High-order numerical solutions to Bellman’s equation of ogimal control

Cesar O. Aguilar and Arthur J. Krener

Abstract— In this paper we develop a numerical method such thatr(z) = 12'Pz and k(z) = Kz, where K =
to compute high-order approximate solutions to Bellman’s —(B'PB + R)'B'PA, provided (A, B) is stabilizable and
dynamic programming equation that arises in the optimal (A,Ql/Q) is detectable. Moreover, the closed-loop matrix

regulation of discrete-time nonlinear control systems. Tk . - o
method uses a patchy technique to build Taylor polynomial A+ BK has eigenvalues inside the unit circle and thus the

approximations defined on small domains which are then Closed-loop system is (globally) asymptotically stabléeT
patched together to create a piecewise-smooth approximati. matrix P is the unique solution to the discrete-time algebraic
Using the values of the computed cost function as the step- Riccati equation (DARE)

size, levels of patches are constructed such that their radi

boundaries are level sets of the computed cost functions and P=APA+ A'PB(B'PB+R)'B'PA+Q.
their lateral boundaries are invariants sets of the closedeop ) .
dynamics. To minimize the computational effort, an adaptie When f and ¢ are nonlinear and have Taylor expansions

scheme is used to determine the number of patches on each leve of the form
depending on the relative error of the computed solutions.

Consider the discrete-time nonlinear control system )
where f?(z,u) are the quadratric terms ¢f and (%l (z, u)
t = f(z,u) (1) are the cubic terms of, etc., a method, originating in
wherez € R" is the statey € R™ is the control, f : [1], is _pres.ented in [4] for computlng_Taonr polynomial
" m " : pproximations about = 0 to the solutions(w, x) of (2)-
R™ x R™ — R™ are the dynamics (assumed to be smoothfl L :
n . 3). The basic idea is to Taylor expand (2)-(3) about 0
and z* denotes the successor state. Given a stage/cost R .
. : and gather terms of the same order resulting in equations for
R™ x R™ — R, the optimal regulator problenfor (1) is to -
! n m the unknown Taylor coefficients of and k. One assumes
find a feedback controt : R® — R™ such that ! . . ;
that the Taylor expansion of begins with quadratic terms

(o) s (O)mi(lll) Zlé(x(k),u(k)) and that ofx with linear terms, that is,
w(0)ull), 375 m(z) = %a:'Pa:—l—wB](a:)—i—'-'
=3 tla(k), w2 (k) (o) = Ka b l(z) + -
k=0

For eachd > 1, the resulting equations are for thie+ 1
for all initial conditionszy = (0). If they exist, theoptimal ~order coefficients ofr and thed order coefficients ofx.

cost functionr and optimal regulatorx satisfy Bellman’s As shown in [4], it is possible to solve for the Taylor

dynamic programming equation [2] coefficients ofr and x to any desired degree provided
A + BK has eigenvalues inside the unit circle. Hence, in
m(z) = 7(f(z, £(x))) + l(z, £(x)). @) this paper we implicitly assume the stated stabilizabaityl

detectability properties for the linearization of the o
regulator problem forf and/.
Let 7° and x° denote the Taylor polynomial functions of
m andk to degreed + 1 andd, respectively, at: = 0. In a
0= %(f(x, K(x))ﬁ(x’ K(z)) + %(I’ k(z)). (3) nNeighborhood of the origin, the polynomidis’, x°) serve as
Oz ou Ou good approximations tér, ). If one desires more accurate
If fis linear inz andu, say f(z,u) = Az + Bu, where approximations to(r, x), one can increase the degree of
A € R™™ and B € R™*™, and/ is quadratic of the form approximatiord, but there are two main drawbacks in doing
l(z,u) = 12/Qx + Lu'Ru, where@ = 0 and R - 0 are so. First, increasing! increases the accuracy o0, k0)
symmetric matrices of appropriate dimensions, then frofaut on a possiblysmaller domain because of the rapidly
the classical linear quadratic regulator problem [3], ¢hergrowing behavior of high-order polynomials away from the
exists a unique, symmetric, and positive definite maffix origin. Second, the number of Taylor coefficients of degree
d in n variables is("*4~") and this number grows rapidly
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If the cost functionr is differentiable and, — 7 (f(z,u))+
¢(x,u) is strictly convex aboufz,u) = (0,0), then the
following first order condition for a minimum is satisfied:



small state dimensions suchas= 2 orn = 3 andd > 5. by applying the feedback’, that is,

For these reasons it is natural to seek alternative metluods f N 0

computing approximations tar, ). " = f(z,r (x))
In this paper, we present a numerical algorithm that ex- z(0) € P

tends the approximations’, x°) and produces a piecewise . _ ]

smooth approximations tér, ) by patching together local 'S @n asymptotically stable system, and furthermdtds a

approximations td, x) on disjoint domains. Our method is Liapunov function for the closed-loop dynamics, that is,

based on the ideas in [5] in which a patchy type algorithm is 70(f(x, k0(x))) — 7°(x) < O

developed for the numerical computation of approximate so- ’

lutions to the Hamilton—Jacobi-Bellman equation. Roughlfor = € P°. In particular, for allz € S we have

speaking, our method can be described as follows. The

initial polynomial approximationgn®, x°) are accepted on ™ (f(z, k% (2))) < 7°(z) = 1

a sublevel seP? = {z € R" : 7°%x) < ¢}, with ¢ > 0 0 L o 0

chosen sufficiently small so th&° = D", whereD" denotes 2"d t?usf(x’” () will lie in the interior of 7> for all

the closed unit disk ilR”. We partition the boundary ¢?°, ¥ €S

select points inside each set of the partition, and compute NOW letz” € S' and we seek to augment ta”, %) new

new polynomial approximations afr, x) by using (2)-(3), polynomial approxmaponﬁ*,;-;*) defined in a neighbor-

the previously computed approximatioris?®, °), and a hood of z* and radiating outward from the boundasy.

Cauchy-Kowalevski type algorithm to compute the highJ© do SO, we ask that near, the new feedback contraf*

order derivatives of the new polynomial approximationsdrive the state into the interior of the domait after one

Each new approximation is accepted on a domain radiatit"e-Step. Consequently, we ask that the galfr, »*) satisfy

outward from the boundary of°. The domains of the * 0 * *

. i e . = 14 4
new approximations are pairwise disjoint and their outer- (@) = 7 (f w17 (@) + la, £ () “)
most boundaries define a piecewise smooth hypersurfaggr all + nearz*. The first order necessary condition for a
The outer-most boundaries are chosen as level sets of thgnimum then becomes
newly computed cost functions. We then repeat the whole o

; or of )4
procedure on the newly computed outer-most boundaries. (= ——(f(z, s* (2)) == (2, £* () + — (z, x*(x)). (5)
Throughout the paper, we assume that for eachR™, 0 Ou o
z — f(z,u) defines a local diffeomorphism dk™. That is, Using (4)-(5) and a Cauchy-Kowalevski technique, we now
for eachu € R™ andx € R there is a neighborhoof? describe how one can compute Taylor approximations to
of z such thatf(-,u) : @ — f(Q,u) is a diffeomorphism. (7*,x*) centered at* order-by-order to degre¢ + 1 and
An important example where such discrete-systems arise dsrespectively.
in the sampling of continuous-time control systems. To compute the zeroth order terms 6f*, x*) at z*,
we first use (5) to solve for*(x*). In practice, this can
be done using Newton's method with initial guesyz*).
Having computed:* (z*), we can determine™(z*) directly
In this section we describe a Cauchy-Kowalevski type?y evaluating the _rlght-hand—s:de*of (4) :af. For I*ater* use
: . . .~ .2 and to ease notation, let* = x*(z*) andy* = f(a*,u*).

algorithm for computing new polynomial approximations .
to (m, k) from a previously computed polynomial solution Now we compute the f|_rst orderterms((_arf*,_/-e*) atz”, T(?

’ do so, differentiate (4) with respect tq yielding (we omit

0 .0 0 0 ;
ggg’rZe)d. \flvvi;zzugel that™ is of degreel + 1 and«™ is of evaluation atz,u) and f(x,u) for notational simplicity)

II. COMPUTATION OF NEW SOLUTIONS

The polynomial 7°(x) begins with the quadratic term  9x* 970 df, ¢ or of, o0 Okl
$a’ Pz where P > 0, and thereforer” hasz = 0 as a Or;  Ox, 0z; | O {axa iy %} o )
non-degenerate local minimum. Hence, by Morse’s lemma, _
there is a neighborhoad, c R" of the origin such that the for ¢ = 1,...,n, and where we have used the summation

sublevel setz € Qg : 7°(z) < ¢1} are diffeomorphic to conventigq. Now Qgti.ce that, by constructiomgf from (5),

the unit discD", providede; > 0 is sufficiently small, and the coefficient ofgee in (6) vanishes afz", u") and we can
therefore the level setér € Qy : 7%z) = ¢ < ¢} are therefore comput%(x*) directly as

diffeomorphic to the spher®*~!. Hence, we assumg > 0 o 9,70 of y

i 7T* 7T a * * * *

is such that ( )+ (@, u*).  (7)

a—%(ﬁf ):8—%(9 )6—:@»:6 y U oz,
0 = n . 0 < o~ M . ) -
P R (@) <at=D Now consider the computation 0%;7(; forj =1,...,m.
and we letS! := 9PY = S*~1. By making c; smaller First, write () in component form
if necessary, we can assume tifat is contained in the ~onY Of, or

domain of attraction of the closed-loop dynamics resulting T x4 Oty | Oug’ a=1...m



and then differentiate with respect 49 yielding Next, to computeagT'f atz*, we applyf—i to (5) and obtain
oKy 2x0 0f, 0f. 00 02f, 520 by induction an expression of the form

0=Map5— . A,
, , , . 0%k
Oz Oxo0zp 0xj Ou  Oxq Oundx; Buaazcé) 0= Map —f i (14)
8:01
where hereTy i ion involving the derivativesdf t
2 0 0 a2 2 whereT7 is an expression involving the derivatives7of to
Mup = On Ofp Ofa O _07fa ot (9) degreei+1 and derivatives of.* to degree/—1. The number

=2 = +
d,  *
oy Qup Qe Oq Fuadus — Juadug of unknownsaaT“f is m("*9") and (14) produces the same

for 1 < a,8 < m. The number of unknownsajTZ? is number of equations. Assuming that the symmetric matrix
mn and (8) producesnn equations. Assuming that the M (z,u) € R™™ with entries Mas(z, u) is invertible at
symmetric matrix}M (z, u) € R™*™ with entriesMg(x,u) («*,u*), we can solve uniquely fo%T“f from (14).

is invertible at(2*,u*), we can solve uniquely for the  Finally, for consistency with the order af’, we continue

unknowns% from (8). computingr™ to degreei+1. This can be done easily without
Next, to c6mptue the quadratic terms @f*, x*) at z*, the need to compute* to degreel + 1 since from (12) the
differentiate (6) with respect to; yielding d+1 order derivatives of.* will vanish from the equations
5 . 0 5 . for the d + 1 order derivatives ofr*. In summary, we have
o g [a” Ofa + ﬁ} 0" kg (10) proved the following.
OO, Y 020 Qua Oua | Oxi0x; Theorem 2.1: Let (7°,x°) be the Taylor polynomial

approximations tqr, k) atz = 0 to degreesl+1 andd > 1,

wheresS;; is an expression involving the derivativessdf to : e
respectively. Suppose that*, u*) € R™ x R™ satisfies

degree 2 and derivatives af to degree 1. By construction

of u* from (5), the coefficient 0% in (10) vanishes at om0 v W Of . o, .
* % Y 2 % . :—(f('rau))_(xvu)+_('rvu)
(z*,u*) and we can therefore compugéia—wj(a: ) directly Oz ou ou
as 52 and that them x m symmetric matrix\/ given by(9) is
T o) = Sy (z*, ub). invertible at («*, u*). Then the Taylor coefficients at* of
Ow;0x; (7*,k*) solving (4)-(5) can be computed order-by-order to

degreesd + 1 and d, respectively.
Having computed(w*, x*) to degreesd + 1 and d, re-
spectively, we can extend the initial approximatior?, °)
6252; by defining a domain on whicliz*, x*) will be accepted
0= Maﬁm + Tk (11)  and adjoining it toP°. The domain of(7*, x*) will radiate
! outward from S'. This process can then be repeated at
whereT);, is an expression involving the derivativesi#fto  distinct points onS! in such a way that the initial domain
degree 3 and derivatives af to degree 1. The number of PO js covered by the patch domains of the newly computed
unknownsaijgik is m ) and (11) produces: ™%t approximations. In the next section we give the details of
equations. Assuming that the symmetric mathik(z,u) €  this process.

R™>™ with entriesM,s(z,u) is invertible at(z*, u*), we
. 9%k ; I11. EXTENDING THE INITIAL POLYNOMIAL

can solve uniquely f.or the unknowrﬁm rom (11). APPROXIMATION

To compute the higher-order terms @f*, *) at z*, as- )
sume by induction that we have computed the derivatives §f L€Vel one extension
™ andk* atz = z* to ddegreei—l. To compute thel order In this section we describe how to extend the initial
derivatives ofr*, say 36;:, whereI = (iy,is,...,iq) € polynomial approximationgz®, x°) defined onP® to an
{1,2,...,n}" is a multi-index and we use the notationextended domaifP® UP', whereP' radiates outward from
84>

o = 81»6?778*1' . we applyg—; to (4) and obtain by the boundans' = dP° and surround$” in the sense that
i1 id

induction an expression of the form PP = 0P, N
Let St1,...,S1P1 be a partition of the boundarg®

&z S [B_WO% ﬂ} 9k, (12) such that eack$'/ has a non-empty interior relative to the
Oxy 04 Oua  Oun| Oxp subspace topology of' C R". Suppose that the algorithm
where S; is an expression involving the derivatives of described infll has been executed at distinct points’ e

1, 1,5 ¢ . . )
to degreed and derivatives ofx* to degreed — 1. By ©.° ' (95%7)°, for j = 1,...,p1, resulting in the polyno

. 9% k% . . .
Next, to get equa_tlons fog%T‘;k, we differentiate (8) with
respect tar, yielding

. . - dyr mial approximationgz!t, k1), ... (71?1 k1P1) centered
con§tructlon ofu* from (5), the coefficient O'aaTld”l (12) atzl'l, . . 2l of degrees] + 1 andd, respectively. We
vanishes afz*, u*) and we can therefore compule™ (") call the pointsz!+/ patch points We assume that the image
directly as of 817 under the corresponding closed-loop dynamics

adﬂ-* * * *
. (z*) = Sp(a*, u*). (13) at = fY(x) = f(x, M (x))




is contained in the interior oP°. B. Level two and beyond extensions

We now describe how to construct a domat? for o )
each new solutior{z'7, x9). In words, the domainP!~ Suppose that we have extended the initial polynomial

: . . . o imation(7°. 0 i 0 0 ;pl
will be the union ofS', lateral boundaries radiating from @PProximatior(w”, =) defined or>® to PPUP U---UP",
S, and an outer-most boundary contained in the level sét= 1 and we wish to extend it further in the radial direction

{z | 799 (x) = ca}, Wherees > ¢1. Forz € 81 let from t.he oqter-mqst boundag+! of oP". T_hepatch level
L domainsP?, for ¢ = 1,...,r, are the union of patches

oM (z) = 21— f ’J_(z) P, =1,...,p;, with p; < p;r1. In what follows, for

[z = fH7 (=)l notational consistency we defire®! := P9, k%1 := k9,

that is, —v'(z) is the direction vector from to its image and7*! := 77, andpo = 1.
under the closed-loop dynamics. To build the dom&ilY We begin by partitioning S"t' into  sets
of (717, k1), we take each € S'7 and follow the curve S"*h',...,8"*tPr+1 and  choose distinct  points
o elinels el 1.5 g"thi e S§™thJ not on the boundaries ofS™t!.
tea(tiz) = () () +v () (15) More precisely, the set§"*1J are the result of partitioning

in positive time until reaching for the first time the levet sethe outer boundaries ofP™',...,P"P~ so that each
{z| 749 (2) = ¢2}. In other words, S™tLi c Pm9i for some uniques; € {1,2,...,p.}. For
L L example, a trivial partition ofS"*! would involve taking
P = | {alti2) |79 (x(t:2)) < o, t € [0,2.]} the outer boundaries oP™!,... PP to serve as the
2€S1 Srtil o Srtlpe that is, 8™ = S™t! N P™I, and
wheret, = min{t > 0|71 (z(t; 2)) = c2}. Let thusp, 11 = p,. In §IV we describe an adaptive method for
- partitioning S”*! that takes into account the error of the
S2 — U {x(tz;z) |z € 51,.7'}. currently qomputed solution. In any case, we assume that
i1 eachS™+17 is mapped into the interior #° UP U- - - UP"

under the corresponding closed-loop dynamics. In other

) L words, z € 8"t implies that f(x,x"% (z)) is in the
theinner boundaryof P*/, P*/NS* as theouter boundary i iarior of POUPLY-..UPT. Now. for eachz™ 1 there

1,5 ini 1,5 . . .

of P%J, and the relmlalnlng component afP~I as thg exists a uniqueP®-% , with 0 < o; < r and1 < B; < pa.,

lateral boundaryof P*. In practice, the lateral boundanessuch thaty™+1d — o .6 and 1
1.9 . . 2 y T f((E,KJ J(‘r)) epj 7an y

between patche®'? will not generally match or willS

By constructionP!/NSt = S, and thus we defing!+/ as

e does not lie in the outer boundary @*:%. Hence, to
be a smooth hypersurface. Hence, it will in general be neE’ompute a new polynomial approximati¢n’1-7, x™+1:9)

essary to redefine the patch domajns’ to avoid overlaps centered a1 using the algorithm ir§ll, we ask that
between adjacent patches. In any case, we can augment to

the original polynomial approximatiow®, x°) defined on r LGN B 41,5 r41,j

PO the domaingP'+ and the corresponding approximations (@) = (f(=, 5 (@))) + tla, 5 (2)).

(rbd, k13, forj =1 thereby obtaining a piecewise (16)
’ P N T = e P Y 01 11a1 The first order necessary condition for a minimum then
smooth approximation te andx defined orP® UP*, where b
pl.— Uzjn:lpu_ ecomes
Remark 3.1:The computation of the curve (15) is facili- OB 5
tated by the fact that it satisfies an ODE. Indeed, we have (= WB (f(x, n”l’j(:z:)))a—f(:z:, KT (2))
T u
Ox L : : : ‘
= (t:2) = D)) (2) + 01 ()00 (2) + g(x,ww(z)). (17)
= D((fH) (M (a(t; 2)))0" (2) o
— (DfY (2(t; 2)) "0l (2). We can then use (16)-(17) and the algorithm §i to

compute polynomial approximations tax"+17, xm+1.7) of
Hence, we can compute the cumves x(t; z) using standard degreesi + 1 andd, respectively.

high-order numerical ODE solver_s that req_uire oerlalu- We now construct patch domaif@ 1 for each new
ations of the mappingz ~ (DfJ (x))*lvlvﬂ_(z), such as  slution (717, x™+17). As before, the patchP™ 17 wil
Runge-Kutta methods. For example, up-to first order be the union ofS"*+J, lateral boundaries radiating from
2(t;2) = z + (D (2) Lol (2)t S™+1J, and an outer-most boundary contained in the level set
{z | 7" T4 (x) = ¢, 41}, Wherec, 1 > ¢, Let frH1i(z) :=
where f(z, k"1 (x)) denote the closed-loop dynamics. As in the
, of ; of Okt case of the level one extension, to build the donfairt!7
1,5 24 1,5 'l 1,j v - !
DfH(z) = 5 o (2) 5 (2 k0 (2) =5 (2 we take each € S"*t17 and follow the curve
can be easily computed. O _ _ _
Having extended the initial approximatiorfs?, x°) to w(t;z) = (f7HH) TN () + 00" (2))

POUPL, in the next section we develop an iterative procedure
to extend it further beyond the outer boundarymf. in positive time until reaching for the first time the levet se



{z | 7"*%(2) = ¢,41}. In other words, and the total relative error on the outer boundaryP5f is

, . Sp= 20 sy If 2L x p%’ forallj=1,...,p,, then the
P = U {a(t:2) | 71 (2(t:2)) < e, computed solutiongr™7, xk™7) all contribute approximately
z€8THI the same relative error on the outer boundaries of their
t€[0,t.]} domains. In this case, if the relative errors; are within

some desired tolerance level > 0, we can simply use
the outer boundaries of tH8™7 as the inner boundaries of
the patches on the next level domaii+!, and therefore
pr = pry1. If, On the other hand, the coefficient of variation
cv of the distribution of the relative errors, ; is above
By constructionP"t1-iNS"+1 = §"+1J, and thus we define some desired maximum tolerance, say> 1, then for those
S+ as the inner boundary @14, Pr+1.in§ +2 asthe s, ; such that™ss > --m;, for some chosem:, > 1, we
outer boundary of>" "/, and the remaining component of can partition the outer boundary 61"/ into two sets of
gPr+17 as the lateral boundary 6t"+'7. We now augment approximately equal size. This process can then be iterated
to the running approximation defined @ UP' U---UP"  on the newly created partitions until we have obtained a final
the domainsP™*"/ and the corresponding approximationspartition of each outer boundary &7, and consequently a

wheret, = min{t > 0 | 7" "1 (z(¢; 2)) = ¢,41}. Let

Pr+1

S = U {z(t.;2) | 2 € ST},
j=1

(mr I k), for j =1,..., prya, thereby extending the partition S7+1:1, ..., S™+1.P-+1 of the boundarys™1. With
approximations toP” U Pt U --- U P!, whereP"*! :=  this method, the number of sets used to partition the outer
AR R boundary of eachP™/ will vary. In particular, the outer
The final piecewise-smooth approximations(to x), de-  boundaries of those patchgd™/ where the relative error
noted (mpch; fipch), are given by is growing rapidly will be partitioned into more sets than
Tpon(z) = T (z), if ¢ € PN (S those where the relative error is growing more slowly.

V. AN EXAMPLE

g ; i,j i+1\c
fipen(t) = K (z), i @ € P O(STT) To test the accuracy of our patchy algorithm, we can apply
where0 <i<r+1andl <j <p;,. it to a system for which the optimal costand control are
known so that we can compare the patchy approximation to
IV. ADAPTIVE PARTITIONING OF OUTER BOUNDARIES . . I .
_ ) ] ) ‘the true solution. With this in mind, we test our algorithm on
In this section we outline an adaptive method for partiy nonlinear system that is equivalent to a linear one under

tioning the outer boundaries of a newly constructed domaif smooth transformation. To this end, consider the linear
level P". The main advantage of the method, compared to &stem

pre-determined partitioning scheme, is to reduce the numbe

1
of patch points at where the algorithmgH is executed, and Lt = F E} 2+ [?] u
to determine the regions of the state space where the error 0 1 10
of the computed solutions is growing more rapidly. and stage cost(z, u) = 2 (22 + 22 +u?). The optimal cost

Suppose that theth level domairfP’”_ hag been computed f,nction © and optimal regulator. are given by (z) =
and we seek to extend the approximation from the out%rzlpz and x(z) = Kz, where(P, K) solve the associated

boundaryS™*! of 9P". The boundaryS"*! is the union pBARE. Consider the change of coordinates
of the outer boundaries oP™!, ..., P"P-. Therefore, to

construct the(r + 1) level domainP™**, we first need to 2= (¢1(2), p2()) := (:cl,xg + sin(:cl)e_mf/loo) :
partition the outer boundary of ea@h>/. This can be done .

in a pre-determined manner. For example, we can partitidi the = coordinates, the system becomes

each outer boundary 67" into two sets so that the number -+ — 4, (2) + ()

of patches from level-to-level doubles. Instead, one could | . (61 (2)+6a(2))2/100
partition the outer boundary oP™ in an adaptive way 2 P2() — sin(1(2) + ¢2(z))e

by considering how well the solutiongr™’, ™) satisfy  and the stage cost becom@s, u) = (61 (2)? + o) +
Bellman’s equation (4). To this end, we define tleéative  ,2) The optimal cost function and optimal control in the
error p™/ : P™7 — R by coordinates arer(z) = 1¢(z)' Pé(z) andk(z) = K¢(z),
() = |79 () — w23 Bi (f (2, k79 () — 0(x, K9P (x))] respectively.

7 () We computed patchy approximatiofigch, £pch) to (7, )

) using initial polynomial approximationgr?, x°) of degrees
where0 < a; <7, 1 < f; < pa,, andP*% is the patch 4 and 3 respectively, i.ed — 3, and N = 40 patch levels.
domain that contains the image of the patch pefit under  The cost levels, were chosen as, — (0.34 (r—1)0.03)2,
the closed-loop dynamics. The total relative error on theou ¢or . — 1,...,N. The method of adaptive partitioning of the
boundary ofP™’ is given as outer boundaries as describediIv was performed with the

A / " (2) d parametergv = 2 for the first 20 patch levels aneb = 3
AN S for the remaining levels, antgh, = 1.5 for » = 1,..., N.




The number of patch points on the initial level was chose
asp; = 32 and the resulting number of patch points on the

last patch level wap = 324.
In Fig. 1 we plot the error in approximation with

the polynomial7°, and in Fig. 2 we plot the error in

approximatingr with the patchy approximatiomch. As can
be seen from Fig. 1-2, the maximum errofz) — 7°(z)
is approximately 1.5, whereas the maximum err¢r) —
Tpeh(x) is approximately4 x 1073, In Fig. 3 we plot the

exact solutionr together with the polynomial approximation

79, and in Fig. 4 we plot the exact solutiontogether with
the patchy approximatiofipch.

Fig. 1.
maximum

Error m(z) — 70(x) with 7% a degree four polynomial. The
error usingr® is approximatelyl.5.

Fig. 2. Errorm(z) — mpen(x) using N = 40 patch levels. The maximum
error usingmpch is approximately4 x 103,

VI. CONCLUSION

In this paper we presented some preliminary results on
a numerical method to compute high-order solutions to
Bellman’s dynamic programming equation of optimal control

Fig. 3. Exact cost functiomr (transparent blue) and polynomial approxi-
mation 79 (color gradient) of degree four.

Fig. 4. Exact cost functionr (transparent blue) and patchy approximation
Tpch (color gradient) usingV = 40 patch levels.

regulation. In a forthcoming paper, we intend to perform an
error analysis of the approximation method.
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