular, the outer
boundaries of those patchesPr,j where the relative error
is growing rapidly will be partitioned into more sets than
those where the relative error is growing more slowly.

V. A N EXAMPLE

To test the accuracy of our patchy algorithm, we can apply
it to a system for which the optimal costπ and controlκ are
known so that we can compare the patchy approximation to
the true solution. With this in mind, we test our algorithm on
a nonlinear system that is equivalent to a linear one under
a smooth transformation. To this end, consider the linear
system

z+ =

[

1 1
10

0 1

]

z +

[

0
1
10

]

u

and stage costℓ(z, u) = 1
20 (z

2
1 + z22 + u2). The optimal cost

function π and optimal regulatorκ are given byπ(z) =
1
2z

′Pz andκ(z) = Kz, where(P,K) solve the associated
DARE. Consider the change of coordinates

z = (φ1(x), φ2(x)) :=
(

x1, x2 + sin(x1)e
−x2

1/100
)

.

In the x coordinates, the system becomes

x+
1 = φ1(x) + φ2(x)

x+
2 = φ2(x) − sin(φ1(x) + φ2(x))e

−(φ1(x)+φ2(x))
2/100

and the stage cost becomesℓ(x, u) = 1
20 (φ1(x)

2+φ2(x)
2+

u2). The optimal cost function and optimal control in thex-
coordinates areπ(x) = 1

2φ(x)
′Pφ(x) andκ(x) = Kφ(x),

respectively.
We computed patchy approximations(πpch, κpch) to (π, κ)

using initial polynomial approximations(π0, κ0) of degrees
4 and 3 respectively, i.e.,d = 3, andN = 40 patch levels.
The cost levelscr were chosen ascr = (0.3+(r−1)0.03)2,
for r = 1, . . . , N . The method of adaptive partitioning of the
outer boundaries as described in§IV was performed with the
parameterscv = 2 for the first 20 patch levels andcv = 3
for the remaining levels, andmr = 1.5 for r = 1, . . . , N .



The number of patch points on the initial level was chosen
asp1 = 32 and the resulting number of patch points on the
last patch level waspN = 324.

In Fig. 1 we plot the error in approximationπ with
the polynomialπ0, and in Fig. 2 we plot the error in
approximatingπ with the patchy approximationπpch. As can
be seen from Fig. 1-2, the maximum errorπ(x) − π0(x)
is approximately 1.5, whereas the maximum errorπ(x) −
πpch(x) is approximately4 × 10−3. In Fig. 3 we plot the
exact solutionπ together with the polynomial approximation
π0, and in Fig. 4 we plot the exact solutionπ together with
the patchy approximationπpch.
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Fig. 1. Error π(x) − π0(x) with π0 a degree four polynomial. The
maximum error usingπ0 is approximately1.5.
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Fig. 2. Errorπ(x)− πpch(x) usingN = 40 patch levels. The maximum
error usingπpch is approximately4× 10−3.

VI. CONCLUSION

In this paper we presented some preliminary results on
a numerical method to compute high-order solutions to
Bellman’s dynamic programming equation of optimal control

Fig. 3. Exact cost functionπ (transparent blue) and polynomial approxi-
mationπ0 (color gradient) of degree four.

Fig. 4. Exact cost functionπ (transparent blue) and patchy approximation
πpch (color gradient) usingN = 40 patch levels.

regulation. In a forthcoming paper, we intend to perform an
error analysis of the approximation method.
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