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Abstract

The solution to the nonlinear output regulation problem requires one to solve a first
order PDE, known as the Francis–Byrnes–Isidori (FBI) equations. In this paper we
propose a method to compute approximate solutions to the FBI equations when the
zero dynamics of the plant are hyperbolic and the exosystem is two-dimensional. Our
method relies on the periodic nature of two-dimensional analytic center manifolds.
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1. Introduction

Consider the smooth nonlinear control system

ẋ = f(x) + g(x)u+ p(x)w

ẇ = s(w)

y = h(x) + q(w)

(1)

where x ∈ R
n , u ∈ R

m, w ∈ R
q is an exogenous signal and y ∈ R

p. We say that the feedback
u = α(x, w) solves the output regulation problem (ORP) for (1) if ẋ = f(x) + g(x)α(x, 0)
has x = 0 as an exponentially stable equilibrium and if limt→∞ y(t) = 0 for (x(0), w(0))
sufficiently small. In [4], it is shown that under suitable conditions, the ORP is solvable
if and only if there exists a pair (π, κ), defined locally about w = 0, satisfying the FBI
equations

∂π

∂w
(w) s(w) =f(π(w)) + g(π(w))κ(w) + p(π(w))w

h(π(w)) + q(w) = 0.
(2)

Given a solution (π, κ) to (2), a feedback that solves the ORP is α(x, w) = κ(w) +K(x −
π(w)), where K is any matrix rendering the linear system ẋ = ∂f

∂x
(0)x+g(0)u asymptotically

stable. As shown in [4], solving (2) can be reduced to the solvability of the center manifold
PDE for a dynamical system of the form

ż = f0(z, ϕ(w))

ẇ = s(w)
(3)

where ż = f0(z, 0) represent the zero dynamics of the plant,

ϕ(w) = −(q(w), Lsq(w), . . . , L
r−1
s q(w))
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and 1 ≤ r < n is the relative degree of the triple {f, g, h} at x = 0.
It is well-known that center manifolds suffer from subtleties in regards to uniqueness

and differentiability [2]. A case that seems to have gone unnoticed in the nonlinear control
community is the case of two-dimensional real analytic (Cω) center manifolds [1]. It is shown
in [1] that if the local center manifold dynamics of the Cω system

ż = Bz + Z̄(w1, w2, z)

ẇ1 = −w2 + P (w1, w2, z)

ẇ2 = w1 +Q(w1, w2, z)

(4)

are Lyapunov stable and not attractive then (4) has a uniquely determined local center
manifold which is Cω and generated by a family of periodic solutions. The matrix B in (4) is
assumed to have no eigenvalues on the imaginary axis and z ∈ R

n, w1, w2 ∈ R. Hence, in the
Cω case with a two-dimensional exosystem and hyperbolic zero dynamics, Aulbach’s theorem
can be applied directly to the ORP since it is assumed that the exosystem is neutrally stable
[4] thereby ensuring Lyapunov stability and non-attractivity. Using Aulbach’s result and
the patchy technique in [5], we propose a method to obtain piecewise smooth approximate
solutions to the center manifold PDE for a system of the form (4). The main idea of our
method is to use the periodicity of the solution and build a power series approximation along
the solutions of the exosystem. Other methods for solving the FBI equations are based on
direct Taylor polynomial approximations [3] and finite-element methods [6]. The novelty
in our approach, albeit restricted to two-dimensional exosystems, is that it takes advantage
of the geometric structure of the solution and produces an approximate solution that is
straightforward to evaluate.

2. Patchy method for the center manifold PDE

Applying the change of coordinates (w1, w2, z) = (r cos θ, r sin θ, z) to (4) and eliminating
the time variable, one obtains a system of the form

dr

dθ
= R(θ, r) (5a)

dz

dθ
= Bz + Z(θ, r, z), (5b)

where R and Z are Cω converging for each θ ∈ [0, 2π], |r| ≤ a, ‖z‖ ≤ a, for some a > 0
[1]. In polar coordinates (θ, r), the solution to the center manifold PDE of (4) takes the
form ψ(θ, r) =

∑

∞

i=1
ei(θ)r

i and converges on a cylinder θ ∈ [0, 2π], |r| < ǫ, with 2π-periodic
coefficients ei(θ). The solution ψ satisfies the PDE

Bψ(θ, r) + Z(θ, r, ψ(θ, r)) =
∂ψ

∂θ
+
∂ψ

∂r
R(θ, r). (6)

For simplicity, let us suppose that the exosystem is given by ẇ1 = −w2 and ẇ2 = w1. Let
φ0(w1, w2) denote the solution to the center manifold PDE for the linear part of (4). The
mapping ψ0(θ, r) = φ0(r cos θ, r sin θ) is accepted as our initial approximation to ψ on the
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annular region θ ∈ [0, 2π], 0 ≤ r < r0, for some r0 > 0. Now define Ψ1(θ, σ) = ψ(θ, r0 + σ).
Then Ψ1 has a power series representation

Ψ1(θ, σ) = Ψ1(θ, 0) +

∞
∑

i=1

∂iΨ1

∂σi
(θ, 0)

σi

i!

converging for θ ∈ [0, 2π] and |σ| sufficiently small. By construction, Ψ1 is a radial per-
turbation of ψ along the solution of the exosystem with initial condition (w1(0), w2(0)) =
(r0, 0). We compute a Taylor series approximation to Ψ1 of the form Ψ̃1(θ, σ) = Ψ1(θ, 0) +
ΣN

i=1
∂iΨ1

∂σi (θ, 0)
σi

i!
for some desired N . Using (6), it is straightforward to show that ∂iΨ1

∂σi (θ, 0)
satisfy linear inhomogeneous ODEs:

dηi
dθ

= A(θ)η + Fi(θ, η0(θ), . . . , ηi−1(θ)), (7)

where Fi is 2π-periodic and ηi =
∂iΨ1

∂σi (θ, 0), i = 1, . . . , N . To compute ∂iΨ1

∂σi (θ, 0), we solve
a BVP using (7) with 2π-periodic boundary conditions. Similarly, to compute Ψ1(θ, 0) =
ψ(θ, r0) we solve a BVP using (5b) and 2π-periodic boundary conditions. Let now ψ1(θ, r) =
Ψ̃1(θ, r − r0) and define, for θ ∈ [0, 2π] and r1 > r0,

ψ̃(θ, r) =

{

ψ0(θ, r), 0 ≤ r < r0

ψ1(θ, r), r0 ≤ r ≤ r1.

The mapping ψ̃ is a piecewise smooth approximation to the solution ψ on the cylinder
θ ∈ [0, 2π], 0 ≤ r ≤ r1. This procedure can be iterated as follows. Let

ψ̃(θ, r) =























ψ0(θ, r), 0 ≤ r < r0

ψ1(θ, r), r0 ≤ r < r1
...

...
ψk(θ, r), rk−1 ≤ r ≤ rk

(8)

where ψj(θ, r) = Ψ̃j(θ, r − rj−1) and Ψ̃j is a Nth order Taylor approximation of Ψj(θ, σ) =
ψ(θ, rj−1 + σ), j = 1, . . . , k. Now consider Ψk+1(θ, σ) = ψ(θ, rk + σ) and its Nth order
Taylor approximation Ψ̃k+1(θ, σ) = Ψk+1(θ, 0) + ΣN

i=1

∂iΨk+1

∂σi (θ, 0)σ
i

i!
, rk > rk−1. The curve

Ψk+1(θ, 0) = ψ(θ, rk) is computed by solving a BVP problem using (5b) with 2π-periodic
boundary conditions. As an initial guess for the BVP we take ψ(θ, rk) ≈ ψk(θ, rk), i.e., we
use the previously computed approximation as an initial guess. Similarly, the coefficients
∂iΨk+1

∂σi (θ, 0) are computed by solving a BVP problem using (7) with 2π-periodic boundary
conditions. As an initial guess for the BVP we take the previously computed coefficients,
i.e., ∂iΨk+1

∂σi (θ, 0) ≈ ∂Ψk

∂σi (θ, 0). We then define ψk+1(θ, r) = Ψ̃k+1(θ, r − rk) and extend our
running approximation (8) to the annulus θ ∈ [0, 2π], rk ≤ r ≤ rk+1 by augmenting ψk+1 to
it. In the next section we illustrate our method on a standard control problem.
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3. Example

The dynamics of a single pendulum attached to a cart moving in a straight line perpendicular
to gravity can be written in the form ẋ1 = x2, ẋ2 = u, ẋ3 = x4, ẋ4 = g

ℓ
sin(x3)−

1

ℓ
cos(x3)u,

where x1 is the position of the cart, x3 is the angle the pendulum makes with the vertical,
u is the control, g is the acceleration due to gravity and ℓ is the length of the rod. For
simplicity we set g = 10 and ℓ = 1/3. As output we take h(x) = x1 and reference trajectory
yref(t) = A cos(βt). Hence we choose exosystem ẇ1 = −βw2, ẇ2 = βw1 and q(w) = −w1.
In the normal coordinates ξ = (x1, x2) and z = (x3, x4 +

x2

ℓ
cos(x3)), the zero dynamics are

hyperbolic. Using our method we computed an approximate solution to the associated center
manifold PDE for this system and used it in a tracking controller of the form α(x, w) =
κ(w) + K(x − π(w)). The matrix K was chosen so that the closed-loop eigenvalues are
−6,−3.5,−3,−2.5. We used k = 11 annuli and order N = 2 for the Taylor approximations
to Ψi. A radius of r0 = 0.1 is used for the initial approximation ψ0 and each subsequent
annulus is of thickness σ = 0.1. The parameters ω = 1.25 and A = 1.1 were selected.
Figure 1 shows the output and reference trajectory and Figure 2 shows the tracking error.
The initial condition of the cart was initialized to x1(0) = −0.25.
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Figure 1: Output y(t) = x1(t) and reference yref(t) = w1(t).
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Figure 2: Tracking error e(t) = y(t)− yref(t).
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