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a b s t r a c t

In this paper, we consider the controllability problem for multi-agent networked control systems. The
main results of the paper are new graph-theoretic necessary conditions for controllability involving
almost equitable graphvertex partitions.Wegeneralize the known results on the role of graph symmetries
and uncontrollability to weighted digraphs with multiple-leaders and we also consider the broadcasted
control scenario. Our results show that the internal structure of communities in a graph can induce
obstructions to controllability that cannot be characterized by symmetry arguments alone and that in
some cases depend on the number-theoretic properties of the communities. We show via examples that
our results can be used to account for a large portion of uncontrollable inducing leader-selections that
could not have otherwise been accounted for using symmetry results.
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1. Introduction

The controllability property of a controlled dynamical system
is one of the central notions in control systems theory. Roughly
speaking, the controllability problem is concerned with whether
it is possible to transfer the state of a controlled dynamic sys-
tem from some given initial condition to any final desired state.
For linear control systems, there are several equivalent character-
izations of controllability and it is well-known that the property
is generic in the sense that the set of systems that are control-
lable form an open and dense subset of the space of all system
parameters. Despite the generic nature of controllability for linear
systems, there has been recent interest in the control community
to understand the controllability property for linear multi-agent
networked control systems, see for instance Aguilar and Gharesi-
fard (2015a), Chapman, Nabi-Abdolyousefi, and Mesbahi (2014),
Martini, Egerstedt, and Bicchi (2010), Monshizadeh, Zhang, and
Camlibel (2014), Notarstefano and Parlangeli (2013), Parlangeli
and Notarstefano (2012), Rahmani, Ji, Mesbahi, and Egerstedt
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(2009), Tanner (2004) and Zhang, Cao, and Camlibel (2014) and ref-
erences therein. The goal of this recent research effort is to under-
stand how graph-theoretic properties of the underlying network
relate to the controllability property of the linear control system
whose system matrix encodes the adjacency relationships in the
network (e.g., adjacency matrix, Laplacian matrix, etc.).

It is natural to ask why such an effort has been devoted
to characterize a generic property such as controllability for a
linear control system. To answer this question, we first note that
the generic nature of controllability when system parameters
are allowed to vary continuously does not in any trivial way
imply that controllability is also generic for discrete combinatorial
objects such as graphs. The situation is similar, for instance, when
considering the question of the likelihood that a matrix will have
simple eigenvalues. If the matrix entries are allowed to vary
continuously then the set of real matrices with simple eigenvalues
forms a dense and open subset of the associated Euclidean space. In
contrast, up until very recently and using sophisticatedmachinery,
it was shown that the adjacency matrix of a graph will almost
surely have simple eigenvalues as the size of the graph increases
(Tao & Vu, 2014), and thus settling a conjecture posed by L. Babai
in the 1980s. Similarly, it was also shown very recently that the
controllability property for the adjacency matrix of a graph, and
in the special case where all nodes are controlled, is generic, again
in the sense that the proportion of controllable systems tends to
one as the size of the graph increases (thus settling a conjecture
posed by Godsil, 2012). Second of all, it has been documented in

http://dx.doi.org/10.1016/j.automatica.2017.01.018
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2017.01.018&domain=pdf
mailto:aguilar@geneseo.edu
mailto:bahman@mast.queensu.ca
http://dx.doi.org/10.1016/j.automatica.2017.01.018


26 C.O. Aguilar, B. Gharesifard / Automatica 80 (2017) 25–31
MacArthur, Sánchez-García, and Anderson (2008) that many real-
world biological, technological, and social networks possess a high
level of symmetry and, as it was shown in Rahmani et al. (2009),
symmetries are obstructions to controllability for networked
multi-agent control systems. As pointed out in MacArthur et al.
(2008), many real-world networks contain ‘‘tree-like’’ symmetries
due to the fact that these networks are grown from existing
vertices and this growth process introduces branch-like structures.
Since almost all tree networks have symmetries (Erdös & Réyni,
1963), it is not too surprising then that such symmetries would
be present in these networks. Hence, although symmetry-like
structures are mathematically rare, they seem to be ubiquitous in
many real-world networks and therefore it is important to uncover
what other symmetry-like structures induce uncontrollability.

The purpose of this paper is to identify a symmetry-like
structure, specifically a class of graph vertex partitions, that when
present in a network can obstruct controllability in a multi-agent
control system even when the control nodes have been selected
to ‘‘break’’ all symmetries. It is well-known that symmetries are
not necessary for uncontrollability (Rahmani et al., 2009) but aside
from special classes of graphs such as trees, grid graphs, threshold
graphs, and circulant graphs (Aguilar & Gharesifard, 2015b; Ji, Lin,
& Yu, 2012; Nabi-Abdolyousefi & Mesbahi, 2013; Notarstefano
& Parlangeli, 2013), and a linear–algebraic characterization of
controllability for multi-agent systems (Chapman & Mesbahi,
2014), little is known about what general intrinsic graph-structures
induce uncontrollability. A purpose of this paper is to narrow this
gap.

As mentioned, we identify a class of graph vertex partitions,
and in particular a class of almost equitable partitions (Cardoso,
Delorme, & Rama, 2007), that induce uncontrollability in a non-
trivial way. Moreover, these partitions can account for a significant
portion of the uncontrollable leader selections that could not have
been detected by symmetry arguments alone. Using graph vertex
partitions to study control-theoretic properties in multi-agent
systems is not new and in fact is becoming an increasingly useful
tool in the analysis and design of multi-agent control systems,
see for instance Martini et al. (2010), Monshizadeh, Trentelman,
and Camlibel (2014), Monshizadeh, Zhang, and Camlibel (2015),
Rahmani et al. (2009), Zhang et al. (2014) and references therein.
Graph vertex partitions also take an important role in the study
of synchrony and pattern formation in coupled cell networks
(Golubitsky, Stewart, & Török, 2005; Stewart, Golubitsky, & Pivato,
2003).
Statement of contributions

The main results of this paper are new general graph-theoretic
necessary conditions for controllability of leader–follower Lapla-
cian dynamics using almost equitable graph partitions (Theo-
rems 3, 4, 5). Our first main result (Theorem 3) generalizes the
relationship between graph symmetries and uncontrollability in
the multi-input case (Rahmani et al., 2009) to also include the sce-
nario of multi-input broadcast control. Roughly speaking, this re-
sult shows that if the nodes are selected to respect the structure
of a non-trivial almost equitable partition then the resulting con-
trol system is uncontrollable. Our next main result (Theorem 4)
identifies a new obstruction to controllability that we call reducible
equitable partitions. These partitions are, to the best knowledge of
the authors, the first general and intrinsic graph-theoretic struc-
ture that induce uncontrollability unrelated to graph symmetries.
In other words, when these partitions are present, one might have
chosen the leaders to break all ‘‘symmetries’’ induced by all non-
trivial almost equitable partitions but yet the induceddynamics are
uncontrollable. The result demonstrates that the internal structure
of the cells of a partition can also introduce undesirable controlla-
bility properties. Our last main result (Theorem 5) uses the quo-
tient graph induced by an almost equitable partition to identify a
new obstruction to controllability that again cannot be captured
by symmetry or using reducible equitable partitions. This result
also demonstrates that the internal structure of the cells of a parti-
tion must be taken into account in controllability analysis. Overall,
our results provide explicit graph-theoretic structures that when
present in a network can induce uncontrollable dynamics.

Although we consider Laplacian dynamics, our results are
applicable to other graphmatrices that encode the adjacency struc-
ture of a graph. Also, we focus on the broadcasted control prob-
lem since it allows us to broaden the view of how symmetries, and
more generally equitable partitions, induce uncontrollability and
allows us to identify new obstructions to controllability that could
not have been captured otherwise. We note that the broadcasted
multi-agent control scenario is also considered in Godsil (2012)
and Yoon, Rowlinson, Cvetković, and Stanić (2014).

2. Preliminaries and problem statement

Throughout this paper, the standard basis vectors in Rn are
denoted by e1, e2, . . . , en. The orthogonal complement of a set
S ⊂ Rn under the standard inner product on Rn will be denoted by
S⊥. The transpose of amatrixM is denoted byMT . The n×n identity
matrix is denoted by In. The conjugate transpose of w ∈ Cn is
denoted byw∗. The column space and null space of a matrixMwill
be denoted by img(M) and ker(M), respectively. The cardinality of
a finite set C will be denoted by |C |. The greatest common divisor
of a set of integers k1, k2, . . . , kr is denoted by gcd(k1, k2, . . . , kr).

2.1. Permutations

We denote the symmetric group on V = {1, 2, . . . , n} by Sn,
i.e., Sn is the group of permutations σ : V → V . It is well-known
(Dummit & Foote, 1991) that each σ ∈ Sn has a unique (up to
ordering) cycle decomposition of the form

σ = (i1 i2 · · · im1)  
ρ1

(im1+1 im1+2 · · · im2)  
ρ2

· · · (imr−1+1 imr−1+2 · · · imr )  
ρr

,

where ρj is the permutation that cyclically permutes the integers
imj−1+1, imj−1+2, . . . , imj and fixes all other integers. The set of
integers Cj = {imj−1+1, imj−1+2, . . . , imj} is called a cell.

The set of binary vectors of length n will be denoted by {0, 1}n.
The characteristic indices of b ∈ {0, 1}n, denoted by χ(b), is
the subset of indices where b is non-zero. For instance, if b =

[0 1 1 0 0 1]T ∈ {0, 1}6 then χ(b) = {2, 3, 6}. Conversely,
given any set C ⊆ {1, 2, . . . , n} of indices, the characteristic vector
of C is the unique vector c ∈ {0, 1}n such that χ(c) = C . The
all ones vector and the zero vector will be denoted by 1n and 0n,
respectively.

2.2. Graphs

Our notation fromgraph theory is standard and any basic notion
not defined here can be found in Godsil and Royle (2001). In this
paper, we consider graphs that may be weighted and/or directed,
but not containing loops. For a (directed) graph G, or digraph, we
denote by V (G) its vertex set and by E(G) ⊆ V (G) × V (G) its edge
set. We consider only finite graphs and so we assume throughout
that V (G) = {1, 2, . . . , n}. The weight of the edge (i, j) ∈ E(G) will
be denoted by aij ∈ R, and if (i, j) ∉ E(G) we set aij = 0. When not
explicitly stated, we assume that G is strongly connected.
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The out-neighbors of i ∈ V is the set of vertices Nout(i) := {j ∈

V | (i, j) ∈ E} and the out-degree of i is

dout(i) =


j∈Nout(i)

aij =


j∈V

aij.

The out-adjacency matrix of G is the n × n matrix A defined as
(A)ij = aij. The out-degree matrix of G is the n × n diagonal
matrix D defined by (D)ii = dout(i). The out-Laplacian matrix
of G is the matrix L = D − A. Since G is strongly connected,
λ = 0 is a simple eigenvalue of L affording the eigenvector 1n.
Henceforth, by adjacency and Laplacian matrix we mean the out-
adjacency and out-Laplacian matrix. The in-neighbors, in-degree,
in-adjacency, and in-Laplacian matrix are defined similarly. When
G is not directed, di := dout(i) = din(i), for all i ∈ V .

A permutation σ ∈ Sn is an automorphism of G if (i, j) ∈ E(G)
if and only if (σ (i), σ (j)) ∈ E(G). The group of automorphisms of
G will be denoted by Aut(G) ⊂ Sn. We say that G is asymmetric
if Aut(G) contains only the identity permutation, and is called
symmetric otherwise.

2.3. Linear algebra

We briefly recall some basic facts from linear algebra that will
be used frequently. Let V be an n-dimensional inner product space,
let T : V → V be a diagonalizable linear operator, and let W ⊂ V
be a k-dimensional subspace. It is well-known that V = W ⊕ W⊥,
that is, W ∩ W⊥

= {0} and V = W + W⊥
:= {w + w′

| w ∈

W, w′
∈ W⊥

}. We say that W is T-invariant if T(w) ∈ W for every
w ∈ W. In this case, one can show that W⊥ is T∗-invariant, where
T∗ denotes the adjoint of T. In addition, if T is self-adjoint, there
exists a basis of V consisting of eigenvectors {v1, v1, . . . , vn} of T,
where v1, . . . , vk ∈ W and vk+1, . . . , vn ∈ W⊥. In other words, the
decomposition V = W⊕W⊥ induces a splitting of the eigenvectors
of T so that some eigenvectors will be contained in W and the rest
will be contained in W⊥. The properties of T-invariance and self-
adjointness are critical here, since even when T is diagonalizable
this is not generally true for an arbitrary subspace W.

2.4. The graph controllability problem

Let L be the Laplacian matrix of a weighted digraph G on n
vertices. The leader-selection controllability problem for L with
m ≥ 1 inputs is to find a matrix B ∈ {0, 1}n×m such that the linear
control system

ẋ = −Lx + Bu (1)

is controllable. It is well-known that the pair (L, B) is controllable
if and only if the smallest L-invariant subspace containing img(B),
which we denote throughout by ⟨L; B⟩, is all of Rn. An equivalent
characterization of controllability is the Popov–Belevitch–Hautus
(PBH) eigenvector test (Dullerud & Paganini, 2000).

Theorem 1 (PBH). The linear control system (L, B) is uncontrollable
if and only if there exists an eigenvector w ∈ Cn of LT such that
w∗B = 01×m.

In this paper,we aremostly interested in the broadcast single-input
controllability problem. In this scenario, there is a single control
input broadcasted to a selected number of nodes in the network.
These selected nodes are called the leaders and the remaining
nodes are called the followers. The single-input controllability
problem amounts to the case that B is a binary vector and thus in
this case, wewrite b instead of B. However, one of ourmain results
(Theorem 3) is stated for the multi-input case and our results for
the single-input case (Theorems 4 and 5) can be extended to the
multi-input case. We leave this for a future paper.
3. Almost equitable partitions of weighted digraphs

In this section, we introduce the main intrinsic graph-theoretic
structure that we use, namely almost equitable partitions, and
related theorems. Let G be a weighted digraph with adjacency
matrix A = (aij). Given a subset C ⊆ V , we denote for each
i ∈ V the out-degree of i relative to C by dout(i, C) =


j∈C aij.

Let π = {C1, C2, . . . , Ck} be a partition of the vertex set V , that is,k
i=1 Ci = V and Ci ∩ Cj = ∅ for i ≠ j. The characteristic matrix of

π is the n × k matrix P(π) whose jth column is the characteristic
vector of the cell Cj. Clearly, img(P(π)) is a k-dimensional subspace
of Rn consisting of vectors that are constant on the cells C1, . . . , Ck,
that is, if x ∈ img(P(π)) then the components of x on Cj are all
equal for all Cj. When π is understood, we will write P instead of
P(π). Following Cardoso et al. (2007), we give the next definition.

Definition 1. Let G be a graph with vertex set V and let π =

{C1, C2, . . . , Ck} be a partition of V . We call π an almost equitable
partition (AEP) of G if for all distinct ordered pairs of cells (Cr , Cs) it
holds that dout(i, Cs) = dout(j, Cs), for all i, j ∈ Cr .

In other words, π is an AEP of G if every vertex in Cr has the same
number of neighbors in Cs, and this holds for every ordered pair
(Cr , Cs). In this case, we denote by αrs := dout(i, Cs), for any i ∈ Cr .
We note that, in general, αrs ≠ αsr . We define αrr = 0, for all r =

1, 2, . . . , k. We note that the partitions π = {{1, 2, 3, . . . , n}} and
π = {{1}, {2}, . . . , {n}} are trivially almost equitable partitions.

Remark 1. An almost equitable partition is called an equitable
partition if dout(i, Cr) = dout(j, Cr) for every i, j ∈ Cr . In otherwords,
every vertex in the same cell has the same number of neighbors
within its own cell. •

As the next lemma states, the cells in the cycle decomposition
(see Section 2.1) of an automorphism of a graph induces an
equitable partition, and therefore any result on almost equitable
partitions is directly applicable to the partitions induced by an
automorphism. The straightforward proof of the following is left
to the reader.

Lemma 1. Let G be a graph and suppose that the cycle decomposition
of σ ∈ Aut(G) induces the partitionπ = {C1, C2, . . . , Ck} of V . Then,
π is an equitable partition of G.

Given an almost equitable partition π of G, we define the
out-neighbor quotient graph of G over π , denoted by G/π , as the
weighted digraph with vertices V (G/π) = π = {C1, C2, . . . , Ck},
edge set E(G/π) = {(Cr , Cs) | αrs ≠ 0}, and the weight of
(Cr , Cs) ∈ E(G/π) isαrs.We letAπ and Lπ denote the out-adjacency
and out-Laplacian matrix of G/π , respectively. In particular, for
r ≠ s, we have that (Lπ )r,s = −αr,s, and (Lπ )r,r = dout(Cr) =

Cs∈V (G/π) αr,s. In general, G/π is a weighted digraph even when
G is unweighted and undirected.

The following theorem describes one way in which L-invariant
subspaces arise with respect to an almost equitable partition. The
proof of the following is similar to Cardoso et al. (2007) and thus
omitted.

Theorem 2. Let G be a weighted digraph with out-Laplacian matrix
L, let π = {C1, C2, . . . , Ck} be a partition of V (G), and let P = P(π).
Then, π is an almost equitable partition of G if and only if img(P) is
L-invariant. In this case, Lπ = (PTP)−1PTLP and LP = PLπ .

Hence, when π is an almost equitable partition, Lπ is the
matrix representation of the restriction of L to the subspace W =

img(P(π)) in the basis obtained from the columns ofP(π).Wenote
that even if L is symmetric, Lπ is not generally symmetric since the
columns ofP(π) are not an orthonormal basis ofW. However, L|W is
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Fig. 1. G.

indeed self-adjoint if L is self-adjoint. In any case, every eigenvector
of L|W can be identified with an eigenvector of L as the next results
states.

Lemma 2. Let G, L, Lπ , and P be as in Theorem 2. Then, (v, λ) is
an eigenvector–eigenvalue pair of Lπ if and only if (Pv, λ) is an
eigenvector–eigenvalue pair of L.

To end this section, we prove the next result that describes how
AEPs of the quotient graph induce AEPs of the original graph.

Proposition 1. Let G be a weighted digraph and suppose that π =

{C1, C2, . . . , Ck} is an AEP of G. Suppose that ρ = {S1, S2, . . . , Sℓ}

is an AEP of the quotient graph G/π . Define the partition π/ρ =

{C1, C2, . . . , Cℓ} of V (G) by C j :=


Ci∈Sj
Ci for j = 1, 2, . . . , ℓ.

Then, π/ρ is an almost equitable partition of G.

Proof. It is easy to see that the characteristic matrix of π/ρ is
P(π/ρ) = P(π)P(ρ). Let now Lπ/ρ be the Laplacian matrix of the
quotient graph (G/π)/ρ. Then, by Theorem 2, LπP(ρ) = P(ρ)Lπ/ρ ,
since ρ is an AEP of G/π . Then,

LP(π/ρ) = LP(π)P(ρ) = P(π)LπP(ρ)

= P(π)P(ρ)Lπ/ρ

= P(π/ρ)Lπ/ρ .

Hence, img(P(π/ρ)) is L-invariant and Theorem 2 implies that
π/ρ is an AEP of G. �

In Proposition 1, the partition π/ρ is a coarsening of the
partition π , i.e., every cell in π is a subset of a cell in π/ρ.
We illustrate Proposition 1 with an example that will be used
throughout the paper.

Example 1. Let G be the unweighted and undirected graph shown
in Fig. 1. The automorphism group Aut(G), as computed by Nauty
(McKay & Piperno, 2013), is generated by the permutations τ1 =

(2 3), τ2 = (7 8), τ3 = (1 6), and τ4 = (4 5). By Lemma 1,
the automorphism σ = τ1τ2τ3τ4 induces an equitable partition
π = {C1, C2, C3, C4, C5, C6} of V (G) whose cells are C1 = {2, 3},
C2 = {7, 8}, C3 = {1, 6}, C4 = {4, 5}, C5 = {9}, and C6 = {10}. The
quotient graph G/π is shown in Fig. 2, where the weights shown
on the edges correspond to the out-degree of the nodes. It can be
verified that ρ = {{3, 4}, {5, 6}, {1}, {2}} is an equitable partition
of G/π induced by the automorphism ρ = (3 4)(5 6) of G/π . The
quotient graph (G/π)/ρ is displayed in Fig. 3. The partition π/ρ is
therefore

π/ρ = {{2, 3}, {7, 8}, {9, 10}, {1, 6, 4, 5}},

which as expected is coarser than π . It can be verified that π/ρ

is indeed an almost equitable partition of G but not an equitable
partition. Hence, although π and ρ are equitable partitions, π/ρ

may in general be only almost equitable. •
Fig. 2. G/π .

Fig. 3. (G/π)/ρ.

4. Controllability and almost equitable partitions

In this section, we present our main results relating controlla-
bility with almost equitable partitions.

Suppose that π is an almost equitable partition of G and let
P = P(π) be the characteristic matrix of π . Then, since W =

img(P) is L-invariant, it follows thatW⊥
= ker(PT ) is LT -invariant.

If G is undirected (this assumption is not needed but simplifies
the forthcoming discussion) then L is a symmetric matrix and
hence ker(PT ) is also L-invariant (see Section 2.3). From the direct-
sum decomposition Rn

= img(P) ⊕ ker(PT ), we may therefore
partition the eigenvectors of L into those that are contained in
img(P) and those that are contained in ker(PT ) (see Section 2.3).
Now, vectors in img(P) are constant on the cells of π and vectors
in ker(PT ) sum to zero on the cells of π . Hence, if the leader nodes
are selected so that the resulting control input matrix has columns
that are constant on the cells ofπ , these columnswill be orthogonal
to every eigenvector of L in ker(PT ) and thus by the PBH test
the system is uncontrollable. The following result builds on our
observations in the preceding discussion and considers the general
directed case.

Theorem 3. Let G be a weighted digraph on n ≥ 2 vertices and
suppose that π = {C1, C2, . . . , Ck} is an almost equitable partition of
G with characteristic matrix P, where 1 ≤ k < n. Let b1, . . . , bm ∈

{0, 1}n and assume that each bi is constant on the cells of π , and put
B = [b1 b2 · · · bm]. Then, (i) ⟨L; B⟩ ⊆ img(P), (ii) dim⟨L, B⟩ ≤

k, (iii) there exists an eigenvector w of LT contained in ker(PT ) such
that w∗B = 01×m, and (iv) (L, B) is uncontrollable.

Proof. Since b1, . . . , bm are constant on the cells of π , it follows
that img(B) ⊆ img(P). By Theorem 2, img(P) is L-invariant and
thus since ⟨L; B⟩ is the smallest L-invariant subspace containing
img(B), we must have ⟨L; B⟩ ⊆ img(P), and therefore dim⟨L, B⟩ ≤

k. Since k < n then (L, B) is uncontrollable. Since ker(PT ) is a non-
trivial invariant subspace of LT there is at least one eigenvector
w ∈ Cn of LT contained in ker(PT ) = img(P)⊥, and thus w∗B =

01×m. �

Remark 2. The result in Zhang et al. (2014, Thm. 2) is a special case
of Theorem 3, since there B = [ei1 · · · eim ] and the first m cells
of π are Cj = {ij}, 1 ≤ j ≤ m, so that Theorem 3 is applicable. •
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Fig. 4. An asymmetric graph with non-trivial almost equitable partitions.

Theorem 3 contains as a special case the situation of leader-
symmetric selections introduced in Rahmani et al. (2009).

Definition 2. Let G be a weighted digraph. We say that B ∈

{0, 1}n×m is leader-symmetric if there exists a non-trivial automor-
phism σ ∈ Aut(G) such that img(B) ⊆ img(P), where P is the
characteristic matrix of the partition of V (G) induced by the auto-
morphism σ .

Corollary 1. Let G be a weighted digraph on n ≥ 2 vertices. If
B ∈ {0, 1}n×m is leader-symmetric then (L, B) is an uncontrollable
pair.

Remark 3. Proposition IV.8 in Chapman et al. (2014) is a special
case of Corollary 1 since in Chapman et al. (2014) we have B =

[ei1 · · · eim ] and leader-symmetry amounts to the existence
of a non-trivial automorphism σ such that σ(ij) = ij for all
j = 1, . . . ,m. In this case, the equitable partition induced by σ

contains the singleton cells {i1}, {i2}, . . . , {im}, so that B is trivially
constant on the cells of σ . This shows that by not considering
the broadcast control problem one cannot detect intrinsic graph
structures that are characterized by vertex partitions whose cells
all containmore than one vertex. Also, from a practical view-point,
applying the same control at m nodes is preferable over applying
distinct independent controls atm nodes. •

Theorem 3 can be seen as a natural generalization of the
statement that ‘‘symmetry’’ in a graph is a potential obstruction to
controllability. Of course, a graphmay have a trivial automorphism
group but still have non-trivial almost equitable partitions. The
following example illustrates this scenario where Theorem 3 is
applicable.

Example 2. Consider the graph G on n = 6 vertices shown in
Fig. 4. This graph is asymmetric but there are 14 non-trivial binary
vectors b ∈ {0, 1}6 that induce an uncontrollable pair (L, b) (b =

0n andb = 1n trivially induce uncontrollability). Hence, Corollary 1
cannot be used to characterize these uncontrollable scenarios.
However, two of the 14 can be explained by Theorem 3. To see
this, it is straightforward to verify that π = {{5, 6}, {1, 2, 3, 4}}
is an almost equitable partition of G. Therefore, by Theorem 3, the
leader selections b1 = [0 0 0 0 1 1]T and b2 = [1 1 1 1 0 0]T

induce uncontrollable dynamics, since clearly they are contained
in img(P(π)), where in this case P(π) = [b1 b2]. •

A natural question to ask then is whether uncontrollability of
(L, B) is due to img(B) ⊂ img(P), where P is the characteristic ma-
trix of some non-trivial almost equitable partition. In other words,
what are other intrinsic graph-theoretic structures that induce un-
controllable leader selections? To shed light into this question, and
to simplify the forthcoming presentation, we consider single-input
leader selections b ∈ {0, 1}n and undirected graphs.
Example 3. Consider again the graph G on n = 6 vertices shown
in Fig. 4, which has the AEP π = {{5, 6}, {1, 2, 3, 4}}, and let
C1 = {5, 6} and C2 = {1, 2, 3, 4} be the cells of π . By Theorem 3,
the leaders selection e5 + e6, and its binary complement e1 +

e2 + e3 + e4, yield uncontrollable dynamics. Let w ≠ 1n be an
eigenvector of L contained in img(P(π)). Hence,w = α1c1 + α2c2,
where c1 = e5 + e6 and c2 = e1 + e2 + e3 + e4 are the columns
of P(π). Since w and 1n are eigenvectors of the symmetric matrix
L, it follows that wT1n = 0 and therefore |C1|α1 + |C2|α2 =

2α1 + 4α2 = 0, or equivalently α1 + 2α2 = 0. The reduced relation
α1 + 2α2 = 0 induces new uncontrollable leader selections not
contained in img(P(π)), that is, not characterized by Theorem 3.
To see this, suppose that b is chosen so that |χ(b) ∩ C1| = 1 and
|χ(b) ∩ C2| = 2. For example, if b = [1 0 1 0 0 1]T then
χ(b) = {1, 3, 6}. By construction,b is not in img(P(π)), and clearly
wTb = |χ(b) ∩ C1|α1 + |χ(b) ∩ C2|α2 = 0. Then, by the PBH
test, (L, b) is uncontrollable. There are

2
1

4
2


= 12 such choices

for b, and with the 2 uncontrollable leader selections in img(P(π))

characterized by Theorem 3, this yields a total of 14 non-trivial
uncontrollable leader selections. This completely characterizes all
the uncontrollable leader selections for the graph in Fig. 4. •

The previous example illustrates how the internal local structure
of the cells, or communities, of a partition of the vertex set V (G)

can introduce new obstructions to controllability that cannot be
characterized by symmetry arguments. The example shows that
although all symmetries of a graph can be broken by an appropriate
choice of leader nodes, one must still take care in not preserving
any internal local structure of the communities in a network.
To formalize the previous example, we introduce the following
definition.

Definition 3. Let G be a graph and suppose that π = {C1, C2,
. . . , Ck} is a partition of V (G). We define

gcd(π) := gcd(|C1|, |C2|, . . . , |Ck|)

and say that π is reducible if gcd(π) ≥ 2.

With this definition, we have the following result.

Theorem 4. Let G be a weighted undirected graph and suppose that
π = {C1, C2, . . . , Ck} is an almost equitable partition of G, where
k ≥ 2. Suppose that π is reducible and let

qj :=
|Cj|

gcd(π)

for j = 1, 2, . . . , k. Let d be an integer such that 1 ≤ d ≤ gcd(π)−1
and let b ∈ {0, 1}n be such that

|χ(b) ∩ Cj| = dqj, (2)

for all j = 1, 2, . . . , k. Then, (L, b) is uncontrollable. In particular,
there are

gcd(π)−1
d=1

k
j=1


|Cj|
dqj


such choices for b.

Proof. Since π is reducible, gcd(π) ≥ 2 and therefore qj ≥ 1 is an
integer and gcd(π) − 1 ≥ 1. Since d < gcd(π), we have dqj < |Cj|

for all j = 1, 2, . . . , k. Therefore, if b is chosen to satisfy (2) then
b is not constant on the cells of π (that is, b ∉ img(P(π))) and
thus we cannot deduce uncontrollability of (L, b) from Theorem 3.
Now, since π is a non-trivial AEP, there exists an eigenvector w ∈

img(P(π)) of L such thatw ≠ 1n. Let cj be the characteristic vector
of the cell Cj for j = 1, 2, . . . , k. Therefore, since {c1, . . . , ck} is a
basis for img(P(π)), there exists α1, . . . , αk ∈ R such that w =k

j=1 αjcj. Since both w and 1n are eigenvectors of the symmetric
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Fig. 5. Frucht graph.

matrix L, it follows that 0 = wT1n =
k

j=1 αj|Cj|. Hence, if b
satisfies (2) then

wTb =

k
j=1

αj|χ(b) ∩ Cj| =

k
j=1

αjdqj

=

k
j=1

αjd
|Cj|

gcd(π)

=
d

gcd(π)

k
j=1

αj|Cj| = 0.

Since L is symmetric, it follows by the PBH test that (L, b) is
uncontrollable.

Let d be fixed. For each fixed j ∈ {1, 2, . . . , k}, the number of
ways to choose dqj of the indices of b such that |χ(b) ∩ Cj| = dqj
is

|Cj|
dqj


. Now, since C1, . . . , Ck are mutually disjoint, the number of

leader selections b such that |χ(b)∩Cj| = dqj for all j = 1, 2, . . . , k
is
k

j=1


|Cj|
dqj


. If we now add up all such leader selections for each d

we clearly obtain
gcd(π)−1

d=1
k

j=1


|Cj|
dqj


. �

We further illustrate the use of Theorem 4 on the asymmetric
3-regular Frucht graph (Frucht, 1939), which as in Example 3, can
be used to account for a substantial number of the uncontrollable
leader selections.

Example 4. Consider the asymmetric 3-regular Frucht graph G on
n = 12 vertices shown in Fig. 5. Since G is a regular graph,
almost equitable partitions are automatically equitable partitions.
We compute that the only non-trivial equitable partitions of G are

π1 = {{3, 7, 10}, {1, 2, 4, 5, 6, 8, 9, 11, 12}}
π2 = {{1, 5, 7, 12}, {3, 6, 9, 11}, {2, 4, 8, 10}}
π3 = {{1, 5, 7, 12}, {2, 3, 4, 6, 8, 9, 10, 11}}.

Consider first the partition π1 = {C1, C2}, which has gcd(π1) = 3,
and thus q1 = 1 and q2 = 3. Applying Theorem 4, if b is such that
|χ(b)∩C1| = d and |χ(b)∩C2| = 3d, where d ∈ {1, 2}, then (L, b)

is uncontrollable. There are
3
1

9
3


+
3
2

9
6


= 504 such choices

for b.
Consider now the partition π2 = {C1, C2, C3}, which has

gcd(π2) = 4, and thus q1 = q2 = q3 = 1. Applying Theorem 4, if
b is such that |χ(b) ∩ Cj| = d for j = 1, 2, 3, where d ∈ {1, 2, 3},

then (L, b) is uncontrollable. There are
4
1

3
+
4
2

3
+
4
3

3
= 344

such choices for b.
Lastly, consider π3 = {C1, C2}, which has gcd(π3) = 4, and

thus q1 = 1 and q2 = 2. Applying Theorem 4, if b is such that
|χ(b) ∩ C1| = d and |χ(b) ∩ C2| = 2d, where d ∈ {1, 2, 3}, then
(L, b) is uncontrollable. However, sinceπ2 is a refinement ofπ3, we
must not double count some b’s already accounted for fromπ2. Not
including the ones that have already been accounted for from π2,
for d = 1 there are
4
1

 
2
4
2


= 48 choices for b, for d = 2 there

are
4
2

 
2
4
0

4
4


+ 2

4
1

4
3


= 204 choices for b, and for d = 3

there are
4
3

 
2
4
4

4
2


= 48 choices for b. Hence, there are 300

uncontrollable leader-selections corresponding to π3.
In summary, with Theorem 4 we can account for 1148 uncon-

trollable leader selections. On the other hand, it can be shown that
with Theorem 3 we can account for only 8 uncontrollable leader
selections. •

Remark 4. Let G be a graph on n vertices and let π = {C1,

C2, . . . , Ck} be a partition of V (G). Then, n =
k

j=1 |Cj| and
therefore if n is prime, necessarily gcd(π) = 1. Hence, in this case,
G contains no reducible AEPs, and thus Theorem4 is not applicable.
This suggests that networks with a prime number of nodes may
have robust controllability properties. •

Using quotient graphs, we give a further case in which the
eigenvectors in img(P(π)) are orthogonal to leader selections
not in img(P(π)). The situation arises when π , in contrast to
Theorem 4, is not necessarily reducible.

Theorem 5. Let G be a weighted undirected graph and suppose
that π = {C1, C2, . . . , Ck} is an almost equitable partition of G
and let G/π be the induced quotient graph. Suppose that ρ =

{S1, S2, . . . , Sℓ} is a non-trivial almost equitable partition of G/π .
For each i = 1, 2, . . . , ℓ, enumerate the elements of Si as Si =

{Ci,1, Ci,2, . . . , Ci,ki}. Let b ∈ {0, 1}n and set qi,j := |χ(b) ∩ Ci,j|.
Assume that if ki ≥ 2 then qi,j is independent of j ∈ {1, 2, . . . , ki}.
Then, (L, b) is uncontrollable.

Proof. Let W1 = img(P(π)) and we note that because ρ is an
almost equitable partition of G/π , img(P(ρ)) is L|W1-invariant.
Therefore, ker(P(ρ)T ) is also L|W1-invariant since L|W1 is self-
adjoint. Since ρ is a non-trivial partition, there exists an eigenvec-
torw ∈ ker(P(ρ)T ) of Lπ (note that Lπ is amatrix representation of
L|W1 ). By Lemma 2, w = P(π)w is an eigenvector of L. Now, since
w ∈ img(P(π)) and ρ is a partition of V (G \ π) = π , we can write

w =

ℓ
i=1


ki
j=1

αi,jci,j


,

where ci,j is the characteristic vector of cell Ci,j ∈ Si. Now, sincew ∈ ker(P(ρ)T ) it follows that the components of w = P(π)w on
the cells Ci,1, . . . , Ci,ki sum to zero, in other words,

ki
j=1 αi,j = 0,

for each i = 1, 2, . . . , ℓ. Now, in the case that Si = {Ci,1} is a single-
ton cell, then necessarily αi,1 = 0 and thus wTb is independent of
the value of b on the vertices in the cell Ci,1. Now, by construction,

wTb =

ℓ
i=1


ki
j=1

αi,j|χ(b) ∩ Ci,j|



=

ℓ
i=1
ki≥2


ki
j=1

αi,jqi,j


=

ℓ
i=1
ki≥2

qi,j


ki
j=1

αi,j


= 0,

where the second last equality follows since qi,j is independent of
j. Thus, by the PBH test, (L, b) is uncontrollable. �

The next example shows how Theorem 5 can be used when
Theorem 4 is inapplicable.

Example 5. Consider again the asymmetric 3-regular Frucht graph
on n = 12 vertices shown in Fig. 5 and studied in Example 4.
One can show that ρ = {{C1}, {C2, C3}} is an equitable partition
of Lπ2 . Here S1 = {C1} and S2 = {C2, C3}. Notice that the
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partition π2/ρ is precisely π3. Now, from Theorem 5, if b is such
that |χ(b) ∩ C2| = |χ(b) ∩ C3| = 2, and |χ(b) ∩ C1| is
arbitrary, then (L, b) is uncontrollable. Such choices of b are not
all characterized by Theorem 4. Indeed, applying Theorem 4 to π2
directly as in Example 4, we must have that |χ(b) ∩ Cj| = d for
j = 1, 2, 3 where d ∈ {1, 2, 3}. Hence, the case |χ(b) ∩ C1| = 2
is the only one that has been accounted for by Theorem 4, but
the cases |χ(b) ∩ C1| ∈ {0, 1, 3, 4} induce new uncontrollable
leader selections characterized by Theorem 5. There are a total of4
2

4
2

 4
0


+
4
1


+
4
3


+
4
4


= 360 such choices. Similarly, if b

is such that |χ(b) ∩ C2| = |χ(b) ∩ C3| = 3, and |χ(b) ∩ C1| ∈

{0, 1, 2, 4} then (L, b) is uncontrollable. •

5. Conclusion

In conclusion, we considered the controllability problem for
multi-agent networked control systems. The main results of the
paper are two new graph-theoretic necessary conditions for con-
trollability involving almost equitable partitions (Theorems 4 and
5).We also generalized the known results on the role of graph sym-
metries and uncontrollability to weighted digraphs (Theorem 3)
and multiple-leaders. Our results show that the internal structure
of communities in a graph can induce obstructions to controllabil-
ity that cannot be characterized by symmetry arguments alone.
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