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a b s t r a c t

In this paper we prove that, for a general class of control-affine systems, the output regulation equations
are uniquely solvable whenever the exosystem is periodic and the linearized zero-dynamics of the plant
does not contain periodic solutions of the same period as those of the exosystem. Our main result can
therefore be applied to cases when the linearized zero-dynamics are non-hyperbolic. As an application,
we consider the important case of when the exosystem is composed of k-uncoupled harmonic oscillators.
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1. Introduction

Consider the controlled dynamical system

ẋ = f (x, w)+ g(x, w)u
ẇ = s(w)
e = h(x, w)

(1)

where x ∈ Rn is the state variable, u ∈ Rm is the control variable,
e ∈ Rp is the output variable, and w ∈ Rq is an external variable.
The mappings f : Rn

× Rq
→ Rn, g : Rn

× Rq
→ Rn×m,

s : Rq
→ Rq, and h : Rn

× Rq
→ Rp, defined possibly only

locally about the respective origins, are assumed to be smooth. It is
assumed that f (0, 0) = 0, s(0) = 0, and h(0, 0) = 0. Wemake the
simplifying assumption that m = p, i.e., the input–output system
is square. The dynamics of the variable w are referred to as the
exosystem and represent external disturbances and/or a generator
of reference trajectories for the state variable x.

The output regulation problem for (1) is to find a feedback control
u = α(x, w), with α(0, 0) = 0, such that

ẋ = f (x, 0)+ g(x, 0)α(x, 0)

has x = 0 as an exponentially stable equilibrium, and for each
sufficiently small initial condition (x0, w0) the solution of (1) with
u = α(x, w) satisfies

lim
t→∞

e(t) = 0.
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It is known [1,2] that, under mild assumptions on the plant and
exosystem dynamics, the output regulation problem is solvable
if and only if there exist smooth mappings π : Ω → Rn,
with π(0) = 0, and κ : Ω → Rm, with κ(0) = 0, both
defined in a neighborhood Ω ⊆ Rq of w = 0, solving the
Francis–Byrnes–Isidori (FBI) equations

∂π

∂w
(w)s(w) = f (π(w),w)+ g(π(w),w)κ(w)

0 = h(π(w),w).
(2)

In [1], a subclass of system (1) given by

f (x, w) = f0(x)+ p(x)w
g(x, w) = g0(x)
h(x, w) = h0(x)+ q(w)

was considered and it was shown that, under a well-defined
relative degree assumption, solving the FBI equations can be
reduced to solving an invariant manifold PDE for the zero-
dynamics of the plant and the exosystem. This reduction principle
was generalized in [2] to the general system (1). Specifically, and
referring to [2] for the full details, suppose that the composite
system (1) has a well-defined vector relative degree (r1, . . . , rp) at
(x, w) = (0, 0), let r = r1 + · · · + rp, and let d = n − r . Then the
zero-dynamics of the composite system (1) take the form

ż = ζ̃ (z, w)
ẇ = s(w)

(3)

where z ∈ Rd, and becausem = p they are uniquely determinedup
to a coordinate transformation. As shown in [2], the FBI equations
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are then solvable if there exists an invariant manifold for (3) of the
form {(z, w) : z = π̃(w)}, where π̃ is a smoothmapping defined in
a neighborhood of w = 0. Consequently, one can solve the output
regulation problem by finding a local solution π̃ to the invariant
manifold PDE

∂π̃

∂w
(w)s(w) = ζ̃ (π̃(w),w). (4)

Because m = p, κ is unique if it exists, and if π̃ is unique then
π is also unique. Uniqueness here should be understood up to a
coordinate transformation.

With regard to solving (4), it is a standard assumption in the
output regulation problem [1,2] that the exosystem has w =

0 as a non-attractive Liapunov stable equilibrium. Consequently,
the eigenvalues of the matrix ∂s

∂w
(0) will lie on the imaginary

axis, and thus if the eigenvalues of the matrix ∂ζ̃

∂z (0, 0) lie off
the imaginary axis, i.e., the hyperbolic case, then by the well-
known centermanifold theorem [3] one can deduce that a solution
(not necessarily unique) to the PDE (4) exists. In the case of real-
analytic data and two dimensional exosystems, applying the main
result in [4], it was deduced in [5] that (4) in fact has a unique
solution, is analytic and the invariant manifold is generated by a
one-parameter family of periodic solutions.

The purpose of this paper is to extend the results in [5] by
considering exosystems generating periodic trajectories and prove
the existence and uniqueness of π̃ in the possibly non-hyperbolic
case. A key ingredient in the proof of ourmain result (Theorem 2.2)
is the triangular structure of (3) which simplifies the study of
the flow of (3). This extra structure allows us to avoid the use
of the center manifold theorem and allows the possibility of
non-hyperbolic zero-dynamics. In fact, as shown in the example
in [6], hyperbolicity of the zero-dynamics is not necessary for the
existence of π̃ . As was the case in the example in [6], the key
property to deduce the existence of π̃ is that the exosystem does
not generate trajectories of the same period as those of the linear
dynamical system ż =

∂ζ̃

∂z (0, 0)z. This property is analogous to the
condition needed for the solvability of the linear output regulation
problem proved by Hautus [7], namely, that the eigenvalues of the
exosystem do not intersect the eigenvalues of the zero-dynamics,
i.e., do not intersect the transmission zeros of the plant. Hence, our
result can be seen as a nonlinear version of Hautus’ test.

As an application of our main result on output tracking, we
consider the casewhen the exosystem is composed of k-uncoupled
harmonic oscillators. This class of exosystem is used widely in
applications as it can be used tomodel sinusoidal disturbances and
simultaneously generate sinusoidal output reference trajectories.

This paper is organized as follows. In Section 2 we state and
prove our main results. In Section 3 we apply our main result
to the problem of tracking periodic trajectories generated by
k-uncoupled harmonic oscillators. In Section 4 we present two
examples illustrating our main results. We end the paper with
some concluding remarks and avenues of future research.

2. Main results

Rewrite the dynamical system (3) as

ż = Bz + ζ (z, w)
ẇ = s(w)

(5)

where now ∂ζ

∂z (0, 0) = 0, ζ (0, 0) = 0, z ∈ Rd, and
w ∈ Rq. The flow of (5) will be denoted by (t, z, w) →

(φ(t, z, w), ψ(t, z, w)). We have that (φ(t, 0, 0), ψ(t, 0, 0)) =

(0, 0) for all t because (0, 0) is an equilibrium solution. We note
that since the w-equation in (5) is independent of z, ψ(t, z, w) is
actually independent of z, and thus we drop the dependence of ψ
on z. For convenience write the linear dynamical system

ż = Bz (6)

for future reference. Also, we note that the invariant manifold PDE
(4) now takes the form

∂π̃

∂w
(w)s(w) = Bπ̃(w)+ ζ (π̃(w),w). (7)

To state our main results, we need the following standard
definition.

Definition 2.1. Let ẋ = f (x) denote a dynamical system where
f : E → Rn is a vector field defined on an open set E ⊂ Rn and
let φt denote the flow of f . A set S ⊂ E is said to be invariant with
respect to the flow φt if φt(S) ⊂ S for all t ∈ R.

Throughout the paper we assume that T > 0 is a time
parameter. We now state our main results.

Theorem 2.1. Consider system (1) and assume that the pair
(
∂ f
∂x (0, 0), g(0, 0)) is stabilizable. Suppose that there exists a

neighborhood W of w = 0 such that the solutions of the exosystem
initiating in W are T-periodic, and any neighborhood W ′

⊂ W of
w = 0 contains an open invariant subset containing w = 0. Suppose
that (1) has a well-defined relative degree at (x, w) = (0, 0) and
let (5) denote the zero-dynamics of (1). If the linear system (6) has
no T-periodic solution other than the zero solution then the FBI
equations (2) have a smooth and unique solution.

Wenote that in Theorem2.1, the invariance assumption implies
that the exosystem has w = 0 as a non-attractive Liapunov stable
equilibrium. Theorem 2.1 follows from our discussion in Section 1
and the following theorem.

Theorem 2.2. Consider a dynamical system of the form (5) having an
equilibrium at the origin (z, w) = (0, 0). Suppose that there exists
a neighborhood W of w = 0 such that solutions to ẇ = s(w)
initiating in W are T-periodic, and any neighborhood W ′

⊂ W of
w = 0 contains an open invariant subset containing w = 0. If
the linear system (6) has no T-periodic solution other than the zero
solution then (7) has a smooth and unique solution defined locally
about w = 0 and whose graph defines an invariant manifold for (3).

Proof. Forw ∈ W , consider the equation

z = φ(T , z, w) (8)

and note that from the variations of constant formula

φ(T , z, w) = eBT z +

 T

0
eB(T−s)ζ (φ(s, z, w), ψ(s, w)) ds.

If (z, w) is a solution to (8) then clearly (φ(t, z, w), ψ(t, w)) is
T -periodic. Hence, consider the mapping

F(z, w) = −z + φ(T , z, w)

or equivalently,

F(z, w) = (eBT − I)z +

 T

0
eB(T−s)ζ (φ(s, z, w), ψ(s, w)) ds.

We note that because (0, 0) is an equilibrium solution of (5),
by the well-known dependence of initial conditions of a smooth
dynamical system [3], the mapping F is well-defined in some
neighborhood of (0, 0). It is clear that

F(0, 0) = 0.
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Now

∂F
∂z
(z, w) = (eBT − I)+

 T

0


eB(T−s) ∂ζ

∂z
(φ(s, z, w), ψ(s, w))

×
∂φ

∂z
(s, z, w)


ds

andbecauseφ(t, 0, 0) = 0, ψ(t, 0) = 0, for all t , and ∂ζ

∂z (0, 0) = 0,
we have that
∂F
∂z
(0, 0) = (eBT − I).

The assumption that (6) does not have any non-zero T -periodic
solutions implies that (eBT − I) is invertible. Indeed, if z0 ≠ 0
satisfies (eBT − I)z0 = 0 then z(t) = eBtz0 is a non-zero T -periodic
solution of (6), which is a contradiction. Therefore, by the implicit
function theorem, there is a unique mapping π̃ : W ′

→ U′, where
W ′

× U′ is a neighborhood of (0, 0), such that π̃(0) = 0, and

F(π̃(w),w) = 0

and π̃ is smooth. It follows that t → (φ(t, π̃(w),w), ψ(t, w))
is a T -periodic solution of (5) for all w ∈ W ′, and z = π̃(w)
is the unique initial condition for the z-component of (5) which
results in a T -periodic solution for a given initial conditionw of the
w-component of (5). By continuity, we can assume without loss of
generality that

∂F
∂z
(π̃(w),w)

is also invertible for allw ∈ W ′.
Now, from the relation

0 = F(π̃(w),w) = −π̃(w)+ φ(T , π̃(w),w)

and the chain rule we obtain that
−I +

∂φ

∂z
(T , π̃(w),w)


∂π̃

∂w
+
∂φ

∂w
(T , π̃(w),w) = 0. (9)

Multiplying both sides of (9) by s(w) and rearranging we obtain

∂π̃

∂w
(w)s(w) =

∂φ

∂z
(T , π̃(w),w)

∂π̃

∂w
(w)s(w)

+
∂φ

∂w
(T , π̃(w),w)s(w). (10)

Consider now the linearization of (5) along any solution (φ(t, z, w),
ψ(t, w)), which is given by

d
dt
ξ(t, z, w) = A(t, z, w)ξ(t, z, w) (11)

where A(t, z, w) is the Jacobian of the right-hand-side of
(5) evaluated along the solution (φ(t, z, w), ψ(t, w)). Clearly,
ξ(t, z, w) = ( d

dt φ(t, z, w),
d
dtψ(t, w)) is a solution of (11), and

therefore if the initial condition of (11) at t = 0 is

ξ(0, z, w) = ξ(0, π̃(w),w) :=


Bπ̃(w)+ ζ (π̃(w),w)

s(w)


then the corresponding solution ξ(t, π̃(w),w) is T -periodic. If
Φ(t, z, w) denotes the fundamental matrix of the linear system
(11), then T -periodicity of ξ(t, π̃(w),w) implies that

ξ(0, π̃(w),w) = Φ(T , π̃(w),w)ξ(0, π̃(w),w). (12)

It is known that Φ(t, z, w) is the derivative of the mapping
(z, w) → (φ(t, z, w), ψ(t, z)) [3, p. 83], that is

Φ(t, z, w) =


∂φ

∂z
(t, z, w)

∂φ

∂w
(t, z, w)

0
∂ψ

∂w
(t, w)

 .
Therefore, from (10) and the fact thatψ(t, w) is T -periodic, we can
write that also
∂π̃

∂w
(w)s(w)
s(w)


= Φ(T , π̃(w),w)


∂π̃

∂w
(w)s(w)
s(w)


. (13)

Combining (12)–(13) it follows that

0 =


∂φ

∂z
(T , π̃(w),w)− I


×


∂π̃

∂w
(w)s(w)− (Bπ̃(w)+ ζ (π̃(w),w))


.

But
∂F
∂z
(z, w) = −I +

∂φ

∂z
(T , z, w)

and therefore
∂F
∂z
(π̃(w),w)


∂π̃

∂w
(w)s(w)− (Bπ̃(w)+ ζ (π̃(w),w))


= 0.

Now because ∂F
∂z (π̃(w),w) is invertible for all w ∈ W ′ it follows

that
∂π̃

∂w
(w)s(w) = Bπ̃(w)+ ζ (π̃(w),w)

for all w ∈ W ′. By shrinking W ′ if necessary, we can assume that
W ′ is an invariant set for ẇ = s(w). Hence,

{(z, w) : z = π̃(w), w ∈ W ′
}

is an invariant manifold for (5).
Proving that π̃ is the unique solution of (7) on W ′ is

straightforward. Suppose that π̄ solves (7) on W ′. Let w(t) be a
solution of ẇ = s(w) initiating in W ′, and thus of period T . Then
clearly, the curve z̄(t) = π̄(w(t)) is also T -periodic. Using the fact
that π̄ is a solution of (7) on W ′, a direct computation using the
chain rule shows that
d
dt

z̄(t) = Bz̄(t)+ ζ (z̄(t), w(t)).

In other words, the curve t → (z̄(t), w(t)) is a T -periodic solution
of (5). Recalling that π̃(w(0)) is the unique initial condition for
the z-component of (5) which results in a T -periodic solution for
the initial condition w(0), it follows that z̄(0) = π̃(w(0)), i.e.,
π̄(w(0)) = π̃(w(0)). This holds for all initial conditions w(0) ∈

W ′, and thus proves uniqueness of π̃ on W ′. This completes the
proof. �

The interesting case when Theorem 2.2 is applicable is when
B has eigenvalues on the imaginary axis, otherwise the existence
part of the theorem is a direct consequence of the center manifold
theorem. However, even when the center manifold theorem is
applicable, Theorem 2.2 gives uniqueness of solutions. In general,
the manifold z = π̃(w) in Theorem 2.2 is a submanifold of
every center manifold of (5) since every center manifold contains
periodic trajectories sufficiently close to the origin [8].

3. Application: k-uncoupled harmonic oscillators

The assumption in Theorem 2.1 that the exosystem generates
periodic trajectories of a single period T is a significant restriction.
On the other hand, there is an important class of exosystems
that satisfies this condition, namely, an exosystem consisting
of k-uncoupled harmonic oscillators with rational frequencies
ω1, . . . , ωk ∈ Q. This type of exosystem can be used to model
sinusoidal disturbances of say frequencies ω1, . . . , ωr , and the
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remaining frequencies ωr+1, . . . , ωk can be used to generate
periodic reference trajectories for the state variable.

Consider then the exosystem

ẇ = Sw (14)

where S = diag(S1, S2, . . . , Sk) and

Si =


0 ωi

−ωi 0


for i = 1, . . . , k. Suppose that the frequencies ω1, . . . , ωk are
rational, say ωi =

ai
bi
, with gcd(ai, bi) = 1, and decompose

ai = 2ℓici for unique ℓi ∈ {0, 1, . . .} and positive integers ci.
Let b = lcm(b1, . . . , bk), let c = gcd(c1, . . . , ck), and let ℓ =

min(ℓ1, . . . , ℓk). Then

T ∗
=

b
2ℓ−1c

π

is the minimum real number such that for all i = 1, . . . , k

ωiT ∗
= 2πni

for some positive integers ni. In other words, T ∗ is the period of
the k-uncoupled oscillators, and therefore the period of (14). Of
course, it is possible to choose the initial condition of (14) such
that the resulting trajectory is periodic of period T ′ < T ∗, say by
setting the initial condition of a subset of the k oscillators to the
origin. However, elementary considerations show that necessarily
T ∗

= NT ′ for some positive integer N . With this in mind we have
the following corollary to Theorem 2.1.

Theorem 3.1. Consider the control system (1) and suppose that it has
awell-defined relative degree at (x, w) = (0, 0). Assume that the pair
(
∂ f
∂x (0, 0), g(0, 0)) is stabilizable. Suppose that the exosystem is given

by (14) with ω1, . . . , ωk ∈ Q. Suppose that B does not have 0 as an
eigenvalue and let {±ν1i, . . . ,±νr i} denote the eigenvalues of B on
the imaginary axis. If

2π
ν1
, . . . ,

2π
νr


∩


1
N
T ∗

: N = 1, 2, . . .


= ∅ (15)

then the associated FBI equations have a smooth and unique solution.
Consequently, the output regulation problem is solvable.

Proof. As was discussed above, every solution of (14) is T ∗

periodic. For any open set W containing w = 0, it is not hard to
see that there exists an open W ′

⊂ W that is invariant under the
flow of (14) and contains w = 0. For example, W ′ can be taken as
the Cartesian product of k open discs in R2 with the ith disc being
an invariant set for the ith harmonic oscillator in (14).

The only possible periodic trajectories for (6) are those that
initiate in the invariant subspaces of B associated with the
eigenvalues on the imaginary axis [3], and by assumption these
subspaces all correspond to non-zero eigenvalues. Now, any non-
zero periodic trajectory of (6) will have a period that is a positive
integer multiple of 2π

νj
for some j ∈ {1, . . . , r}, say N 2π

νj
. By

assumption, N 2π
νj

≠ T ∗ and therefore (6) does not contain
a non-zero T ∗-periodic trajectory. The claim now follows by
Theorem 2.1. �

Remark 3.1. It is straightforward to verify that (15) is satisfied if
and only if the numbers bν1

2ℓc
, . . . , bνr

2ℓc
are not (positive) integers.

It is interesting to compare (15) with the resonance condition
given in [9, Lemma 5.2] for the solvability of the output regulation
problem. Specifically, in [9, Lemma 5.2], the condition

rank

∂ f∂x (0, 0)− λI g(0, 0)
∂h
∂x
(0, 0) 0p×m

 = n + p (16)
for all λ = λi1 + · · · + λiβ and all β = 1, 2 . . . , where λij
are eigenvalues of ∂s

∂w
(0), is given for the formal solvability of

the invariant manifold PDE associated to the output regulation
problem. Condition (16) is difficult to verify in practice as it
requires the verification of (16) on an infinite number of λ’s.

4. Examples

In this section we present two examples illustrating the
applicability of Theorem 3.1 when the center manifold theorem
or the results in [5] are not applicable. The first example, taken
from [10,6], was a motivation for the current paper.

Example 4.1. Consider the classical inverted pendulum system
with the addition of a second cart connected to the first cart by
a spring having spring constant K . As in the classical system, a
freely hanging pendulum is attached to the first cart. The first
cart is actuated by a horizontal force u and both carts have only
horizontal motion in-line with the applied force. Both carts have
equal massM , the length of the pendulum rod is ℓ and has massm.
The equations of motion of the system are

(M + m)ẍ1 + mℓ(θ̈ cos θ − θ̇2 sin θ) = u + K(x2 − x1)
mℓẍ1 cos θ + mℓ2θ̈ = mgℓ sin θ
Mẍ2 = −K(x2 − x1)

where x1 is the position of the first cart, x2 is the position of the
second cart, θ is the angle the pendulum makes with the vertical-
up position, and g is the acceleration due to gravity. As output we
are interested in the position x1 of the actuated cart and consider
the output regulation problem with a sinusoidal reference signal.
We therefore let e = h(x, w) = x1 − w1 and choose a two-
dimensional exosystem consisting of a harmonic oscillator with
frequency ω, i.e., k = 1 in (14). It can be verified that the zero-
dynamics of the system can be represented in the form [6]

ż1 = z2 ẇ1 = ωw2

ż2 =
ω2

ℓ
w1 cos(z1)+

g
ℓ
sin(z1) ẇ2 = −ωw1

ż3 = z4

ż4 =
K
M
(w1 − z3).

The eigenvalues of the linear part of the z-dynamics are ±
√
g/ℓ

and ±
√
K/Mi. Therefore one cannot deduce the solvability of

the associated invariant manifold PDE from the center manifold
theorem or from [5]. In this case we have that T ∗

= 2π/ω and
ν1 =

√
K/M . Therefore, if

√
K/M ≠ Nω for all N = 1, 2, . . . , by

Theorem 3.1 the associated FBI equations are solvable, as proved
in [6]. Moreover, by Theorem 3.1, the FBI equations have a unique
(local) solution.

Example 4.2. Consider the system

ẋ1 = x2
ẋ2 = a(x)+ b(x)u

ẋ3 = x1 +
1
9
x4 + x2x4

ẋ4 = −4x3 + x34 + x1x2 + x1x3
y = x1 − w1

ẇ1 = w2

ẇ2 = −w1

(17)

where x = (x1, x2, x3, x4) ∈ R4 is the state, u ∈ R is the control,
and a and b are smooth functions with a(0) = 0 and b(0) ≠ 0.
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A system similar to (17) was considered in [11]. System (17) has
a well-defined relative degree at the origin and its zero-dynamics
can be written as

ż1 =
1
9
z2 + w1 + w2z2

ż2 = −4z1 + z32 + w1w2 + w1z1
ẇ1 = 2w2

ẇ2 = −2w1.

The eigenvalues of the linear system ż1 =
1
9 z2, ż2 = −4z1 are

±
2
3 i, and the eigenvalues of the exosystem are ±2i. Therefore one

cannot deduce the solvability of the associated invariant manifold
PDE from the center manifold theorem or from [5]. In this case we
have that T ∗

= π and 2π 3
2 ≠

π
N for all N = 1, 2, . . . . Therefore, by

Theorem 3.1 the associated FBI equations are uniquely solvable.

5. Conclusion

In this paper we proved that, for a general class of nonlinear
control-affine systems with a well-defined relative degree at the
origin, the output regulation equations are uniquely solvable
whenever the exosystem does not generate periodic trajectories of
the same period as those of the linearized zero-dynamics. In view
of the current results, in a future paper we intend to extend the
numerical algorithm presented in [5] for exosystems of dimension
greater than two.
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