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Abstract— In this paper, we study the controllability of
nonlinear networked systems. In particular, we describe how
graph symmetries combined with dynamic symmetries result in
a loss of controllability in nonlinear leader-follower networks.
Our result generalizes those of Rahmani et al. (2009) who
considered the case of a linear consensus-type dynamics, namely
the unweighted Laplacian network flow. We consider several
nonlinear network control systems that have been previously
studied in the literature and characterize the presence of
leader-follower graph symmetries that result in the lack of
controllability.

I. INTRODUCTION

Many modern engineering and economic systems consist

of collections of smaller subsystems, interconnected to each

other over a network. Examples include distributed energy

resources, oscillator synchronization, and distributed robotic

networks, see [1], [2], [3] and also cascades of information

and opinions in social networks [4]. Controllability and

stabilizability of networked control systems are fundamental

problems in distributed control theory. For linear systems, it

is by now well-understood that the topology of the network,

alongside with limitation of control inputs, influences the

possibility of controlling the system. It is, for example,

known that certain symmetries in the placement of control

vertices can cause lack of controllability in consensus dy-

namics [5]. On the stabilizability front, the recent work [6]

investigates the limitations imposed by the topology of

interconnections in linear networked control systems via the

notion of sparse stable matrices. Other examples include [7]

in the context of passivity-based design.

The focus of this current work is on the controllability of

networked control systems. In contrast to [5], a particular

interest of this paper will be on identifying easy-to-verify

obstructions to controllability of networked control systems

whose evolutions are driven by nonlinear dynamics, not

necessarily of the consensus type. Examples of such systems

include the absolute, relative, and disagreement nonlinear

flows presented in [8] and virus spread in networks [9].

Statement of Contributions: The contributions of this pa-

per are threefold. We first introduce the notion of symmetries

for network flows whose evolutions are not necessarily linear.

In contrast to similar notions for linear flows, symmetries of

both 1) the underlying network and 2) the dynamical system

play important roles in this definition. We characterize these
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symmetries for various examples, including the absolute,

relative, and disagreement nonlinear flows and also the

virus spreading dynamics. We then introduce the notion of

leader-follower network flow. As our second contribution,

we give a necessary condition for controllability of general

networked control systems with real-analytic flows. Among

other things, this result demonstrates that the existing ob-

structions to controllability in the literature on multi-agent

systems are instances of lack of accessibility. As our last

contribution, we present a suit of examples, including the

loss of controllability in spite of dynamic asymmetry and loss

of controllability in spite of leader symmetry, demonstrating

that these results are far from being sufficient, even when

lack of accessibility is concerned. We suggest some future

directions for improving these results in our conclusion

section.

Organization: Section II contains preliminaries on graph

theory and nonlinear controllability. In Section III, we in-

troduce and study the symmetries of a network dynamical

system in terms of the automorphisms of its underlying

graph. Section IV contains our results on controllability

of nonlinear networked control systems. Finally, Section V

gathers our conclusions and ideas for future work.

II. MATHEMATICAL PRELIMINARIES

Let R and R≥0 denote the real and nonnegative real

numbers. Let F : Rn → R
n be a vector field on R

n and

let φ : Rn → R
n be a smooth mapping. We say that F is φ-

invariant if (Dφ(x))F (x) = F (φ(x)) for all x ∈ R
n, where

Dφ(x) denotes the Jacobian matrix of φ at x. The Lie bracket

of two vector fields f and g will be denoted by [f, g]. Given a

mapping φ : X → X we let Fix(φ) = {x ∈ X | φ(x) = x}
denote its fixed point set.

A. Graph theory

We introduce some basic notions from graph theory [10].

A graph G = (V , E) consists of a vertex set V and an edge

set E ⊆ [V ]2 := {{v, w} | v, w ∈ V}. The order of the graph

G is the cardinality of its vertex set V . In this paper we deal

only with graphs of finite order. The neighbors of v ∈ V is

the set Nv := {w ∈ V | {v, w} ∈ E} and the degree of v is

dv := |Nv|. A path in G is a sequence of edges of the form

{v1, v2}, {v2, v3}, . . . , {vk−1, vk}. The graph G is connected

if there is a path between any pair of vertices. Henceforth,

when not explicitly stated, we fix an ordering on the vertex

set V so that we may write V = {v1, . . . , vn}, where n is the

order of G. The adjacency matrix of G is the n×n matrix A

defined as Ai,j = 1 if {vi, vj} ∈ E and Ai,j = 0 otherwise.
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A mapping ϕ : V → V is an automorphism of G if ϕ is

a bijection and {v, w} ∈ E implies that {ϕ(v), ϕ(w)} ∈ E .

An automorphism ϕ of G induces a linear transformation

on R
n whose matrix representation in the standard basis is

a permutation matrix, i.e., as a linear mapping ϕ acts as a

permutation on the standard basis {e1, . . . , en} of Rn. When

no confusion arises, we will denote this linear transformation

with the same symbol ϕ.

B. Nonlinear controllability

We review some basic notions from nonlinear controlla-

bility theory. Consider the control system

ẋ = f(x, u), (1)

where f : Rn×R
m → R

n is a smooth mapping. The control

functions u : [0, T ] → R
m for (1) will be assumed to be

piecewise constant. The accessible set of (1) from a point

x0 ∈ R
n at time T ≥ 0 will be denoted by A(x0, T ) and

consists of all end-points γ(T ), where γ : [0, T ] → R
n is a

controlled trajectory of (1), i.e. γ̇ = f(γ(t), u(t)) for some

control u : [0, T ] → R
m. The accessible set of (1) from x0 up

to time T ≥ 0 is the union A(x0,≤ T ) := ∪0≤τ≤TA(x0, τ).

Definition 2.1: We say that (1) is accessible from x0 if

for every T > 0 the set A(x0,≤ T ) contains a non-empty

interior.

Remark 2.1: If x0 is a controlled equilibrium of (1), i.e.,

f(x0, u0) = 0 for some u0 ∈ R
m then A(x0,≤ T ) =

A(x0, T ) for every T ≥ 0. Indeed, any x ∈ A(x0, τ) where

τ < T can be reached from x0 in time T by concatenating

the constant control u(t) = u0 on the interval [0, T−τ) with

a control that steers x0 to x in time τ .

Let F be the family of vector fields on R
n defined by

F := {f(·, u) | u ∈ R
m}.

We denote by Lie(F) the Lie algebra of vector fields

generated by F , i.e., the smallest Lie subalgebra of vector

fields containing F . The subspace generated by evaluating

the vector fields in Lie(F) at the point x ∈ R
n will be

denoted by Liex(F). We say that F satisfies the Lie algebra

rank condition (LARC) at x if Liex(F) has full dimension

n. A proof of the following fundamental result can be found

in [11].

Theorem 2.1 ([11]): Suppose that f : Rn × R
m → R

n is

a real-analytic mapping. The control system (1) is accessible

from x0 if and only if F = {f(·, u) | u ∈ R
m} satisfies the

LARC at x0.

III. SYMMETRIES OF NETWORK FLOWS

In this section, we introduce network dynamic flows and

a type of invariance (or symmetry) that respects both the

underlying network and dynamics. We give examples of

some recently studied network flows and characterize their

invariance. We also introduce leader-follower network flows

which are control systems obtained by choosing leader nodes

in a network to act as control inputs.

Let G = (V , E) be a graph with vertex set V =
{1, 2, . . . , n}. Let ẋ = F (x) be a dynamical system on R

n

with component functions Fi for i ∈ {1, 2, . . . , n}.

Definition 3.1: (Dynamical systems on networks): We

say that F is a dynamical system on G, or a network flow on

G, if Fi(x1, . . . , xn) is independent of xj for j ∈ V\(Ni ∪
{i}), for all i ∈ {1, 2, . . . , n}. In other words, F is a network

flow on G if the dynamics of each node depends possibly

only on its state and the states of its neighbors.

Definition 3.2: (Symmetries of network flows): Let F

be a network flow on G = (V , E). We say that ϕ : V → V is

a symmetry of the network flow F if ϕ is an automorphism

of G and F is ϕ-invariant.

Let ϕ : V → V be an automorphism of G. Identifying ϕ as

a linear mapping on R
n, it is not hard to see that a network

flow F on G is ϕ-invariant if and only if

Fϕ(i)(x) = Fi(ϕ(x)), (2)

for all x ∈ R
n.

A. Examples of Network Flows

In this section, we define several general network flows

and characterize the presence of symmetries.

Example 3.1: (ϕ-invariant flows on graphs): Consider

the graph G depicted in Figure 1.

v4

v3

v1 v2

Fig. 1. The graph G = (V , E) with V = {v1, v2, v3, v4} and E =
{{v1, v2}, {v1, v3}, {v2, v3}, {v3, v4}} having automorphism ϕ : V →
V defined by ϕ(v1) = v2 and ϕ(v2) = v1 and fixing v3 and v4.

A network flow F : R4 → R
4 on G takes the form

F (x) =









a(x1, x2, x3)
b(x1, x2, x3)

c(x1, x2, c3, x4)
d(x3, x4)









for smooth functions a, b, c, d. Let ϕ be the automorphism

of G defined by ϕ(v1) = v2, ϕ(v2) = v1, and fixing v3 and

v4. Then F is ϕ-invariant if and only if

b(x2, x1, x3) = a(x1, x2, x3)

and

c(x1, x2, x3, x4) = c(x2, x1, x3, x4).

Example 3.2: (ϕ-invariance for the Laplacian flow): A

weighted graph is a graph G = (V , E) and a mapping

wgt : E → R>0. The adjacency matrix A of G is defined

as Ai,j = wgt({i, j}) if {i, j} ∈ E and zero otherwise. The

Laplacian flow on G is the dynamics F : Rn → R
n defined

by F (x) = −Lx where L = diag(d1, . . . , dn) − A. Let ϕ

be an automorphism of G. Using the fact that dϕ(i) = di
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(ϕ preserves degree), it is straightforward to verify using (2)

that the Laplacian flow is ϕ-invariant if and only if

∑

ℓ∈Nϕ(i)

Aϕ(i),ℓxℓ =
∑

j∈Ni

Ai,jxϕ(j),

=
∑

ℓ∈Nϕ(i)

Ai,ϕ−1(ℓ)xℓ.

Therefore, F is ϕ-invariant if and only if Aϕ(i),ℓ = Ai,ϕ−1(ℓ)

for ℓ ∈ Nϕ(i), or equivalently that Ai,j = Aϕ(i),ϕ(j) for every

{i, j} ∈ E . Clearly, if all the weights Ai,j are the same, an

automorphism of the graph G is automatically an invariance

of the Laplacian dynamics F (x) = −Lx. This is the setting

considered in [5].

Example 3.3: (Absolute, relative, and disagreement

nonlinear flows): In our definitions below, fi : R → R is a

smooth function such that fi(0) = 0 for i ∈ {1, 2, . . . , n}.

Following [8], below we present some network flows:

• We say that F is an absolute nonlinear flow on G if

Fi(x) =
∑

j∈Ni

fi(xi)− fj(xj). (3)

In other words, each node transmits a value which is a

function of its state only.

• We say that F is a relative nonlinear flow on G if

Fi(x) =
∑

j∈Ni

fi(xi − xj). (4)

In other words, each node transmits a value that depends

only on the difference between its state and the states

of its neighboring nodes.

• We say that F is a disagreement nonlinear flow on G if

Fi(x) = fi





∑

j∈Ni

(xi − xj)



 . (5)

In other words, each node transmits a value that is a

function of the corresponding component in the dis-

agreement vector.

Lemma 3.1: (Characterization of ϕ-invariance for ab-

solute, relative, and disagreement nonlinear flows): Let

G = (V , E) be a connected graph with vertex set V =
{1, 2, . . . , n} and let F : Rn → R

n be any of the network

flows (3), (4), or (5). Let ϕ be an automorphism of G. Then

F is ϕ-invariant if and only if fi ≡ fϕ(i) for all i ∈ V .

Proof: Fix i ∈ V and let k = ϕ(i). First of all, it is

clear that

(Dϕ(x)F (x))i = Fϕ(i)(x) = Fk(x)

irrespective of the flow F . Suppose that F is the absolute

flow (3). Then,

Fi(ϕ(x)) =
∑

j∈Ni

fi(xϕ(i))− fj(xϕ(j)),

=
∑

j∈Ni

fi(xk)− fj(xϕ(j)),

=
∑

ℓ∈Nk

fi(xk)− fϕ−1(ℓ)(xℓ),

where the second equality follows from ϕ(Ni) = Nk. If

fj ≡ fϕ(j) for all j ∈ V then

Fi(ϕ(x)) =
∑

ℓ∈Nk

fk(xk)− fℓ(xℓ) = Fk(x),

and thus F is ϕ-invariant. On the other hand if F is ϕ-

invariant we have Fk(x) = Fi(ϕ(x)) for all x, that is,
∑

ℓ∈Nk

fk(xk)− fℓ(xℓ) =
∑

ℓ∈Nk

fi(xk)− fϕ−1(ℓ)(xℓ)

for all x. Setting xℓ = 0 for all ℓ ∈ Nk we obtain that

|Nk|fk(xk) = |Nk|fi(xk). By connectivity of G it must hold

that |Nk| ≥ 1 and therefore fk(xk) = fi(xk) for all xk ∈ R,

i.e., fi ≡ fϕ(i). This proves the claim for the case that F is

the absolute flow.

If F is the relative flow then

Fi(ϕ(x)) =
∑

j∈Ni

fi(xϕ(i) − xϕ(j)),

=
∑

j∈Ni

fi(xk − xϕ(j)),

=
∑

ℓ∈Nk

fi(xk − xℓ).

Therefore, if fi ≡ fk (i.e., fi ≡ fϕ(i)) then Fi(ϕ(x)) =
Fk(x) and this proves that F is ϕ-invariant. Now suppose

that F is ϕ-invariant. As in our previous computations, we

have
∑

ℓ∈Nk

fk(xk − xℓ) =
∑

ℓ∈Nk

fi(xk − xℓ),

for all x = (x1, . . . , xn) ∈ R
n. In particular, if we set xℓ =

xk − s for all ℓ ∈ Nk for arbitrary s ∈ R then |Nk|fk(s) =
|Nk|fi(s). By the connectivity of G we must have |Nk| ≥
1, from which we can conclude that fk(s) = fi(s) for all

s ∈ R, i.e., fi ≡ fϕ(i). This proves the claim when F is the

relative flow.

The proof of the disagreement flow is similar and we leave

it to the reader.

Example 3.4: (Virus spreading dynamics): As a last ex-

ample, we present a general form of the virus spreading dy-

namics considered in [9]. The dynamics F = (F1, . . . , Fn)
is given by

Fi(x) = −δixi + (1− xi)
∑

j∈Ni

fj(xj), (6)

where δi > 0.
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Using similar calculations as in the proof of Lemma 3.1

one can prove the following.

Lemma 3.2: (Characterization of ϕ-invariance for

virus spreading dynamics): Let F be the network flow (6)

defined on G = (V , E) and let ϕ be an automorphism of G.

Then F is ϕ-invariant if and only if δi = δϕ(i) and fi ≡ fϕ(i)

for all i ∈ V .

One way to turn a network flow into a control system

is to specify nodes whose states can be controlled directly

and consider the control system whose state are states of the

remaining nodes. We elaborate on this idea in the following

section.

B. Leader-Follower Network Flows

Let F : Rn → R
n be a network flow on G = (V , E),

where V = {1, 2, . . . , n}. Partition the vertex set V into an

ordered set of leaders Vℓ = {i1, . . . , iM} and an ordered set

of followers Vf = {j1, . . . , jN}, i.e., 1 ≤ i1 < · · · < iM ≤ n

and 1 ≤ j1 < · · · < jN ≤ n, Vℓ ∩ Vf = ∅ and V = Vℓ ∪Vf .

Let z = (xj1 , . . . , xjN ) denote the follower states and let

u = (xi1 , . . . , xiM ) denote the leader states. It is clear that

there is a n×n permutation matrix P such that (z, u) = Px.

Let g = (g1, . . . , gN) : RN × R
M → R

N be defined by

gk(z, u) = Fjk(P
−1(z, u)),

for k ∈ . . . {1, . . . , N}. The control system

ż = g(z, u)

is called the leader-follower network flow on G induced by

the leaders Vℓ. The graph G is said to be leader symmetric

with respect to the leaders Vℓ if there exists a nonidentity

automorphism ϕ of G such that Vℓ ⊂ Fix(ϕ). In this case,

it is not hard to see that ϕ|Vf
is a nonidentity automorphism

of the subgraph Gf ⊆ G induced by the followers Vf .

IV. NECESSARY CONDITIONS FOR CONTROLLABILITY OF

NETWORKED CONTROL SYSTEMS

In this section, we present the main result of this paper

(Theorem 4.1). Let us first introduce some notation. Let

πn−1 : R
n → R

n−1 be the projection onto the first

(n − 1)-coordinates. Given a mapping ϕ : Rn → R
n we

let ϕ̃ : R
(n−1) → R

(n−1) be the mapping defined by

ϕ̃(z) = πn−1(ϕ(z, 0)). Hence, when ϕ is linear, ϕ̃ is the

linear mapping restricted to span{e1, . . . , en−1}.

Proposition 4.1: (A necessary condition for controlla-

bility): Let ϕ : Rn → R
n be a linear transformation that

acts as a permutation on the standard basis {e1, . . . , en}. Let

F : Rn → R
n be a smooth vector field and suppose that F is

ϕ-invariant. Suppose that Fix(ϕ) is non-empty and assume

without loss of generality that en ∈ Fix(ϕ). Let zi = xi,

let gi(z, u) := Fi(z1, . . . , zn−1, u) for i ∈ {1, 2, . . . , n− 1},

and let g = (g1, . . . , gn−1). Then all of the trajectories of

the control system

ż = g(z, u) (7)

initiating from z = 0 lie in the subspace Fix(ϕ̃) ⊂ R
n−1.

In particular, if ϕ is a non-identity transformation then (7)

is not accessible from z = 0.

Proof: Let (z, u) ∈ R
n−1 × R. Then

g(ϕ̃(z), u) = πn−1(F (ϕ(z, u))),

= πn−1(ϕF (z, u)),

= ϕ̃(πn−1(F (z, u))),

= ϕ̃(g(z, u)), (8)

where the second equality follows from ϕ-invariant of F

and the third equality follows from the fact that ϕ is a

permutation matrix and fixes en. Let z ∈ Fix(ϕ̃) and let

u ∈ R be arbitrary. Clearly, g(ϕ̃(z), u) = g(z, u) and

therefore from (8) we have

g(z, u) = ϕ̃(g(z, u)),

that is, g(z, u) ∈ Fix(ϕ̃). It follows that any trajectory

of (7) initiating from z = 0 ∈ Fix(ϕ̃) remains in the

subspace Fix(ϕ̃), and this proves the first claim. Now, if

ϕ is not the identity transformation on R
n then ϕ̃ cannot be

the identity transformation on R
n−1 because ϕ fixes en. It

follows that Fix(ϕ̃) is a non-trivial subspace in R
n−1. Thus,

the accessible set of (7) from z = 0 does not contain an open

set in R
n−1 and this completes the proof.

The following theorem, whose proof follows immediately

from Proposition 4.1, is the main result of this paper.

Theorem 4.1: (Nontrivial ϕ-invariance leads to lack of

network flow controllability): Let G = (V , E) be a graph

and let F : Rn → R
n be a network flow on G. Let ϕ be

a symmetry of the network flow F . If ϕ is not the identity

mapping then for any vertex j ∈ Fix(ϕ) chosen as the leader,

the resulting leader-follower network flow on G induced by

Vℓ = {j} is not accessible from the origin in R
n−1.

The assumption that F be ϕ-invariant is necessary for the

conclusion of Theorem 4.1 to remain true. In other words,

contrary to the special case of the Laplacian flow [5] with all

equal weights, one should not expect that a leader symmetry

of the graph is sufficient for a lack of controllability. To see

this consider the following example.

Example 4.1: (Leader graph-symmetry is not sufficient

for loss of controllability): Consider the network G depicted

in Figure 1. It is clear that G is leader symmetric with respect

to Vℓ = {v4} with automorphism ϕ(v1) = v2, ϕ(v2) = v1,

and v3 and v4 fixed. Let F be the relative nonlinear flow

(4) on G with all functions fi(z) = aiz being linear. The

resulting leader-follower network flow induced by Vℓ is

ż1 = a1(z1 − z2) + a1(z1 − z3),

ż2 = a2(z2 − z1) + a2(z2 − z3),

ż3 = a3(z3 − z1) + a3(z3 − z2) + a3(z3 − u).

(9)

Let (A,B) denote the linear system corresponding to (9).

One computes that

det([B AB A2B]) = 3a1a2a
3
3(a1 − a2). (10)

Now, applying Lemma 3.1 to the relative nonlinear flow

on G, we deduce that G is ϕ-invariant if and only if
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a1 = a2. On the other hand, from (10) we see that the

leader-follower network (9) is controllable if and only if

a1 6= a2. Hence, although G is leader symmetric with respect

to Vℓ = {v4}, the leader-follower dynamics induced by Vℓ

may be controllable. We note that in this example, the lack of

dynamic symmetry (a1 = a2) gives controllability (this may

not be true for a nonlinear network flow, see Example 4.2).

As pointed out in [5], the presence of a leader dynamic-

symmetry is also not a necessary condition for a lack of

controllability. We now give an example of a nonlinear

leader-follower network flow whose lack of controllability

is independent of a dynamic symmetry.

Example 4.2: (Loss of controllability in spite of dy-

namic asymmetry): Consider again the network G depicted

in Figure 1 and let as before Vℓ = {v4} be the leader set and

let ϕ the the automorphism permuting v1 and v2 and fixing

v3 and v4. Let F be a network flow on G whose leader-

follower network induced by Vℓ = {v4} is

ż1 = (z1 − z2) + (z1 − z3),

ż2 = (z2 − z1) + (z2 − z3),

ż3 = (z3 − z1) + (z3 − z2) + c(z1, z2, z3)u.

(11)

From (2), it is not hard to see that irrespective of the

component F4 of F , the flow F is ϕ-invariant if and only

if c(z1, z2, z3) = c(z2, z1, z3). We claim that (11) is not

accessible from the origin z0 = 0 ∈ R
3 for any choice of

real-analytic function c. To prove our claim, we first note that

(11) is a control-affine system. Let f and g denote the drift

and control-input vector field associated to (11), respectively.

As the vector fields f and g are real-analytic, and

Lie({f + gu | u ∈ R}) = Lie({f, g}),

from Theorem 2.1 our claim will be proved if we can show

that dim(Liez0({f, g})) < 3. To this end, consider the

submanifold

S = {(z1, z2, z3) ∈ R
3 | z1 − z2 = 0}

and we note that z0 ∈ S. It is not hard to see that both f

and g are tangent to S. By well-known facts about the Lie

bracket [12], it follows that [f, g] is also tangent to S. More

generally, using the fact that Lie({f, g}) is spanned by Lie

brackets of the form (see for instance [13])

[Xk, [Xk−1, [· · · , [X2, X1]] · · · ]

where Xi ∈ {f, g} and k ≥ 1, it follows immediately that

Liez({f, g}) is contained in the tangent space of S at z, and

in particular at z0. The manifold S is 2-dimensional and this

proves the claim.

V. CONCLUSION

We present an easily verifiable necessary condition for

accessibility of nonlinear networked control systems, without

relying on computing the Lie algebra of vector fields. Our

result sheds light into some obstruction to controllability

of multi-agent systems imposed by symmetries, established

previously in the literature for specific dynamics. Among

other things, this result demonstrates that the interesting

instances of lack of controllability, when the Lie algebra rank

condition is satisfied, is outside what is characterized via this

result and its other corollaries presented in the literature.

Future directions include characterizing other necessary

conditions for accessibility of nonlinear networked control

systems, studying controllability in directed settings, and

identifying other checkable necessary conditions for control-

lability when the Lie algebra rank condition is satisfied.

ACKNOWLEDGMENTS

The second author’s work is supported by a Research

Initiation Grant at Queen’s University. The second author

wishes to thank Daniel Liberzon for bringing up a question

that motivated the authors to look into this problem.

REFERENCES

[1] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent

Networks. Applied Mathematics Series, Princeton University Press,
2010.

[2] W. Ren and Y. Cao, Distributed Coordination of Multi-Agent Net-

works. Communications and Control Engineering, New York:
Springer, 2011.

[3] F. Bullo, J. Cortés, and S. Martı́nez, Distributed Control of Robotic

Networks. Applied Mathematics Series, Princeton University Press,
2009. Electronically available at http://coordinationbook.info.

[4] M. O. Jackson, Social and Economic Networks. Princeton University
Press, 2010.

[5] A. Rahmani, M. Ji, M. Mesbahi, and M. Egerstedt, “Controllability
of multi-agent systems from a graph-theoretic perspective,” SIAM,
vol. 48, no. 1, pp. 162–186, 2009.

[6] M.-A. Belabbas, “Sparse stable systems,” 2013.
http://arxiv.org/abs/1304.3478.

[7] M. Arcak, “Passivity as a design tool for group coordination,” IEEE
Transactions on Automatic Control, vol. 52, no. 8, pp. 1380–1390,
2007.

[8] V. Srivastava, J. Moehlis, and F. Bullo, “On bifurcations in nonlinear
consensus networks,” Journal of Nonlinear Science, vol. 21, no. 6,
pp. 875–895, 2011.

[9] P. V. Mieghem, J. Omic, and R. Kooij, “Virus spread in networks,”
IEEE/ACM Transactions on Networking, vol. 17, no. 1, pp. 1–14, 2009.

[10] N. Biggs, Algebraic Graph Theory. Cambridge University Press, 2 ed.,
1994.

[11] H. Sussmann and V. Jurdjevic, “Controllability of nonlinear systems,”
Journal of Differential Equations, vol. 12, pp. 95–116, 1972.

[12] J. Lee, Introduction to Smooth Manifolds. No. 218 in Graduate Texts
in Mathematics, Springer, 2003.

[13] H. Nijmeijer and A. van der Schaft, Nonlinear Dynamical Control
Systems. Springer, 1996.

5383


