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Abstract—In this paper we study the small-time local
controllability (STLC) property of polynomial control-
affine systems whose drift vector field is a 2-homogeneous
polynomial vector field and whose control-input vector
fields are constant. Such systems arise in the study
of controllability of mechanical control systems. Using
control variations and rooted trees, we obtain a combi-
natorial expression for the Taylor series coefficients of
a composition of flows of vector fields and use it to
derive a high-order sufficient condition for STLC for these
systems. The resulting condition is stated in terms of the
image of the control-input subspace under the drift vector
field and is therefore invariant under (linear) feedback
transformations.

I. Introduction

In this paper we consider the local controllability
problem of polynomial control-affine systems

Σ : ż = X0(z) +
m∑

i=1

uiXi(z) (1)

where X0 : R
n→ Rn is a homogeneous polynomial vec-

tor field of integer degree d ≥ 1, i.e., X0(λz) = λdX0(z)
for all λ ∈ R and z ∈ Rn, and X1, . . . ,Xm : Rn → Rn

are constant vector fields. The controls u : [0,T ]→ Rm

for Σ are assumed to be piecewise constant and take
their values in a symmetric and compact subset U ⊂ Rm

containing the origin in its interior. By symmetric we
mean that u ∈U implies that −u ∈ U . We fix the initial
condition of Σ to the origin z0 = 0 ∈Rn. The reachable
set of Σ from z0 at time T > 0, denoted by RΣ(z0,T ),
is the set of all end-points z(T ) where t 7→ z(t) is a
trajectory of Σ initiating from z0 at time t = 0. We say
that Σ is small-time locally controllable (STLC) from z0
if RΣ(z0,T ) contains z0 in its interior for every T > 0.
Despite the very general sufficient conditions for

STLC obtained in the landmark papers [15], [4], a com-
plete understanding of the STLC property for (1) when
d is even and m ≥ 2 is an open problem. In this paper,
we will focus on the quadratic case d = 2 and multi-
input systems m ≥ 2. The case when d ∈ {3,5,7, . . .}
is odd is well understood [5] (see Section III for a
summary) and is analogous to the the linear case d = 1.
In the single-input case m = 1 and d = 2, it was shown
in [13] that Σ is STLC from z0 if and only if n = 1,
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that is, only when the state is a scalar. For the multi-
input case and d = 2, in [13] a study is undertaken of
the possibility of using linear input transformations so
that for the new transformed system the first potential
obstructions [Xi , [Xi ,X0]](z0), i = 1, . . . ,m, to STLC can
be neutralized and an application of Sussmann’s gen-
eral theorem [15] would imply STLC. As shown in [13],
the problem of neutralizing the potential obstructions
[Xi , [Xi ,X0]](z0) is equivalent to the indefiniteness of
the symmetric R-bilinear map defined by the sec-
ond derivative D2X0(z0)(·, ·) of X0. Indefiniteness of
D2X0(z0) can be characterized in terms of the image of
the quadratic map Rn ∋ v 7→D2X0(z0)(v,v) [6, pg. 413].
We make the following observation that, since for any
v ∈ Rn and any vector field V such that V (z0) = v we
have

[V , [V ,X0]](z0) =D2X0(z0)(v,v),

we can interpret the results of [13] as a statement about
the image of the subspace span{X1(z0), . . . ,Xm(z0)} un-
der D2X0(z0)(·, ·). This is analogous to the well-known
fact that controllability for linear control systems can
be fully characterized in terms of the image of the sub-
space spanned by the control-input vector fields under
the 1-homogeneous drift vector field. The purpose of
this paper is to fully exploit this analogy for systems
of the form (1) with quadratic drift X0 by studying the
STLC property for the control-affine system

Σq :

{

ẋ = u

ẏ = q1(x) + q2(y).
(2)

In (2), the state variable is z = (x,y) ∈ Rm × Rr , u ∈
R
m is the control variable, and q1 : Rm → Rr and

q2 : Rr → Rr are homogeneous quadratic maps, i.e.,
q1(λx) = λ2q1(x) and q2(λy) = λ2q2(y) for all x,y, and
λ ∈ R. Our approach is to exploit the polynomial
structure of (1) to explicitly compute certain high-order
tangent vectors to the reachable set by studying the
Taylor series coefficients of end-point mappings

(t1, . . . , tp) 7→Φ
Zp

tp
◦ΦZp−1

tp−1 ◦ · · · ◦Φ
Z1
t1

(z0) (3)

using labeled rooted trees [7]. In (3), (t,z) → ΦZ
t (z)

denotes the flow of the vector field Z . Labeled rooted
trees are used in [7] to give a combinatorial formula
for the Taylor series coefficients of the solution of an
ordinary differential equation. Following [7], we do
the same for the end-point mappings (3) and apply



our computations to compute control-variations for
(1). Of course, the use of control-variations to study
controllability is a standard tool in nonlinear control-
lability theory [8], [12], [4], [3], and their use can
lead to valuable insight in the quest of narrowing the
gap between the known sufficient and necessary Lie
bracket conditions [12]. Moreover, and perhaps more
importantly from a practical point of view, explicit
constructions using end-point mappings can be used
to construct locally asymptotically stabilizing piece-
wise analytic feedbacks for locally controllable sys-
tems [10]. We note that, although control-variations
can be expressed in terms of Lie brackets via the
Campbell–Baker–Hausdorff formula, we take the view
point that for polynomial systems of the form (1), it
is more natural to state controllability conditions in
terms of the d-multilinear mapping DdX0(z0) and its
properties on the span{X1(z0), . . . ,Xm(z0)}. An advantage
in doing so is that the resulting conditions are invariant
under (linear) feedback transformations, in contrast to
Lie algebraic conditions which are known to depend
on the specific choice of the system vector fields (see
[13] for a simple physical system displaying this lack
of invariance).

A. Notation

In this paper, all vector fields are assumed to
be smooth, that is, infinitely differentiable. If Z =
(Z1, . . . ,Zp) is a family of vector fields on Rn, there
exists an open set ΩZ ⊆ Rp×Rn such that the mapping
ΦZ :ΩZ → Rn given by

ΦZ (t, z) = Φ
Zp

tp
◦ΦZp−1

tp−1 ◦ · · · ◦Φ
Z1
t1

(z)

is well-defined for all (t, z) = (t1, . . . , tp, z) ∈ΩZ . To em-

phasize the dependence of ΦZ (t, z) on either t or z, at
times it will be convenient to write ΦZ (t, z) = ΦZ

t
(z) =

ΦZ
z (t), accepting a slight abuse of notation. The Lie

bracket of vector fields Z1 and Z2 is denoted [Z1,Z2]
and is given by the formula [Z1,Z2](z) =DZ2(z)Z1(z)−
DZ1(z)Z2(z). The tangent space of Rn at z will be
denoted as TzR

n.
For any set P ⊂ Rn we define −P = {−z : z ∈ P} and

by conv+(P) we denote the convex cone generated by
P, i.e., the set of all positive linear combinations of the
elements of P. The positive integers are denoted N =
{1,2, . . . , } and the non-negative integers are denoted
N0 = {0,1,2, . . .}. We let R

p
≥0 = {(t1, . . . , tp) ∈ Rp : ti ≥ 0}.

Finally, the symbol z0 will be used exclusively to denote
the zero vector in Rn.

II. Homogeneous vector fields

This section is meant to be a review of basic facts
regarding homogeneous polynomial vector fields and
to establish some notation. Let X : Rn → Rn be a
vector field. The d order derivative of X at z ∈ Rn is
a symmetric d-multilinear mapping which we denote
by DdX(z) : (Rn)p → Rn and we will use the notation

DdX(z)(v1,v2, . . . ,vd ) to denote the evaluation of DdX(z)
at v1, . . . ,vd ∈Rn. If X is d-homogeneous, then DdX(z) =
DdX(z̃) for all z, z̃ so that the point where the derivative
is evaluated is immaterial and we will therefore omit it
when no confusion arises. Now, if X is d-homogeneous
and z0 = 0, it is straightforward to show using the
formula for the Lie bracket that

DdX(z0)(v1, . . . ,vd ) = [Y1, [Y2, [· · · , [Yd ,X]] · · · ](z0), (4)

where Y1, . . . ,Yd are arbitrary vector fields extending
v1, . . . ,vd at z0, respectively, i.e., Yj (z0) = vj . Of special

interest is when DdX(z0) acts on the diagonal. Dif-
ferentiating d times the relation X(λv) = λdX(v) with
respect to λ and evaluating at λ = 0, we obtain that
DdX(z0)(v, . . . ,v) = d!X(v). Therefore, if Y (z0) = v then

[Y, [Y, [· · · , [Y,X]] · · · ](z0) = d!X(v). (5)

III. Odd Polynomial Systems

For purposes of exposition and to establish further
notation, in this section we summarize the STLC prop-
erty for systems of the form (1) in the case that X0 is
a homogeneous polynomial vector field of odd degree.
The results in this section follow from the early work
of Brunovský [5] on odd systems defined as follows (see
also [15]). If F is a family of vector fields, its Lie closure
is denoted by Lie(F) and Liez(F) denotes the evaluation
of Lie(F) at z. A family of vector fields F = {Zi : i ∈ I} on
R
n is called odd on a symmetric neighbourhood Ω ⊂ Rn

of the origin if for every i ∈ I there is a j ∈ I such
that Zj (−z) = −Zi(z) for z ∈ Ω . In [5] it is shown that
if F is an odd family and satisfies the Lie algebra rank
condition (LARC) at z0, i.e., Liez0(F) = Tz0R

n, then for
each T > 0 the set of points reachable from z0 in time
T by following concatenations of the integral curves of
the elements of F in forward time contains the origin
in its interior. We remark that if the family F consists
of real-analytic vector fields then it is well-known that
the LARC condition at z0 is also necessary for STLC
from z0 [14].

Consider now the polynomial system Σ given by (1)
and let

FΣ = {X0 +Σm
i=1uiXi : u ∈U}.

If d is odd, then using the symmetry of U it is
not hard to see that FΣ is an odd family of vector
fields on Rn. Now since Lie(FΣ) = Lie({X0,X1, . . . ,Xm})
and the vector fields X0,X1, . . . ,Xm are real-analytic, it
follows by [5] that Σ is STLC from z0 if and only
if Liez0 ({X0,X1, . . . ,Xm}) = Tz0R

n, provided d is odd.
Our purpose now is to relate the LARC condition
at z0 with the properties of DdX0(z0) on the sub-
space span{X1(z0), . . . ,Xm(z0)}. To this end, it is shown
in [2, Theorem 3.2] (see also [11, Lemma 5]) that
Liez0({X0,X1, . . . ,Xm}) in fact coincides with the smallest
subspace containing the vectors X1(z0), . . . ,Xm(z0) and



invariant under DdX0(z0). In the following we summa-
rize the constructions in [2] as they will be used in
subsequent sections.
On the set of vector fields on Rn, we define a non-

associative R-algebra structure by asking that

(YX)(z) =DX(z)Y (z)

for vector fields X,Y . For example, from the chain-rule,
a product of order three is

(ZYX)(z) =D(YX)(z)Z(z)

=D(DXY )(z)Z(z)

=D2X(z)(Y (z),Z(z)) +DX(z)DY (z)Z(z).

If F is a family of vector fields, we let Alg(F) denote
the smallest subalgebra of vector fields which contains
F. It is clear that Lie(F) ⊆ Alg(F) for any family F. Let
now X0 be a d-homogeneous vector field, let

B = span{X1(z0), . . . ,Xm(z0)}
and denote by 〈DdX0;B〉 the smallest subspace con-
taining B and invariant under DdX0. A spanning set
for 〈DdX0;B〉 can be constructed as follows. Let S0 =
{X1(z0), . . . ,Xm(z0)} and for k ∈N define

Sk = Sk−1 ∪ {DdX0(v1, . . . ,vd ) : vi ∈ Sk−1}.
Then there exists some 1 ≤ k ≤ n − m such that
〈DdX0;B〉 = span(Sk ). As shown in [2], the following
equalities hold

〈DdX0;B〉 = Algz0({X0,X1, . . . ,Xm})
= Liez0 ({X0,X1, . . . ,Xm})

and as a consequence we record the following theorem.
Theorem 3.1: Let Σ be a control-affine system of the

form (1) where X0 is a d-homogeneous polynomial vector
field and X1, . . . ,Xm are constant vector fields, and let
z0 = 0 ∈ Rn. If d is an odd integer then Σ is STLC from
z0 if and only if 〈DdX0;B〉 = Tz0R

n.
Proof: If Σ is STLC then Liez0({X0,X1, . . . ,Xm}) =

Tz0R
n because the vector fields X0,X1, . . . ,Xm are real

analytic. From Liez0({X0,X1, . . . ,Xm}) = 〈DdX0;B〉 it fol-
lows that 〈DdX0;B〉 = Tz0R

n. Conversely, if 〈DdX0;B〉 =
Tz0R

n then also Liez0({X0,X1, . . . ,Xm}) = Tz0R
n and STLC

of Σ then follows by [5] and the fact that FΣ is an odd
family of vector fields.
We remark that when d is even, Theorem 3.1 is no

longer true. A trivial example is the planar system

ẋ = u

ẏ = x2

which satisfies the LARC at the origin but is clearly not
STLC from the origin.
As stated in the introduction, our interest is in

obtaining controllability conditions for polynomial sys-
tems of the form (1) in terms of the image of B under
DdX0. To this end, in the next section we introduce a
class of high-order tangent vectors to the reachable set
RΣ(z0,T ).

IV. A class of variations

Given a family of vector fields Z = (Z1, . . . ,Zp) and a

smooth mapping τ : R → Rp
≥0, there is an ǫ > 0 such

that the curve ΦZ
z0
◦τ : [0,ǫ]→Rn given by

(ΦZ

z0
◦τ)(s) =Φ

Zp

τp(s)
◦ΦZp−1

τp−1(s)
◦ · · · ◦ΦZ1

τ1(s)
(z0)

is well-defined. The curve s 7→ (ΦZ
z0
◦τ)(s) is based at z0

at s = 0 and consists of points obtained by following
concatenations of the integral curves of Z1, . . . ,Zp in
forward time. The order of the pair (Z ,τ) at z0 is the
smallest integer k ≥ 1 such that

dk

dsk

∣
∣
∣
∣
s=0

ΦZ
z0
(τ(s)) , 0,

provided such an integer exists, and in this case we set

VZ ,τ :=
dk

dsk

∣
∣
∣
∣
s=0

ΦZ
z0
(τ(s)).

Now consider the control system Σ given by (1) and
let Vk

Σ denote for each positive integer k the set of all
VZ ,τ obtained by taking Z = (Z1, . . . ,Zp) ⊂ FΣ , for all
p ≥ 1, and let

VΣ =
⋃

k≥1
V
k
Σ .

By definition, VΣ is a set of high-order tangent vectors
at z0 to the reachable set RΣ(z0,T ). We list the main
properties of VΣ .
Proposition 4.1 ([1], [12]): The following hold:
(i) For each k ≥ 1, the set Vk

Σ is a convex cone.

(ii) For integers ℓ,k ≥ 1, Vk
Σ ⊂ V

kℓ
Σ .

(iii) Properties (i) and (ii) imply that VΣ is a convex cone.
Proposition 4.1 and a degree theory argument can be

used to prove the following (see [1], [12]).
Theorem 4.1: If VΣ = Tz0R

n then Σ is STLC from z0.
A complete understanding of the set of variations VΣ

for general control-affine systems remains a challeng-
ing open problem. For the case of polynomial control-
affine systems of the form (1), our intent is to explicitly
compute a class of these variations to obtain a sufficient
condition for STLC. These variations will be computed
by studying the Taylor series coefficients of the end-
point maps t 7→ ΦZ

z0
(t), and their connection with

labeled rooted trees, by borrowing ideas from Butcher
[7]. As shown in [7], the Taylor series coefficients of an
integral curve of a vector field Z can be expressed as a
sum over so-called elementary differentials associated to
Z . In our case, we are considering concatenations of the
integral curves of a collection of vector fields, whereas
in [7] only a single vector field is considered. Therefore,
for our purposes we need to make a slight extension
to the original definition of an elementary differential
given in [7, pg. 151]. To this end and for later use, we
introduce some terminology from graph theory related
to rooted trees following closely the notation in [7, pg.
137-138].



Let σ be a rooted tree, i.e., a connected graph with no
cycles and with a distinguished vertex called the root.
There is a natural ordering imposed on the vertices of
σ by declaring that the maximum vertex be the root of
σ and if v1 and v2 are vertices of σ then v1 ≤ v2 if v2 is
in the unique path from the root of σ to v1. If v1 ≤ v2
and v1 and v2 form an edge, then v1 is the child of v2
and v2 is the parent of v1. A vertex of a rooted tree
without children is called a leaf. Now let S ⊂ N be a
finite subset containing |S | elements. Let T ∗S denote the
set of rooted trees of order |S | whose vertices are labeled
with the elements of S such that the root is labeled
max(S) and such that for each a ∈ S\{max(S)} the labels
of the vertices on the unique path from the root to the
vertex labeled a forms a decreasing sequence. If σ ∈ T ∗S
and σ1,σ2, . . . ,σd denote the rooted trees obtained by
removing the root of σ and its incident edges, then
the labeling of the vertices of σ induces a set partition
S1,S2, . . . ,Sd of S\{max(S)} satisfying σi ∈ T ∗Si for i =
1, . . . ,d. For this reason, it is convenient to denote such
a rooted tree σ using the notation σ = [σ1,σ2, . . . ,σd ].
We now make the following extension of the definition
of an elemantary differential given in [7, pg. 151].

Definition 4.1: Let S = {a1, . . . ,ak } ⊂ N and let σ =
[σ1, . . . ,σd ] ∈ T ∗S . Let S1, . . . ,Sd denote the partition of
S\{max(S)} induced by the labeling of σ. For a family
Z = {Za1 , . . . ,Zak } of smooth vector fields on Rn the labeled
elementary differential of Z corresponding to σ is the
map Z σ : Rn→ Rn defined by Z σ (z) = Za1(z), if S = {a1},
and

Z σ (z) = (DdZmax(S)(z))(Z σ1 (z), . . . ,Z σd (z)),

if |S | ≥ 2, where σi ∈ T ∗Si for i = 1, . . . ,d.

The following examples illustrate the previous defini-
tion.
Example 4.1: Let S = {4,5,6,7,12} and consider the

left-most labeled rooted tree σ ∈ T ∗S shown in Fig. 1.
Then with Z = {Z4,Z5,Z6,Z7,Z12} one can verify by
definition that

Z σ =D2Z12(DZ7Z4,DZ6Z5)

�

Example 4.2: As another example, suppose that S =
{1,3,5,7,8,11,15,18,21} and let σ ∈ T ∗S denote the right-
most labeled rooted tree shown in Fig. 1. Then with
Z = {Z1,Z3,Z5,Z7,Z8,Z11,Z15,Z18,Z21} one can verify
that

Z σ =DZ21D
2Z18(D

3Z8(Z7,Z3,Z1),DZ15DZ11Z5)

�

Having introduced labeled elementary differentials,
we now give a combinatorial description of the Taylor
series coefficients of the maps t 7→ ΦZ

z0
(t). To this end,

for a given family of vector fields Z = (Z1, . . . ,Zp) on
R
n and a multi-index I = (i1, . . . , ip) ∈ (N0)

p we write

b

bb

bb

12

7

4 5

6

b

b

b

bb b

b

b

b

21

18

8

7 3 1

15

11

5

Fig. 1. Labeled rooted trees for Examples 4.1 and 4.2.

Z
I = Z

i1
1 Z

i2
2 · · ·Z

ip
p for

Z1 · · ·Z1
︸   ︷︷   ︸

i1-times

Z2 · · ·Z2
︸   ︷︷   ︸

i2-times

· · ·Zp · · ·Zp
︸   ︷︷   ︸

ip-times

.

With this notation, it is not hard to show that the Taylor
series expansion of ΦZ

z0
: Rp → Rn about the origin in

R
p is given by

∞∑

ℓ=0

∑

|I |=ℓ
(Z I )(z0)

t
I

I !
(6)

where |I | = i1+· · ·+ip , I ! = i1!i2! · · · ip!, and t
I = t

i1
1 t

i2
2 · · · t

ip
p

for t = (t1, . . . , tp) ∈ Rp . If |I | = ℓ and we let Wj = Z1 for
j = 1, . . . , i1, Wi1+j = Z2, for j = 1, . . . , i2, etc., and finally
let Wℓ−ip+j = Zp for j = 1, . . . , ip , it is clear that

Z
I (z0) = (Z

i1
1 Z

i2
2 · · ·Z

ip
p )(z0) = (W1W2 · · ·Wℓ)(z0).

Hence, in order to understand the combinatorial struc-
ture of the Taylor series coefficients Z I (z0) we need only
understand the combinatorial structure of products
of the form (W1W2 · · ·Wℓ)(z0). This was done by J.C.
Butcher [7, pg. 153-154] in the study of high-order
Runge-Kutta methods for ordinary differential equa-
tions, and we summarize his findings in the following
theorem.
Theorem 4.2 ([7]): Let W = (W1, . . . ,Wℓ) be a family of

smooth vector fields on Rn and let S = {1, . . . , ℓ}. Then

(W1W2 · · ·Wℓ)(z) =
∑

σ∈T ∗S

W σ (z).

for all z ∈ Rn.
We illustrate Theorem 4.2 with the following exam-

ple.
Example 4.3: Let S = {1,2,3,4} and let W1, . . . ,W4 be

smooth vector fields on Rn. Then W3W4 =DW4W3 and
therefore, by the chain-rule

W2W3W4 =D(W3W4)(W2)

=D(DW4W3)(W2)

=D2W4(W3,W2) +DW4DW3W2.

Therefore, by the chain-rule, W1W2W3W4 is equal to

D3W4(W3,W2,W1) +D2W4(DW3W1,W2)

+D2W4(W3,DW2W1) +D2W4(DW3W2,W1)

+DW4D
2W3(W2,W1) +DW4DW3DW2W1.

(7)
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Fig. 2. The elements in the set T ∗S for S = {1,2,3,4}.
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Fig. 3. The only binary rooted trees of order ℓ = 7.

On the other hand, there are a total of six elements in
the set T ∗S , as shown in Fig. 2. By inspection, there is a
one-to-one correspondence with each σ ∈ T ∗S and each
elementary differential appearing in (7). �

Theorem 4.2 can be used to obtain a key simplifi-
cation in the structure of the Taylor series expansion
of t 7→ ΦZ

z0
when Z ⊂ FΣ and where Σ is a control-

affine system (1) with an d-homogeneous polynomial
drift vector field X0 and constant control-input vector
fields. In the following, by a proper d-ary tree we mean
a rooted tree in which every vertex that is not a leaf has
exactly d children. For example, the only proper 2-ary
trees, i.e., proper binary trees, having ℓ = 7 vertices are
displayed in Fig. 3. We now state the following useful
result whose proof is omitted due to space limitations.

Lemma 4.1: Let ℓ ≥ 2 be an integer and let W =
(W1, . . . ,Wℓ) be a family of smooth vector fields such that
Wj = X0 + Yj , where X0 is a d-homogeneous polynomial
vector field with d ≥ 2 and Yj are non-zero constant vector
fields. Let S = {1, . . . , ℓ} and let ρd(T

∗
S ) denote the subset of

proper d-ary trees contained in T ∗S . If σ ∈ T ∗S is not a proper
d-ary tree then W σ (z0) = 0. Consequently

(W1W2 · · ·Wℓ)(z0) =
∑

σ∈ρd (T ∗S )
W σ (z0). (8)

In the next section, Lemma 4.1 will be used to
determine the order of a pair (Z ,τ) and the explicit
expression for the resulting tangent vector VZ ,τ. This is,
in general, a difficult and tedious task and is usually
done by using the Campbell–Baker–Hausdorff (CBH)
formula, see for instance [9]. On the other hand, it is
the opinion of the author that the combinatorial nature
of Lemma 4.1 could alleviate this difficulty, especially
at high-orders where the CBH formula becomes in-
tractable.

V. Main Theorem

Consider the control-affine system (1) with X0 a d-
homogeneous polynomial vector field and let Yu =
∑m

i=1uiXi for u ∈ U . Let P0 = {Yu(z0) : u ∈ U} and
iteratively define the sets

Pk+1 = {DdX0(v, . . . ,v) : ±v ∈ Pk} (9)

for k ∈ N0. The main result of this paper is the
following theorem.
Theorem 5.1: Consider the polynomial control-affine

system

Σq :

{

ẋ = u

ẏ = q1(x) + q2(y)

where the state variable is z = (x,y) ∈ Rm ×Rr , u ∈ Rm is
the control variable, and q1 : Rm → Rr and q2 : Rr → Rr

are homogeneous quadratic maps. Define the sets Pk+1 as
in (9). If

conv+(P0) + conv+(P1) + conv+(P2) = R
m ×Rr (10)

then Σq is STLC from z0 = (0,0) ∈Rm ×Rr .
We give only a sketch of the proof due to space

limitations.
Sketch of proof to Theorem 5.1. Let us denote by X0 the
drift vector field and X1, . . . ,Xm the control-input vector
fields defined by the control-affine system Σq. For u ∈U
let Zu = X0 +Yu where we recall that Yu =

∑m
i=1 uiXi .

First, it is clear that

V
1
Σ = conv+(P0).

Next, a direct computation using (6) gives that

Φ
Z−u
s ◦ΦZu

s (z0) = 2D2X0(Yu (z0),Yu (z0))
s3

3!
+ o(s3)

and therefore 2D2X0(Yu (z0),Yu (z0)) ∈ V
3
Σ . By Proposi-

tion 4.1, we conclude that D2X0(Yu(z0),Yu (z0)) ∈ V
3
Σ ,

and since u ∈U was arbitrary and P0 = −P0 by symme-
try of U , it follows that P1 ⊆ V

3
Σ . Therefore conv+(P1) ⊆

V
3
Σ .
Now suppose that ±v ∈ P1. By definition, there ex-

ists u, ū ∈ U such that v = D2X0(Yu ,Yu ) and −v =
D2X0(Yū ,Yū ), and therefore,

Φ
Z−u
s ◦ΦZu

s (z0) = 2v
s3

3!
+ o(s3)

Φ
Z−ū
s ◦ΦZū

s (z0) = −2v
s3

3!
+ o(s3).

Consider the curve

α(s) = Φ
Z−ū
s Φ

Zū
s Φ

Z−u
s Φ

Zu
s (z0).

By construction [1], the derivatives of α at s = 0 of
orders 1,2,3 all vanish, so the first possibly non-zero
derivative of α at s = 0 is of order ℓ = 4. From
Lemma 4.1, the only possibly non-zero elementary dif-
ferentials contributing to each term of the Taylor series
of α are those associated with proper binary trees.
There are no proper binary trees of orders ℓ = 4 or ℓ = 6,
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Fig. 4. The only binary rooted trees of order ℓ = 5.

and thus α(4)(0) = α(6)(0) = 0. A direct computation
of the derivative α(5)(0) shows that it depends on the
mixed derivatives of X0(x,y) = (0,q1(x) + q2(y)), that is,
on derivatives that depend explicitly on both x and y.
Since X0 has no mixed terms in x and y, α(5)(0) = 0.
One then computes, using the combinatorial formula
(8), that α(7)(0) is given explicitly by

α(7)(0) = 460D2X0(D
2X0(Yu ,Yu ),D

2X0(Yu ,Yu )).

Hence D2X0(v,v) ∈ V7
Σ and since v ∈ P1 was arbitrary

this shows that P2 ⊂ V
7
Σ and therefore conv+(P2) ⊂ V

7
Σ .

By definition V
k
Σ ⊂ VΣ for all k ∈N, and therefore

conv+(P0) + conv+(P1) + conv+(P2) ⊆ VΣ .

Assumption (10) and Theorem 4.1 completes the proof.
�

We now give an example of the applicability of
Theorem 5.1 when known sufficient conditions fail, e.g.
[15, Theorem 7.3].

Example 5.1: Consider the system

ẋ1 = u1

ẋ2 = u2

ẋ3 = u3

y1 = 2y21 − y22 − y23 + x21 − x22
ẏ2 = y21 − 2y22 + x21 − x22
ẏ3 = y22 − y23 + x22 − 2x23

(11)

so that x = (x1,x2,x3) ∈R3, y = (y1,y2,y3) ∈R3, and

q1(x) = (x21 − x22,x21 − x22,x22 − 2x23)
q2(y) = (2y21 − y22 − y23 ,y21 − 2y22 ,y22 − y23 ).

Let X0,X1,X2,X3 denote the system vector fields de-
fined by (11) and let U = [−1,1]3 so that U is sym-
metric. Let u = (1,0,0), ū = (0,1, 1√

2
), and ũ = (0,0, 1√

2
),

and u′ = (1,1,0). Now, recalling that D2X0(Yu ,Yu ) =
2!X0(Yu ), we have that

D2X0(Yu ,Yu ) = (0,0,0,2,2,0)

D2X0(Yū ,Yū ) = (0,0,0,−2,−2,0)
D2X0(Yũ ,Yũ ) = (0,0,0,0,0,−2)
D2X0(Yu′ ,Yu′ ) = (0,0,0,0,0,2)

Therefore,

±(0,0,0,2,2,0),±(0,0,0,0,0,2) ∈ P1.

Now let v1 = (0,0,0,2,2,0) and v2 = (0,0,0,0,0,2). Then

D2X0(v1,v1) = (0,0,0,8,−8,8)
D2X0(v2,v2) = (0,0,0,−8,0,−8)

and therefore

v3 = (0,0,0,8,−8,8), v4 = (0,0,0,−8,0,−8) ∈ P2.

One can verify that {±X1,±X2,±X3,±v1,±v2,v3,v4}
forms a positive basis for R6 and therefore condition
(10) is satisfied. By Theorem 5.1, (11) is STLC from the
origin z0 = 0 ∈R6.
On the other hand, the system in consideration fails

to satisfy [15, Theorem 7.3]. Indeed, according to [15,
Theorem 7.3], the Lie bracket

β = [X1, [X1,X0]] + [X2, [X2,X0]] + [X3, [X3,X0]]

must be expressible at z0 as a linear combination
of lower order brackets. One directly computes that
β(z0) = (0,0,0,0,0,−2). It is clear that any bracket
of order lower than β when evaluated at z0 be-
longs to the subspace span{X1(z0),X2(z0),X3(z0)} since
[Xi ,X0](z0) = 0 for any i ∈ {1,2,3}. Clearly, β(z0) <
span{X1(z0),X2(z0),X3(z0)} and so one cannot deduce
STLC for this system from [15, Theorem 7.3]. �
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