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Abstract— In this paper, we revisit the controllability problem
for the Laplacian based leader-follower dynamics with the
aim of addressing some fundamental gaps within the existing
literature. We introduce a notion of graph controllability classes
for Laplacian based leader-follower control systems, namely,
the classes of essentially controllable, completely uncontrollable,
and conditionally controllable graphs. In addition to the topol-
ogy of the underlying graph, our controllability classes rely on
the richness of the set of control vectors. The particular focus
in this paper is on the case where this set is chosen as the set
of binary vectors, which captures the case when the control
signal is broadcasted by the leader nodes. We first prove that
the class of essentially controllable graphs is a strict subset of
the class of asymmetric graphs. We provide a non-trivial class
of completely uncontrollable asymmetric graphs, namely the
class of large block graphs of Steiner triple systems. Several
constructive examples demonstrate our results.

I. INTRODUCTION

In recent years, there has been a surge of activity within

the control theory community to understand how the network

structure of multi-agent systems affects the fundamental

properties of controllability and stabilizability. With regards

to controllability, the growing body of literature has fo-

cused on the Laplacian based consensus dynamics, see for

instance [1], [2], [3], [4], [5], [6], and references therein.

Specifically, starting with a Laplacian consensus algorithm,

a subset of the agents are classified as leaders and act as

control agents that can change the dynamics of the network.

The remaining agents, called the followers, are indirectly

controlled by the leaders via the connectivity of the network.

Most of the effort in the current literature has focused

on obtaining graph theoretic conditions under which such

systems are uncontrollable. For example, in [2] it is shown

that if leader nodes are chosen that preserve a non-trivial

graph symmetry then the resulting system is uncontrollable.

In this paper, we introduce graph controllability classes

for the Laplacian leader-follower dynamics over undirected

graphs, namely, essentially controllable, completely uncon-

trollable, and conditionally controllable graphs. In addition

to the topology of the underlying graph, our graph control-

lability classes rely on the richness of the set of control

vectors. Essentially controllable graphs are controllable for

any choice of non-trivial control vectors, completely un-

controllable graphs are uncontrollable for any choice of the
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control vector, and finally, conditionally controllable graphs

are controllable for a strict subset of the control vectors. The

particular focus in this paper is on the case where the control

set is the binary vectors. The motivation for this choice is to

capture the situation where the control signal is broadcasted

by the leader nodes. Moreover, it includes as a special case

the scenario considered in [2]. We prove that essentially

controllable graphs are necessarily asymmetric. Notably,

we show that the example of the 6-graph provided in the

literature [2] to demonstrate that asymmetry is not necessary

for uncontrollability, is in fact essentially controllable; thus

this is not an appropriate example of such phenomenon.

We next focus on the class of completely uncontrollable

graphs. We provide an explicit class of graphs, namely,

the class of block graphs of Steiner triple systems, that

are asymmetric yet completely uncontrollable. This result

indicates that characterizing graph uncontrollability via graph

symmetries targets a narrow class. Given that having a

repeated Laplacian eigenvalue results in complete uncontrol-

lability, we prove that completely uncontrollable graphs on

four and five vertices are completely uncontrollable if and

only if they have a repeated eigenvalue. Numerical evidence

suggests that the same result holds for graphs of orders six

and seven. However, we provide explicit examples of graphs

on eight and nine vertices that are completely uncontrollable

and yet have simple eigenvalues. Throughout the paper,

several examples demonstrate the results.

II. PRELIMINARIES

In this section, we establish notation and basic notions

from graph theory, and state a result on the controllability of

linear systems when the system matrix is diagonalizable.

A. Graph theory

Our notation from graph theory is standard, see for in-

stantce [7], [8]. By a graph we mean a pair G = (V , E)
consisting of a finite vertex set V and an edge set E ⊆
[V ]2 := {{v, w} | v, w ∈ V}. The order of the graph G
is the cardinality of its vertex set V . The neighbors of v ∈ V
is the set Nv := {w ∈ V | {v, w} ∈ E} and the degree

of v, denoted dv , is cardinality of Nv , that is, dv := |Nv|.
A graph G is connected if there is a path between any pair

of vertices, that is, given a pair of vertices v and w there

is a sequence of distinct vertices (v0, v1, . . . , vk) such that

{vi−1, vi} ∈ E and v0 = v and vk = w.

Henceforth, without loss of generality, we let V =
{1, . . . , n}, where n is the order of G. The adjacency matrix

of G is the n×n matrix A defined as Aij = 1 if {i, j} ∈ E
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and Aij = 0 otherwise, where Aij denotes the entry of A

in the ith row and jth column.

We denote by D the degree matrix of G, i.e., the diagonal

matrix whose ith diagonal entry is di. The Laplacian matrix

of G is given by

L = D−A.

The Laplacian matrix L is symmetric and positive semi-

definite, and thus the eigenvalues of L can be ordered

λ1 ≤ λ2 ≤ · · · ≤ λn. The ones vector 1n := [1 1 · · · 1]T

is an eigenvector of L with eigenvalue λ1 = 0, and if G
is connected then λ1 = 0 is a simple eigenvalue of L. We

assume throughout that G is connected so that 0 < λ2.

A mapping ϕ : V → V is an automorphism of G if it is

a bijection and {i, j} ∈ E implies that {ϕ(i), ϕ(j)} ∈ E .

An automorphism ϕ of G induces a linear transformation on

R
n, denoted by Pϕ or just P when ϕ is understood, whose

matrix representation in the standard basis is a permutation

matrix, i.e., as a linear mapping ϕ acts as a permutation

on the standard basis {e1, . . . , en} of Rn. It is well known

and straightforward to show that ϕ is an automorphism of

G if and only if PA = AP. Moreover, an automorphism

P preserves degree of vertices and therefore di = dϕ(i) for

every i ∈ {1, 2, . . . , n}, in other words PD = DP, and

consequently PL = LP.

A graph is called k-regular if all its vertices have degree

k ∈ N. A k-regular graph G = (V , E) is called strongly

regular, denoted by SGR(n, k, λ, µ), if there exists λ, µ ∈ N

such that

i) |Nv ∩ Nu| = λ, for every v ∈ V and every u ∈ Nv;

ii) |Nv ∩ Nu| = µ, for every v ∈ V and every u /∈ Nv .

It is known that strongly regular graphs have exactly three

eigenvalues [9]. A subclass of strongly regular graphs, the

so-called block graph of a Steiner triple system, plays an

important role in one of our main results.

Definition 2.1: (Steiner triple systems): A (t, k, n)-
Steiner triple system of order n, denoted by STS(t, k, n),
is a set S of n elements together with a set of k-element

subsets of S (called blocks) such that any t elements of the

set S is contained exactly in one block.

A Steiner triple system of order n > 1 exists if and only if

n = 1 or 3(mod 6) [10]. The block graph of a Steiner triple

system STS(t, k, n) is the graph GSTS with the k blocks

as vertices, and where two blocks are adjacent when they

have nonempty intersection. By definition, such a graph is

strongly regular. The first nontrivial Steiner triple system is

the Fano plane, which has 7 blocks, each containing 3 points,

and every pair of points belongs to a unique line.

B. Linear Controllability and Diagonalizability

Given a matrix F ∈ R
n×n and vector b ∈ R

n, we denote

by 〈F;b〉 the smallest F-invariant subspace containing b.

It is well-known that 〈F;b〉 = span{Fk
b | k ∈ N0}, and

that if dim(〈F;b〉) = k + 1 then {b,Fb, . . . ,Fk
b} is a

basis for 〈F;b〉. The pair (F,b) is called controllable if

dim(〈F;b〉) = n.

The following result characterizes the controllability of

single-input linear systems (F,b) when F is diagonalizable.

Proposition 2.1: (Controllability and eigenvalue multi-

plicity): Let F ∈ R
n×n and suppose that F is diagonalizable.

The following hold:

(i) For any open set B ⊂ R
n, the pair (F,b) is uncontrol-

lable for every b ∈ B if and only if F has a repeated

eigenvalue.

(ii) Suppose that F has distinct eigenvalues and let U

be a matrix whose columns are linearly independent

eigenvectors of F. If b ∈ R
n then the dimension of

〈F;b〉 is equal to the number of nonzero components

of v = U
−1

b. In particular, (F,b) is controllable if

and only if no component of v is zero.

The proof of (i) follows from the properties of the determi-

nant and for the proof of (ii) see for instance [1].

III. PROBLEM STATEMENT AND PRELIMINARY RESULTS

Let G = (V , E) be a graph with vertex set V =
{1, 2, . . . , n}. The Laplacian dynamics on G is the linear

system

ẋ(t) = −Lx(t),

where x ∈ R
n and t ∈ R. Suppose that a subset of

the vertices Ṽ ⊂ V are actuated by a single control u :
[0,∞) → R and consider the resulting single-input linear

control system. Explicitly, let b = [b1 b2 · · · bn]
T ∈ {0, 1}n

be the binary vector such that Ṽ = Vb := {i ∈ V | bi = 1},

and consider the single-input linear control system

ẋ(t) = −Lx(t) + bu(t). (1)

The vertices Vb are seen as control or leader nodes and

influence the remaining follower nodes V\Vb through the

control signal u(·) and the connectivity of the network. The

motivation behind the set of binary control vectors is that it

captures the scenario of when an external agent connected to

the nodes Vb is unable to distinguish between its followers.

Hence, all the followers receive the same control input from

the leader, i.e., the control signal is broadcasted. The reason

for choosing the Laplacian dynamics (1) is that it serves as a

benchmark problem for studying distributed control systems;

nevertheless, the ideas that will be developed in this paper

can be extended to other classes of sparse positive systems.

We also note that the approach taken in [2] is a special case

of the problem we consider here (see Remark 3.1).

From a controls design perspective, it is desirable to select

the leader nodes so that the pair (L,b) is controllable. For

example, as a particular case of Proposition 2.1(ii), the choice

of b = 1n results in a controllable pair (L,b) if and only if

n = 1, since 1n is orthogonal to every other eigenvector

of L (and of course L1n = 0n). In fact, an immediate

consequence of Proposition 2.1 for the Laplacian dynamics

is the following result.

Corollary 3.1 ([1]): (Necessary and sufficient condition

for controllability of Laplacian dynamics): Consider the

controlled Laplacian dynamics (1) with b ∈ R
n and assume

that L has no repeated eigenvalues. Then the pair (L,b)
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is controllable if and only if b is not orthogonal to any

eigenvector of L.

Although Corollary 3.1 gives a characterization of the con-

trol vectors b that result in controllability, the problem that

we consider is in obtaining graph theoretic characterizations

of such b’s. One such characterization was obtained in [2]

(see also [11, Lemma 1.1]) in terms of the automorphism

group of the graph G. To this end, following [2], we say

that b ∈ {0, 1}n is leader symmetric if there exists a non-

trivial automorphism ϕ : V → V of G that leaves the set Vb

invariant, i.e., ϕ(Vb) = Vb. The following result links leader

symmetry and uncontrollability.

Proposition 3.1 ([2]): (Leader symmetry and uncon-

trollability): Consider the controlled Laplacian dynamics (1)

with b ∈ {0, 1}n. If b is leader symmetric then (L,b) is

uncontrollable.

As shown in [2, Proposition 5.9], leader symmetry is not a

necessary condition for uncontrollability. Figure 1(a) depicts

the graph on n = 6 vertices that is used in [2] to show this

fact. Unfortunately, this example is not illuminating because

the leader nodes are chosen so that b = 1n, i.e., every node

is actuated. By the remark made above, unless n = 1, this

choice always results in uncontrollability, regardless of the

graph topology. Furthermore, an interesting fact is true for

the graph of Figure 1(a); the only b’s for which this graph

is uncontrollable are the trivial cases b = 0n or b = 1n.

We call such graphs essentially controllable and we will

return to them in Section IV. Let us give an example of

an asymmetric graph having many non-trivial b’s resulting

in uncontrollability.

Example 3.1: (Leader symmetry is not necessary for

uncontrollability): Consider the graph in Figure 1(b) with

n = 6 vertices. This graph is asymmetric, see for in-

(a) (b) (c)

Fig. 1. (a) The example of [2], (b) an asymmetric graph on n = 6 vertices
having 14 binary vectors b resulting in uncontrollable Laplacian dynamics,
and (c) a graph for which any binary vector b results in uncontrollability.

stance [12]. There are 14 of the 2n − 2 = 62 non-trivial

choices of b that makes (1) uncontrollable, namely:

b1 = (1, 1, 1, 0, 0, 0) b2 = (0, 0, 0, 1, 1, 1)

b3 = (1, 1, 0, 1, 0, 0) b4 = (0, 0, 1, 0, 1, 1)

b5 = (0, 1, 1, 1, 0, 0) b6 = (1, 0, 0, 0, 1, 1)

b7 = (0, 1, 0, 0, 1, 0) b8 = (1, 0, 1, 1, 0, 1)

b9 = (1, 0, 1, 0, 1, 0) b10 = (0, 1, 0, 1, 0, 1)

b11 = (1, 0, 0, 1, 1, 0) b12 = (0, 1, 1, 0, 0, 1)

b13 = (0, 0, 1, 1, 1, 0) b14 = (1, 1, 0, 0, 0, 1)

The control vectors b7 and b8 result in a 2-dimensional

controllable subspace, while the other control vectors all

result in a 5-dimensional controllable subspace. �

The motivating example above, and more importantly that

asymmetry is typical in finite graphs [12], suggests that

leader symmetry, although important, is a coarse topological

graph controllability obstruction. To better understand how

the topology of the graph affects controllability, in the next

section we introduce graph controllability classes, present

some preliminary characterizations of their properties, and

present some examples.

Remark 3.1: (Comparison with [2]): Let us describe the

approach taken in [2] and how it relates to ours. We note

that our approach is also adopted in [5], [6]. In [2], one

begins with a Laplacian based dynamics ẋ = −Lx, selects a

leader node, say i ∈ {1, 2, . . . , n}, and considers the reduced

system of followers actuated by node i. Explicitly, following

[2] let Lf ∈ R
(n−1)×(n−1) be the matrix obtained by deleting

the ith row and ith column of L, and let bf ∈ R
n−1 be

column vector obtained by removing the ith entry of the ith
column of L. The reduced system of followers considered in

[2] is ż = −Lfz−bfu. It is not hard to show that the system

(Lf ,bf ) is controllable if and only if (L, ei) is controllable.

Indeed, the dynamic extension

ż = −Lfz− bfξ,

ξ̇ = v,

is controllable if and only if (Lf ,bf ) is controllable. Letting

v = −b
T
f z − diξ + u, we see that the dynamic extension

is feedback equivalent to (L, ei). Hence, in relation to the

problem we consider in this paper, the approach in [2] is

concerned with the controllability of (L,b) in the restricted

case that b ∈ {e1, e2, . . . , en} ⊂ {0, 1}n. We note that the

graph in Example 3.1 is such that (L, ei) is controllable for

every ei ∈ {e1, . . . , en}, yet as shown in the example, fails

to be controllable for some b ∈ {0, 1}n.

IV. GRAPH CONTROLLABILITY CLASSES

In this section, we introduce controllability classes for

the controlled Laplacian dynamics (1). We assume that the

control vectors may be chosen from a set B ⊂ R
n, and

thus controllability, or lack thereof, is with respect to the

set B. This naturally results in not just controllable and

uncontrollable systems but also on partially or conditionally

controllable systems.

Definition 4.1: (Graph controllability classes): Let G be

a connected graph with Laplacian matrix L and let B ⊂ R
n

be a non-empty set. Then G is called

(i) essentially controllable on B if (L,b) is controllable

for every b ∈ B\ ker(L);
(ii) completely uncontrollable on B if (L,b) is uncontrol-

lable for every b ∈ B;

(iii) conditionally controllable on B if it is neither essentially

controllable nor completely uncontrollable on B.

In this paper we are concerned with controllability classes

on the control set B = {0, 1}n. Hence, when not explicitly

stated, we simply call a graph G essentially controllable

(conditionally controllable, or completely uncontrollable) if
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G is essentially controllable (conditionally controllable, or

completely controllable) on {0, 1}n.

Example 4.1: (Graph controllability classes): According

to Definition 4.1, the graph in Figure1(a) is essentially

controllable, while the graph in Figure1(b) is conditionally

controllable. Finally, it is easy to verify that the graph in

Figure1(c) is completely uncontrollable on {0, 1}6. •

V. GRAPH-THEORETIC CHARACTERIZATION OF

CONTROLLABILITY CLASSES

In this section, we present preliminary results on charac-

terizing the class of essentially controllable and completely

uncontrollable graphs. Before we state our main results, we

first provide a useful property of controllability under binary

control vectors.

A. Invariance of Controllability Under Binary Complements

The reader may have noticed that the binary control

vectors listed in Example 3.1 come in complementary pairs

(compare each vector on the left column with the corre-

sponding vector on the right). To be more precise, given

b ∈ {0, 1}n we let

b = 1n − b

be the complement of b. With this notation we have the

following result.

Proposition 5.1: (Controllability and binary comple-

ments): Let n ≥ 2 and consider the controlled Laplacian

dynamics (1) with b ∈ {0, 1}n. Then the pair (L,b) is

controllable if and only if the pair (L,b) is controllable. In

fact, the controllability matrices of (L,b) and (L,b) have

the same rank provided b /∈ {1n,0n}.

Proof: We give only a sketch of the proof. Let b ∈
{0, 1}n\{1n,0n}, let v = U

T
b = [v1 · · · vn]

T , and let

v̄ = U
T
b = [v̄1 · · · v̄n]

T . The claim follows by noticing

that

v̄ = n√
n
e1 − v. (2)

and using Proposition 2.1(ii).

For computational purposes, it is worth mentioning the

following immediate consequence of the previous result.

Corollary 5.1: (Uncontrollable subspace has even car-

dinality): If n ≥ 2 then the cardinality of the set {b ∈
{0, 1}n | (L,b) is uncontrollable} is even.

B. Asymmetry of essentially controllable graphs

In this section, we give a necessary condition for essen-

tial controllability. The condition depends on the following

auxiliary result.

Lemma 5.1: (Order of the non-identity automor-

phisms [7]): If all of the eigenvalues of L are simple then

every non-identity automorphism of G has order two.

Proof: The proof of the claim when L is replaced

by the adjacency matrix A is given in [7, Theorem 15.4].

However, the proof for the case of L is identical because if

P is an automorphism of G then P commutes with both the

adjacency matrix A and the degree matrix D, and therefore

P also commutes with L.

Proposition 5.2: (Essentially controllable graphs are

asymmetric): An essentially controllable graph on {0, 1}n

is asymmetric.

Proof: Let G be an essentially controllable graph on

{0, 1}n. Then necessarily L must have distinct eigenvalues

and therefore, by Lemma 5.1, every non-identity automor-

phism of G has order two. Assume by contradiction that G
has a non-trivial automorphism group and let P be a permu-

tation matrix representing a non-identity automorphism of

G. Since P has order two, i.e., P2 = In×n, there exists two

distinct standard basis vectors ei and ej such that Pei = ej

and Pej = ei. Put b = ei + ej . Then b is clearly invariant

under P, i.e., Pb = b. Thus, b is leader symmetric and

therefore, by Proposition 3.1, (L,b) is uncontrollable, which

is a contradiction. This completes the proof.

According to Proposition 5.2, and since any asymmetric

graph has at least six vertices [12], any essentially control-

lable graph also has at least six vertices. The condition given

in Proposition 5.2 is, however, clearly only necessary; the

graph in Figure 1(b) is an example of an asymmetric graph

with six nodes which is not essentially controllable.

Example 5.1: (Essentially controllable graphs on

{0, 1}n): Exactly four of the eight asymmetric graphs on

six vertices are essentially controllable; these graphs are

shown in Figure 2.

(a) (b) (c)

(d)

Fig. 2. All essentially controllable graph with six vertices.

The class of essentially controllable graphs are interesting

for various reasons. First, this class is important from a

design perspective because, except for the trivial inputs of

0n and 1n, controllability is independent of the subset of

nodes that receive the control inputs. This is useful when

this is unknown a priori such as in the context where

the control inputs are broadcasted. Another important fact

about essentially controllable graphs is that the so-called

minimal controllability problem is solvable [13] for this class

of graphs. Following [13], let B ⊂ R
n and consider the

dynamics (1) for fixed b ∈ B. We say that (1) is minimally

controllable if b has the fewest number of nonzero entries

among all vectors b̃ ∈ B such that (L, b̃) controllable. It

is shown in [13] that it is in general intractable to even

approximate the number of zeros in the vector b that leads

to minimal controllability. Nevertheless, given that the class

of essentially controllable graphs are controllable using any

non-trivial vector in {0, 1}n, the minimal controllability
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problem is solvable for (1) on all essentially controllable

graphs, and the sparsest b ∈ {0, 1}n has (n − 1) nonzero

entries.

We are not aware of any algorithm producing essentially

controllable graphs. Given that these graphs constitute a

strict subset of asymmetric graphs, and that it is NP-hard

to verify if a graph has non-trivial automorphisms [14],

we are not aware if the problem of generating essentially

controllable graphs of order n is computationally feasible.

Another interesting problem is to investigate how the number

of essentially controllable graphs grows with respect to the

number of asymmetric graphs.

C. The class of completely uncontrollable graphs

In this section, we study the class of completely uncontrol-

lable graphs. Our first result illustrates that the intersection

of the class of completely uncontrollable graphs and asym-

metric graphs is nonempty and large.

1) Uncontrollability and asymmetric topologies: Here, we

provide an explicit class of arbitrarily large graphs that

are asymmetric and completely uncontrollable. This demon-

strates that having a trivial graph automorphism group does

not eliminate the possibility of complete uncontrollability. To

the best of our knowledge, this important fact is unknown

in the literature on network controllability primarily because

most existing results deal with the characterization of uncon-

trollability via graph symmetries.

Theorem 5.1: (A class of completely uncontrollable

asymmetric graphs): For any N ≥ 1 there exists a

connected and asymmetric graph of order n ≥ N that is

completely uncontrollable.

Proof: The class of block graphs of Steiner triple

systems, see Definition 2.1, are almost always asymmet-

ric [15, Theorem 1]. Since any block graph of a Steiner

triple system is strongly regular, its adjacency matrix only

has three distinct eigenvalues and hence, by regularity, its

Laplacian also has only three distinct eigenvalues. The result

is then a direct consequence of Proposition 2.1 (i).

The completely uncontrollable graphs in Theorem 5.1 have

a repeated eigenvalue. In the following section we investigate

whether this is a general necessary condition for complete

uncontrollability.

2) An algebro-geometric characterization of completely

uncontrollable graphs: If F ∈ R
n×n is diagonalizable then

by Proposition 2.1(i), for any open subset B ⊂ R
n the pair

(F,b) is uncontrollable for every b ∈ B if and only if F has

a repeated eigenvalue. When B is replaced by a discrete set,

such as B = {0, 1}n, the condition of a repeated eigenvalue

is no longer necessary for uncontrollability. For example, the

symmetric matrix

F =




2 0 −1 −1
0 2 −1 −1

−1 −1 5 −3
−1 −1 −3 5




has distinct eigenvalues λ1 = 0, λ2 = 2, λ3 = 4, λ4 = 8,

and it is readily verified that (F,b) is uncontrollable for

every b ∈ {0, 1}4. Of course, F is not the Laplacian

matrix of any (undirected) graph. The problem of complete

uncontrollability for the Laplacian leader-follower dynamics

can be casted as a geometric problem. To do so, we need

the following definition.

Definition 5.1: (B-anniliators): Let B ⊂ R
n and let γ =

{u1, . . . ,uk} ⊂ R
n be linearly independent. We say that γ

is a B-anniliator or that it annihilates B if for each b ∈ B
there exists uj ∈ γ that is orthogonal to b, that is, uT

j b = 0.

Consider now the following problem.

Problem 5.1: (Algebro-geometric formulation of com-

plete uncontrollability on {0, 1}n): Does there exist an

orthonormal basis γ = {u1, ...,un} for R
n, with u1 =

1√
n
1n, such that

UC1. γ is a {0, 1}n-annihilator,

UC2. γ is a set of eigenvectors of the Laplacian matrix L

of a connected graph, and

UC3. L has no repeated eigenvalues?

In dimensions n = 2 and n = 3, it is not hard to show that

no basis γ exists that satisfies even UC1. However, for n = 4
and n = 5, we have proved that completely uncontrollable

graphs have a repeated eigenvalue.

Proposition 5.3: (Completely uncontrollable graphs

with four and five vertices): All connected and completely

uncontrollable graphs on {0, 1}4 and {0, 1}5 have a repeated

eigenvalue.

Our numerical computations show that for n = 6 and n = 7,

complete uncontrollability is fully characterized by having a

repeated eigenvalue. Surprisingly, this is no longer the case

for n ≥ 8. In Figure 3, we display two such graphs on n = 8
vertices and one for n = 9 vertices. Needless to say, the class

(a) (b) (c)

Fig. 3. (a) and (b) show two completely uncontrollable graphs with n = 8

vertices and (c) shows a completely uncontrollable graphs with n = 9

vertices, all with distinct eigenvalues.

of completely uncontrollable graphs with distinct eigenvalues

form a very special class of graphs and have the potential

to shed light on new necessary conditions for controllability

and will be pursued in a future paper.

Interestingly, the proof of Proposition 5.3 identifies a set of

three vectors that alone are {0, 1}n-annihilators. For n ≥ 4,

define

v1 =
[
1 −1 0 0 0 · · · 0

]T
,

v2 =
[
0 0 1 −1 0 · · · 0

]T
,

v3 =
[
1 1 −1 −1 0 · · · 0

]T
,

(3)

We have the following.
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Proposition 5.4: (A set of {0, 1}n-annihilator vectors):

Let n ≥ 4 and consider the set β = {v1,v2,v3} where

v1,v2,v3 are given by (3). Then β is a {0, 1}n-annihilator.

Proof: Any vector b ∈ {0, 1}n having a zero in

components 1 through 4 is clearly orthogonal to v1 (and v2,

and v3). Therefore, we need only consider the {0, 1} vectors

having possibly nonzero entries in components 1, 2, 3, and/or

4. There are
∑4

k=1

(
4
k

)
= 15 possible cases to consider, and

the details are left to the reader.

Using Proposition 5.4 we can identify a class of non-

regular completely uncontrollable graphs.

Theorem 5.2: (Large uncontrollable graphs): For each

n ≥ 6, the set of graphs of order n that are not regular and

completely uncontrollable is non-empty.

Proof: We give a sketch of the proof. For n = 6,

consider the graph in Figure 4(a) and denote its Laplacian

matrix by L6, which has linearly independent eigenvectors

u1 = 1√
6
1
T
6 ,

u2 = 1√
30

[
5 −1 −1 −1 −1 −1

]T
,

u3 = 1√
2

[
0 0 −1 0 0 1

]T
,

u4 = 1√
2

[
0 0 0 1 −1 0

]T
,

u5 = 1
2

[
0 0 1 −1 −1 1

]T
,

u6 = 1√
20

[
−4 0 1 1 1 1

]T
.

After a permutation of the indices, we can apply Propo-

sition 5.4 to the set {u3,u4,u5} to conclude that it is a

{0, 1}6-annihilator. Now let n ≥ 6 and extend the graph in

Figure 4(a) to the graph G shown in Figure 4(b), where Gn−6

is any connected graph on n − 6 vertices. By construction,

1

2

34

6 5

(a)

3

4

6

5

2 1 7

Gn−6

(b)

Fig. 4. A {0, 1}n-annihilator graph with six verices (a), and its extension
to a {0, 1}n-annihilator graph of any size (b).

the Laplacian of G can be decomposed as

L =

[
L6 E

E
T

Ln−6

]
,

where Ln−6 denotes the Laplacian of the graph Gn−6 and

E ∈ R
6×(n−6) is the matrix

E =
[
−e1 0n · · · 0n

]

From the above decomposition of L, and noting that the

first entries of u3,u4,u5 are zero, it is not hard to show that

u3,u4 and u5 can be lifted to eigenvectors of L. It is clear

that the lifted eigenvectors
[ uj

0n−6

]
∈ R

n, for j ∈ {3, 4, 5},

form a set of {0, 1}n annihilators. This ends the proof.

The next result, whose proof is omitted due to space

limitations, states that any graph containing the vectors

{v1,v2,v3} in (3) as eigenvectors will have a repeated

eigenvalue.

Proposition 5.5: ({0, 1}n-annihilator graphs and re-

peated eigenvalues): Let G be a graph on n ≥ 4 vertices.

If v1,v2,v3 given by (3) are eigenvectors of G then G has

a repeated eigenvalue.

CONCLUSION AND FUTURE WORK

We have proposed a classification for controllability of

the Laplacian leader-follower dynamics by introducing the

class of essentially controllable, completely uncontrollable,

and conditionally controllable graphs. We have presented

preliminary results for the characterization of completely un-

controllable and essentially controllable classes. In particular,

we have showed that all essentially controllable graphs are

asymmetric and have provided large classes of asymmetric

completely uncontrollable graphs. We have also proved the

necessity of having repeated eigenvalues for the Laplacian

matrix for complete uncontrollability for graphs of low order,

and a class of large graphs.

A complete characterization of complete uncontrollability,

investigating the existence of a polynomial-time algorith-

mic procedure for generating essentially controllable graphs,

exploring scenarios with multiple leaders, and extending

the proposed classifications to other, possibly nonlinear,

networked control systems are among other areas of future

work.
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