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ABSTRACT

In this paper we construct high-order approximate solutions to the value func-
tion and optimal control for a finite-horizon optimal control problem for time-varying
discrete-time nonlinear systems. The method consists in expanding the dynamic pro-
gramming equations (DPE) in a power series, collecting homogeneous polynomial terms
and solving for the unknown coefficients from the known and previously computed data.
The resulting high-order equations are linear difference equations for the unknown ho-
mogeneous terms and are solved backwards in time. The method is applied to construct
high-order perturbation controllers around a nominal optimal trajectory.
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1. INTRODUCTION

Consider the time-varying discrete-time control system

Tep1 = fe(we, wp) (1)

where f; : R" x R™ — R™ is smooth, i.e., infinitely differentiable, and f,(0,0) = 0, for
te€{0,1,...,}. Let to € {0,1,...,}, let N be a fixed positive integer, and let there be given
smooth functions ¢; : R” x R™ — R and ¢ : R® — R. Define for controlled trajectories
satisfying (1)

X = (xtoa Tig+1s -+ xto-i-N)

u= (utm Utg4+15 -+ uto+N—1)7

with initial condition z;, = 2°, the cost

to+N—1
T (2% 0) = @(zien) + D lilwi,w). (2)
t=to
We will say that the control sequence
u* = (u;k()? u:()-i-l? ce ’u;k()—i-N—l)

solves the optimal control problem (1)-(2) if
Jto(xov u*) < Jto (Iov 11)
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for all control sequences u = (us, Usgr1, - - -, Uggyn—1). We let xX* = (zf, 27 11,..., 7} n)
denote the state trajectory corresponding to u*. Denote the value function to the optimal
control problem as

m(z) = m&n Ji(z,u)

where now x is the initial condition at time ¢. Applying Bellman’s dynamic principle [2], the
value functions 7; satisfy the recurrence relation

m(x) = min [ly(@, u) + mea (fiz, )],
with final condition 7y, ny(2) = ¢(x). If u = a4(x) is a minimizing controller, then clearly

m(x) = bi(@; o0 () + ma (file, au(2))). (DPEL)

Assuming that m; is differentiable for each ¢ (Theorem 2.1), the following necessary condition
for a minimum holds:
0l

0= %(aj, ai(x)) +

() o o () (DPE2)

Omi41

ox

Equations (DPE1)-(DPE2) are the dynamic programming equations for the optimization
problem.

Following the method of Al'brekht [1] (see also [8, 10]), we construct polynomial approx-
imations to m; and o4 as follows. Let f;, ¢; and ¢ have the following Taylor series expansions:

fi(z,u) = Ayr + Bu + ft@) (x,u) + ft(g) (x,u)+--- (3a)
Uz, u) = 32’ Qux + 2’ Spu + u'Ryu + 67 (@, u) + - (3b)
o(x) = 3Pz + 6P (2) + ¢ () + - (3¢)

where Q; = Q) = 0, R, = R, > 0, and P = P’ > 0 (prime denotes transposition). The term
ft(d) (z,u) denotes a homogeneous polynomial of order d in the components of (z,u) with

coefficients depending on ¢, and similarly for ¢\ (z,u), o9 (x), etc. We assume that 7; and
oy have Taylor series expansions of the form:

m(x) = %x’Pta: + 7rt(3)(:)3) + 7T§4)(:)3) + - (4a)

() = K + ol (@) + o () + - - (4b)

To compute the homogeneous components of 7;(z) and ay(z), we substitute the expansions
(3)-(4) into the DPE, collect terms of the same order and solve for the unknown homoge-
neous terms of m;(z) and ay(x). For each d > 1, (DPE1) is used to solve for the (d+ 1) order
homogeneous term of m;(z) and (DPE2) is used to solve for the d order homogeneous term
of ay(x). As will be seen, for d > 2, the d order term of a;(x) vanishes in the (d + 1) order

equations of (DPEL), resulting in a triangular set of equations for ity (x) and a!? | thereby
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simplifying the method substantially. The resulting equations are difference equations in-
volving the previously computed lower order terms of m(z) and a;(x) and the known data
fi(x), (z) and ¢(x). For d = 1, the equations that arise are the familiar linear quadratic
regulator equations for the linearized dynamics of (1), i.e., the time-varying discrete Riccati
equation [5].

Our high-order approximation method is an extension of the method of Al’brekht [1]
for continuous time-invariant nonlinear systems. In [1|, a method is used to compute high-
order polynomial approximations to the value function and optimal control for the Hamil-
ton—Jacobi-Bellman (HJB) equation and a first order necessary condition for optimality
similar to (DPE2). The resulting equations for the coefficients of the homogeneous polyno-
mial terms of the value function and optimal controller are algebraic linear equations. Later,
an approach similar to [1] was employed in [10] for continuous time-varying nonlinear systems
and a finite horizon optimal control problem. In [10], as the HJB equation is time-varying,
the coefficients of the homogeneous terms of the value function and optimal controller are
time-varying, resulting in ordinary differential equations for the unknown coefficients. Later
in [9], the method of Al’'brekht was applied to discrete time-invariant nonlinear systems
and the resulting equations are algebraic. Hence, our work can be considered as a natural
extension to discrete-time systems of the method in [10] on continuous-time systems.

A natural application of our method is the construction of high-order perturbation con-
trollers around a nominal optimal trajectory, the so-called neighboring extremal method |3,
Ch. 6] or perturbation control |5, Section 2.8]. For the case d = 1, our method coincides
with the unconstrained neighboring extremal method found in [3]. The neighboring extremal
method with state and input constraints has been considered in |6, 7] in the development
of fast model predictive control (MPC) laws. In this paper we do not treat state and in-
put constraints. In any case, perturbation controllers can be used to approximate optimal
trajectories that are nearby a known pre-computed optimal trajectory. Consequently, per-
turbation controllers can be used to increase the speed of MPC algorithms by providing a
more accurate initial guess to nearby optimal trajectories.

2. EXISTENCE OF SMOOTH SOLUTIONS TO THE DPE

Before describing our algorithm for computing polynomial approximate solutions to the DPE,
in this section we show for completeness that, under the standard assumptions in the linear

quadratic regulator problem [5], there exist sequences of smooth functions 7, T, 41, - - -, T+ N—1
and ay,, Qg1 - - - gy n—1 SoOlving (DPEL)-(DPE2).

Theorem 2.1. Consider the nonlinear system (1) and cost function (2). Suppose that ly, f;,
and ¢ are smooth. Assume that ¢, and ¢ vanish along with their first derivatives at (x,u) =
(0,0), and that also f;(0,0) = 0. Assume further that R; = %(0,0) are positive definite,
Q: = %(0,0) are positive semi-definite, and P = 227‘5(0) is positive semi-definite. Then
there exist sequences of smooth functions Ty, Tig41, - - Trg+N—1 ONA Qgyy Qgg i1y - - -y Qg+ N—1,

defined locally about x = 0, solving (DPE1)-(DPE2).
Proof. We begin with the case s =ty + N — 1. Define the function ¥y : R” x R™ — R by

\IJS(ZE, U) = Es(za u) + 7T8+1(f5({17, u))
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and recall that 7,11 = my 4 n = ¢ is known. Let By = %(O, 0). From the assumptions that

oty
%((L 0) - O>

aﬂ-s+1

ozr

(0) =0,

it follows that the mapping % : R™ x R™ — R™ vanishes at (x,u) = (0,0). Furthermore,
92V,
ou?

the m x m symmetric matrix (0,0) is invertible. Indeed, a direct calculations gives that

0,
ou?

which is the sum of the positive definite matrix Ry and the positive semi-definite matrix
BT P, 1B, and therefore is also positive definite. By the Implicit Function Theorem applied
to 8;; = there exists an open set V C R" containing x = 0 and an open set «/ C R™ containing
u = 0, and a unique smooth mapping a, : V — U such that a,(0) = 0 and 2% (, a,(z)) = 0.

ou
In other words,

(0,0) = R, + BT P, B,,

ol
0=—(z,asx)) +
ou

(oo () T2 ).

aﬂ-s+1

ox

By continuity of the mapping (z,u) — P, (x,u) and the fact that the set of positive

Ou?
definite matrices is open in the set of symmetric matrices, we have that for x € V the
matrix 8823’25 (x,as(x)) is positive definite (here it may be necessary to shrink V). Hence, it
follows that for each fixed z € V, the mapping u — WV (x,u) has a minimum at u = a(z).

Therefore,

mo(x) 2 muin U(z,u) = ls(z, as(x)) + w1 (fs(z, as(x)))

and it is clear that 7, : V — R is smooth. Thus, we have proved that o and 74 solve (DPE1)-
(DPE2) for s =ty + N — 1 on V. Now, by classical results regarding the discrete-time linear
quadratic regulator problem [5, pg. 63|, the assumption that @ is positive semi-definite
implies that the matrix Py = ‘982;;3 (0) is positive semi-definite. We can therefore repeat our
arguments above for the mapping ¥, _; : V' x U’ — R defined as

U, q(z,u) = ls_q(x,u) + m5( fs—1(x, u)),

where V' C V and U’ C U are sufficiently small open sets such that f,_1(V',U’) C V. In this
way, we obtain the desired sequences my,, Ty 41, - - -, T+ nN—1 a0d Qyy, Qo415 - - - QggrN—1, ald
this completes the proof. |

3. POWER SERIES SOLUTIONS TO THE DPE

In this section we describe our algorithm for computing the homogeneous polynomial terms
of m(x) and ay(x) order-by-order from the DPE.

3.1. ORDER d =1: COMPUTING P, AND K,

Substituting the power series expansions (3)-(4) into the DPE and collecting the quadratic
terms from (DPE1) and the linear terms from (DPE2) yield the familiar equations from the
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discrete-time linear quadratic regulator problem:
s’ P = 32'[Qy + 25, K, + K{R Ky + (A + BiK,) P (A + B Ky (5a)
0=2'[S; + K/R; + (A; + B.K})' P11 By). (5b)
As (5b) holds for all z, it follows that
K; = —(Ry + B{P1By) '(Si + AP By)'. (6)

Substituting (6) into (5a) and simplifying yields the time-varying discrete Riccati equation
(DRE)

Py = Q+ APy Ay — Ty(Ry + BiP B) 7' (7)
where I'; = (S + A} P11 B;). The DRE is solved backwards from t = ¢ty + N to t =t with

known final condition P, n = P.

3.2. ORDER d = 2: COMPUTING ") AND a”

Assume we have computed P; and K, and let F;, = A;+ B;K; denote the closed-loop matrices.
Collecting cubic terms in (DPEL) yields

(@) = 67 (2, Kiw) + 7 (Fx) + 2 F{ P £ (0, Ko

+ SL’/[St + KgRt + (At + Bth)/PH_lBt]Oégz) (SL’)

- -

=0 from (5b)

= mi(F) + 07 (2, Kow) + o' F{ Py /) (w0, K o).
Therefore, we obtain the following recurrence relation for 7(* (z):
3 3 3
mi (@) = w2 (Fa) + W (2) ®)

where
W(z) = 0¥ (2, K,x) + 2'F Py £ (2, Ky).

Notice that W,* (x) depends on the linear part of a;(z) and on the quadratic part of m (),

which have already been computed by assumption. The recurrence relation (8) is solved

backwards from ¢t =ty + N to t = t, with known final condition ngi ~(@) = 0O (2).
Collecting quadratic terms in (DPE2) yields

o’ om @ @ /
W(ZI:, Ktl') + o (thlf)Bt + [Btat (l’) + ft (flf, KI’)] Pt+lBt

o (2)
+ ' (A + Bth)/PtJrlg—tu(a?a Kix).

2 3) .
Therefore, we can solve for ag ) once ﬂ,f +)1 is known:

0=a? ()R, +

a(x) = —(Ry + BiPia Be) "V, (a) (9)
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where

86(3) 871'(3) / / o (2)
= a; (z, Kux) + at;l(th)BmLx(F}) P g’;

Notice that Vt(2) (x) depends on the linear part of a;(z) and on up to the cubic part of 741 (),
which have already been computed.

Vt(z) (z) (x, Kyx) + ft(2) (v, Kx)' Py 1 By.

3.3. ORDER d > 2: COMPUTING w,f‘”l) AND a,ﬁd)

Consider now the general case d > 2. Hence, assume that we have computed m;(x) up to
degree d and oy () up to degree d — 1. Collecting d + 1 order terms from (DPE1) yields the

following expression for 7r§d+1)(x):

m (@) = 7T (Fa) + WY (@) + 2[S, + KR+ (A + BJK,) Py Blal® (z)  (10)

s

=0 from (5b)

where Wt(dﬂ)(x) is a homogeneous polynomial in z of degree d + 1 depending on 7. (x)
up to degree d and on oy (z) up to degree d — 1, which have already been computed by
assumption. We therefore obtain the following recurrence relation for 7r§d+1)(x):

D () = 7D (Fx) + W (). (11)

The recurrence relation (11) is solved backwards from ¢t = ¢y + N to t =ty with known final

condition Wt(gi}\? (z) = ¢V (z).

Next, collecting d order terms from (DPE2) we obtain an expression of the form
0= i (@) (R + BiPa By) + V1 (0)

where V;(d) (x) is a homogeneous polynomial in x of degree d depending on 7,1 up to degree
d+ 1 and on oy up to degree d — 1. Therefore, we can solve for aﬁd) (x) because ﬁff{l) has

already been computed from (11):
o (#) = =(Re+ BiPua B) 'V (o) (12)

In this way, for a desired order M, the above procedure produces a polynomial approx-
imation to m(z) of order M + 1 and a polynomial approximation to ay(z) of order M, for
t:to,...,to—l—N—]_.

Remark 3.1. It is worth emphasizing the importance of (5b) in the computation of it (x)
(d)

and o (x) for d > 2. As one can observe from (10), the relation (5b) eliminates o’ (z) from

the equation for 7\ (x), thereby resulting in a triangular set of equations for ity (x) and

d
oy ().

Remark 3.2. As can be seen from (11), the computation of 7T§d+1)(:lj') involves only the
evaluation of the known and previously computed data, i.e, Wt(d+1)(:c), and wt(fﬁl)(x). The
computational work for performing these calculations can be carried out efficiently by using
matrix representations of homogeneous polynomials, as opposed to performing symbolic

computations.



4. PERTURBATION CONTROLLERS AROUND A NOMINAL OPTIMAL TRAJECTORY

The method of the previous section can be used to construct perturbation controllers around
a nominal optimal trajectory for discrete nonlinear systems of the form (1) and cost function
(2). Such perturbation controllers can be used to increase the speed of model predictive
controllers (MPC) [6, 7| by providing more accurate initial guesses to nonlinear programming
solvers. In the MPC formulation, the terminal cost function ¢ can be chosen to ensure closed-
loop stability of the resulting MPC feedback [4].

In this section we construct time-varying systems, and the associated cost function, de-
scribing the perturbed dynamics from a pre-computed optimal trajectory. Our high-order
method can then be used on the perturbed dynamics to compute approximations to optimal
trajectories nearby the pre-computed optimal trajectory.

Let (x*,u*) be an optimal trajectory starting at time ¢ = ¢, with initial condition z°.
Using the method of Lagrange multipliers [5], we augment the constraints (1) to the cost
(2), yielding the Hamiltonian function

to+N—1

H(x,u,A) = d(zigin) + M2 = @) + Y blww) + My (filen,w) — 241) (13)

t=to

where A = (A, Mig+1,- -+, Agrn) are the undetermined Lagrange multipliers. For conve-

nience, define
ht(xv u, >\) = et(xv u) + )‘Tft(xv U)

Re-arranging the expression for H so that the x;’s are lumped together, H can be written

as
to+N—-1

H(X, u, A) = ¢(xto+N) — )\z:)-i-NxtO"FN + )\Tl'o + Z ht l’t, U, )\t—i-l) )\fl’t

t=to

The necessary first order condition for (x*, u*, A*) to be a minimizing triple for the Hamil-
tonian H can be decomposed into the equations

ol , . Of . «

0= a_;(xta ) )‘tfl O t( t) - )‘tT (14a)
d9 .

0= %(xto+N) )‘to+N (14b)
oy, 1 Of .

0= 0_1;(%’ ) )‘tfl 0ut( t?ut) (14c)

0= filx}, up) — i (14e)

for t =tg,...,to + N — 1. Now define the mappings ft :R* x R™ — R” by

ft(:i,ﬂ) = ft(l';k —l—:i’,u: +1~L) — ft(x;‘,u:)
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For a controlled trajectory (x,u) of (1), define the perturbed state x = X —x* and perturbed
control 1 = u — u*. Then it is easy to see that the pair (X, 1) satisfies

Forr = fo(@e, ).
Define the function H : (R")N ! x (R™)N x (R")N+! 5 R by
H(x,a,n) = H(x"+X,u* + 1, A\ +n) — H(x* u*, X\
and functions ¢ : R” — R and £, : R” x R™ — R by
Qz(f) = ¢(37:0+N + ) — )‘Za]vf - ¢(5E:O+N)
0(Z,0) = L] + &, up +0) — Gla),u)) + N1y f(@, @) — N7

It it straightforward to verify that

" ~ to+N—1 ~ to+N—1 ~
H(%,0,m) = G(Erpn) + > bl@n ) = npfy + > 0y (filde, i) — Foir).
t=to t=to

Hence, H is the Hamiltonian obtained by adjoining the dynamical constraints

Bryr = i@, Ty) (15)
to the cost function
~ ~ to+N—1 ~
J(fo,ﬁ) = ¢(Tro4n) + Z (g, ) (16)
t=to

where 7;, = 2°. From (14b), the function ¢ has a Taylor expansion about Z = 0 beginning
with quadratic terms. Similarly, by (14a) and (14c), £, has a Taylor expansion about (Z, @) =
(0,0) beginning with quadratic terms, for t = to,...,to + N — 1.

By construction, if (X*, 1*) is an optimal controlled trajectory for the time-varying system
(15) and cost (16) with initial condition #; = #°, then X* = x* + X* and 0* = u* 4+ 0" is an
optimal controlled trajectory for the original system (1) and cost (2) with initial condition
7° = 2% + 7° The method of the previous section can be employed on the time-varying
system (15) with the cost (16) to obtain high-order polynomial approximations to (x*,a*),
and consequently approximations to (x*,*). In the next section we illustrate the results of
this approach with two examples.

5. EXAMPLES

We consider two examples illustrating our method.

Example 5.1. The system evolves in R and given as

T = o + At(sin(xy) + uy), (17)



and the cost function is
N-1
J(2° u) = %px?\, + At Z(%q:c? + %ruf) (18)
t=0
where we set ¢ = 2, r = 1, and At = 0.05. The scalar p > 0 is chosen as the solution to
the discrete algebraic Riccati equation arising by considering the linearized dynamics of (17)
and the infinite-horizon cost

Joo(2%, 1) = Atz (3qz} + iru).
=0
The value of p is approximately p ~ 2.85. The optimal controlled trajectory (x*,u*) for
(17) and cost (18) is pre-computed for initial condition 2° = 0.5 and N = 75. We now wish
to compute the optimal trajectory (x*,u*) for (17)-(18) with initial condition z° = 1.5. As
described in §4, we form the dynamics for the perturbed state x = X — x* and perturbed
control @ = u — u*, resulting in a time-varying nonlinear system of the form (15). Using
the power series method described in §3, we computed approximations of orders 1-5 for
the optimal controlled trajectory (x*,u*) with initial condition 7° = 7° — 2% = 1. In
Fig. 1, we plot the state error X* — (x* 4+ x*) and the control error u* — (u* + 0*) using
the approximations to (x*,u*) of orders 1-5. The optimal trajectory (X*, u*) was computed
using Matlab’s nonlinear solver fminsearch using as an initial guess * ~ u* + u* with
u* approximated with the 5th order approximation. We remark that the Matlab function

fminsearch failed to converge in computing u* using the approximations of u* of orders
1—4.

Example 5.2. In this example we illustrate the method on the pendulum-cart system. The
system consists of a cart of mass m,. that is free to move horizontally and acted upon a
horizontal force u. The pendulum rod is pivoted at the center of mass of the cart and free
to swing in a vertical plane about its frictionless pivot point. The center of mass of the
pendulum is a distance ! from its pivot point and has mass m,. For simplicity, we only
consider the dynamics of the pendulum and ignore the cart. Applying Newton’s laws, the
dynamical equation for the pendulum rod is

i g sin(0) — %anéﬂ sin(26) — ™= cos()u (19)

3 — m, cos?(0)

where 6 is the angle the pendulum makes with the vertical, m, = mj}—z)rn = and g = 9.8 m/s?
is the acceleration due to gravity. We take the values m;, = 2 kg, m. = 8 kg, and [ = 0.5 m.
Let z = (0,60) and let F(x,u) € R? denote the controlled vector field resulting by writing

(19) as a first order system. The Eulerian discretization of (19) yields

Tip1 = [y, w) = o + AtF (24, uy) (20)
where At is the sampling interval, z, = (6(tAt), §(tAt)) is the state vector, and u, = u(tAt)
is the control force, for t =0, 1,...,. We take the value At = 0.05. As cost function we take

N-1
J(2°,u) = 12y Pay + At Z (22,Qxy + suyRuy) (21)
=0



Table 1: Computational time and number of iterations required to convergence to optimal
solution (x*,u*) for Example 2.

Order | Time [sec] | Newton Iterations | Improvement
Linear 0.0495 5 N/A
Previous 0.0399 4 19.4%
1 0.0393 4 20.6%
2 0.0314 3 36.6%
3 0.0303 3 38.8%
4 0.0217 2 56.2%

where Q = diag(qi1, go2) is positive definite and R is a positive scalar. As in the previous
example, the matrix P is chosen as the solution to the discrete algebraic Riccati equation
arising by considering the linearized dynamics of (20) and the cost

Joo (2%, 1) = At Z (32,Qzy + 2ujRuy) . (22)

t=0

The optimal controlled trajectory (x*,u*) for (20) and cost (21) is pre-computed for initial
condition z° = (—0.7, —0.5) and N = 25. We now wish to compute the optimal trajectory
(x*,u*) for (20)-(21) with initial condition 7° = (—0.9, —0.6). We form the dynamics for the
perturbed state x = X —x* and perturbed control 1 = u—u*, and computed approximations
of orders 1-4 for the optimal controlled trajectory (X*, *) with initial condition 7° = 7°—2° =
(—0.2,—0.1). In Fig. 2, we plot the Euclidean norm of the state error X* — (x* +x*) and the
control error u* — (u* + 0*) using the approximations to (x*, a*) of orders 1-4. The optimal
trajectory (X*,u*) was computed using Matlab’s nonlinear solver fminsearch using as an
initial guess U* ~ u*+u* with u* approximated with the 4th order approximation. In Table 1,
we show the computational time and the number of Newton iterations required to compute
the optimal trajectory (X*,u*) using the approximations of orders 1-4 as initial guesses to
the nonlinear solver. The first row in Table 1 corresponds to using the control sequence
u; = Ky as an initial guess, where K is the optimal gain for the linearized dynamics of (20)
and cost (22), and the second row corresponds to using the previously computed control u*
as the initial guess. All computations were done on a computer with a 2 GHz processor and
2 GB of RAM.

6. CONCLUSION AND FUTURE WORK

In this paper we presented a method for computing high-order approximate solutions to the
value function and optimal control for a finite-horizon optimal control problem for time-
varying discrete-time nonlinear systems. The method was applied to construct perturba-
tion controllers around a nominal optimal trajectory. Examples were given illustrating the
method. A natural direction of future work would consider state and input constraints.
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Figure 1: Error u* — (u*+a*) (top) and error X* — (x* +x*) (bottom) using approximations
to (x*,0*) of orders 1-5 for Example 1.
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Figure 2: Error u* — (u*+1u"*) (top) and error ||X*—(x*+%*)|| (bottom) using approximations
to (x*,u*) of orders 1-4 for Example 2.
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