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1. Introduction

Let G = (V, E) be an n-vertex simple graph, that is, a graph without loops or multiple 
edges, and let degG(v) denote the degree of v ∈ V . It is an elementary exercise to show 
that G contains at least two vertices of equal degree. If G has all vertices with equal 
degree then G is called a regular graph. We say then that G is an anti-regular graph 
if G has only two vertices of equal degree. If G is anti-regular it follows easily that the 
complement graph G is also anti-regular since degG(v) = (n − 1) − degG(v). It was 
shown in [2] that up to isomorphism, there is only one connected anti-regular graph on n
vertices and that its complement is the unique disconnected n-vertex anti-regular graph. 
Let us denote by An the unique connected anti-regular graph on n ≥ 2 vertices. The 
graph An has several interesting properties. For instance, it was shown in [3] that An is 
universal for trees, that is, every tree graph on n vertices is isomorphic to a subgraph 
of An. Anti-regular graphs are threshold graphs [4] which have numerous applications in 
computer science and psychology. Within the family of threshold graphs, the anti-regular 
graph is uniquely defined by its independence polynomial [7]. Also, the eigenvalues of 
the Laplacian matrix of An are all distinct integers and the missing eigenvalue from 
{0, 1, . . . , n} is �(n + 1)/2�. In [6], the characteristic and matching polynomial of An are 
studied and several recurrence relations are obtained for these polynomials, along with 
some spectral properties of the adjacency matrix of An.

In this paper, we study the eigenvalues of the adjacency matrix of An. If V (G) =
{v1, . . . , vn} is the vertex set of the graph G then the adjacency matrix of G is the n ×n

symmetric matrix A with entry A(i, j) = 1 if vi and vj are adjacent and A(i, j) = 0
otherwise. From now on, whenever we refer to the eigenvalues of a graph we mean 
the eigenvalues of its adjacency matrix. It is known that the eigenvalues of An have 
algebraic multiplicity equal to one and take on a bipartite character [6] in the sense that 
if n is even then half of the eigenvalues are negative and the other half are positive, 
and if n is odd then λ = 0 is an eigenvalue and half of the remaining eigenvalues are 
positive and the other half are negative. Our approach to studying the eigenvalues of 
An relies on a natural labeling of the vertices that results in a block triangular structure 
for the inverse adjacency matrix. The blocks are tridiagonal pseudo-Toeplitz matrices 
and Hankel matrices. We are then able to employ the connection between tridiagonal 
Toeplitz matrices and Chebyshev polynomials to obtain a trigonometric equation whose 
roots are the eigenvalues. Performing elementary analysis on the roots of the equation 
we obtain an almost complete characterization of the eigenvalues of An. In particular, we 
show that the only eigenvalues contained in the closed interval Ω = [−1−

√
2

2 , −1+
√

2
2 ] are 

the trivial eigenvalues λ = −1 or λ = 0, and any closed bounded interval strictly larger 
than Ω will contain eigenvalues of An for all n sufficiently large. This improves a result 
in [10] obtained for general threshold graphs and we conjecture that Ω is a forbidden 
eigenvalue interval for all threshold graphs (besides the trivial eigenvalues λ = 0 or 
λ = −1). We also obtain bounds for the maximum and minimum eigenvalues, and for all 
other eigenvalues we obtain interval bounds that improve as n increases. Moreover, our 
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approach reveals a more complete picture of the bipartite character of the eigenvalues 
of An, namely, as n increases the non-trivial eigenvalues are (approximately) symmetric 
about the number −1

2 . Lastly, we obtain an asymptotic distribution of the eigenvalues 
as n → ∞. We conclude the paper by arguing that a characterization of the eigenvalues 
of An will shed light on the broader problem of characterizing the spectrum of general 
threshold graphs.

2. Main results

It is known that the eigenvalues of An are simple and that λ = −1 is an eigenvalue if 
n is even and λ = 0 is an eigenvalue if n is odd [6]. In either case, we will call λ = −1
or λ = 0 the trivial eigenvalue of An and will be denoted by λ0. Throughout this paper, 
we denote the positive eigenvalues of An as

λ+
1 < λ+

2 < · · · < λ+
k

and the negative eigenvalues (excluding λ0) as

λ−
k−1 < λ−

k−2 < · · · < λ−
1

if n = 2k is even and

λ−
k < λ−

k−1 < · · · < λ−
1

if n = 2k + 1 is odd. The eigenvalues are labeled this way because {λ+
j , λ

−
j } should be 

thought of as a pair for j ∈ {1, 2, . . . , k − 1}. In [10], it is proved that a threshold graph 
has no eigenvalue in the interval (−1, 0). Our first result supplies a forbidden interval for 
the non-trivial eigenvalues of An.

Theorem 2.1. Let An denote the connected anti-regular graph with n vertices. The only 
eigenvalue of An in the interval Ω = [−1−

√
2

2 , −1+
√

2
2 ] is λ0 ∈ {−1, 0}.

Based on numerical experimentation, and our observations in Section 8, we make the 
following conjectures.

Conjecture 2.1. For any n, the anti-regular graph An has the smallest positive eigenvalue 
and has the largest non-trivial negative eigenvalue among all threshold graphs on n
vertices.

By Theorem 2.1, a proof of the previous conjecture would also prove the following.

Conjecture 2.2. Other than the trivial eigenvalues {0, −1}, the interval Ω = [−1−
√

2
2 ,

−1+
√

2 ] does not contain an eigenvalue of any threshold graph.
2
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Our next result establishes the asymptotic behavior of the eigenvalues of smallest 
magnitude as n → ∞.

Theorem 2.2. Let An be the connected anti-regular graph with n = 2k if n is even and 
n = 2k + 1 if n is odd. Let λ+

1 (k) denote the smallest positive eigenvalue of An and 
let λ−

1 (k) denote the negative eigenvalue of An closest to the trivial eigenvalue λ0. The 
following hold:

(i) The sequence {λ+
1 (k)}∞k=1 is strictly decreasing and converges to −1+

√
2

2 .
(ii) The sequence {λ−

1 (k)}∞k=1 is strictly increasing and converges to −1−
√

2
2 .

As a result, the interval Ω = [−1−
√

2
2 , −1+

√
2

2 ] in Theorem 2.1 is best possible in the 
sense that any closed bounded interval strictly larger than Ω will contain eigenvalues of 
An (other than the trivial eigenvalue) for all sufficiently large n.

Our next main result says that λ+
j + λ−

j + 1 ≈ 0 for almost all j ∈ {1, 2, . . . , k − 1}
provided that k is sufficiently large. In other words, the eigenvalues are approximately 
symmetric about the number −1

2 .

Theorem 2.3. Let An be the connected anti-regular graph where n = 2k or n = 2k + 1. 
Fix r ∈ (0, 1) and let ε > 0 be arbitrary. Then for k sufficiently large,

|λ+
j + λ−

j + 1| < ε

for all j ∈ {1, 2, . . . , k − 1} such that 2j
2k−1 ≤ r if n is even and j

k ≤ r if n is odd.

Note that the proportion of integers j ∈ {1, 2, . . . , k − 1} that satisfy the inequality 
in Theorem 2.3 is r. Hence, Theorem 2.3 implies that as k increases a larger proportion 
of the eigenvalues are (approximately) symmetric about the point −1

2 . Lastly, we obtain 
an asymptotic distribution of the eigenvalues of all anti-regular graphs.

Theorem 2.4. Let σ(n) denote the set of the eigenvalues of An, let σ =
⋃

n≥1 σ(n), and 
let σ̄ denote the closure of σ. Then

σ̄ = (−∞, −1−
√

2
2 ] ∪ {0,−1} ∪ [−1+

√
2

2 ,∞).

It turns out that if we restrict n to even then σ̄ = (−∞, −1−
√

2
2 ] ∪{−1} ∪ [−1+

√
2

2 , ∞), 
and if we restrict n to odd then σ̄ = (−∞, −1−

√
2

2 ] ∪ {0} ∪ [−1+
√

2
2 , ∞).

3. Eigenvalues of tridiagonal Toeplitz matrices

Our study of the eigenvalues of An relies on the relationship between the eigenvalues of 
tridiagonal Toeplitz matrices and Chebyshev polynomials [8,9], and so we briefly review 
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the necessary background. The Chebyshev polynomial of the second kind of degree m, 
denoted by Um(x), is the unique polynomial such that

Um(cos θ) = sin((m + 1)θ)
sin(θ) . (1)

The first several Um’s are U0(x) = 1, U1(x) = 2x, U2(x) = 4x2−1, and U3(x) = 8x3−4x. 
The sequence of polynomials {Um}∞m=0 satisfies the three-term recurrence relation

Um(x) = 2xUm−1(x) − Um−2(x) (2)

for m ≥ 2. From (1), the zeros x1, x2, . . . , xm of Um(x) are easily determined to be

xj = cos
(

jπ

m + 1

)
, j = 1, 2, . . . ,m.

Chebyshev polynomials are used extensively in numerical analysis and differential equa-
tions and the reader is referred to [8] for a thorough introduction to these interesting 
polynomials.

A real tridiagonal Toeplitz matrix is a matrix of the form

T =

⎛
⎜⎜⎜⎝
a c

b
. . .

. . .
. . .

. . . c
b a

⎞
⎟⎟⎟⎠

for a, b, c ∈ R. For our purposes, and to simplify the presentation, we assume that c = b. 
We can then write T = aI + bM where I is the identity matrix and

M =

⎛
⎜⎜⎜⎝

0 1

1
. . .

. . .
. . .

. . . 1
1 0

⎞
⎟⎟⎟⎠ .

If λ is an eigenvalue of M then clearly a +bλ is an eigenvalue of T . Let φm(t) = det(tI−M)
denote the characteristic polynomial of the m ×m matrix M . The Laplace expansion of 
φm(t) along the last row produces the recurrence relation

φm(t) = tφm−1(t) − φm−2(t)

for m ≥ 2, with φ0(t) = 1 and φ1(t) = t. It then follows that φm(t) = Um(t/2). Indeed, 
we have that U0(t/2) = 1 and U1(t/2) = 2(t/2) = t, and from the recurrence (2) we have

Um(t/2) = 2(t/2)Um−1(t/2) − Um−2(t/2) = tUm−1(t/2) − Um−2(t/2).
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4. The anti-regular graph An

As already mentioned, the anti-regular graph An is an example of a threshold graph. 
Threshold graphs were first studied independently by Chvátal and Hammer [11] and by 
Henderson and Zalcstein [12]. There exists an extensive literature on the applications and 
algorithmic aspects of threshold graphs and the reader is referred to [4,5] for a thorough 
introduction. A threshold graph G on n ≥ 2 vertices can be obtained via an iterative 
procedure as follows. One begins with a single vertex v1 and at step i ≥ 2 a new vertex 
vi is added that is either connected to all existing vertices (a dominating vertex) or not 
connected to any of the existing vertices (an isolated vertex). The iterative construction 
of G is best encoded with a binary creation sequence b = (b1, b2, . . . , bn) where b1 = 0
and, for i ∈ {2, . . . , n}, bi = 1 if vi was added as a dominating vertex or bi = 0 if vi
was added as an isolated vertex. The resulting vertex set V (G) = {v1, v2, . . . , vn} that is 
consistent with the iterative construction of G will be called the canonical labeling of G. 
In the canonical labeling, the adjacency matrix of G takes the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 b2 b3 · · · bn−1 bn

b2 0 b3 · · ·
...

...

b3 b3 0 · · ·
...

...
...

...
...

. . . bn−1
...

bn−1 · · · · · · bn−1 0 bn
bn · · · · · · · · · bn 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

For the anti-regular graph An, the associated binary sequence is b = (0, 1, 0, 1, . . . , 0, 1)
if n is even and is b = (0, 0, 1, 0, 1, . . . , 0, 1) if n is odd. In what follows, we focus on the 
case that n is even. In Section 7, we describe the details for the case that n is odd.

Example 4.1. When n = 8 the graph An in the canonical labeling is shown in Fig. 1 and 
the associated adjacency matrix is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 1 0 1
1 0 0 1 0 1 0 1
0 0 0 1 0 1 0 1
1 1 1 0 0 1 0 1
0 0 0 0 0 1 0 1
1 1 1 1 1 0 0 1
0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As will be seen, a distinct labeling of the vertex set of An results in a block structure 
for A. Let J = Jk denote the k × k all ones matrix and let I = Ik denote the k × k

identity matrix.
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Fig. 1. The connected anti-regular graph A8 in the canonical labeling.

Lemma 4.1. The adjacency matrix of A2k can be written as

A =
(

0 B

B J − I

)
(4)

where B is the k × k Hankel matrix

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

. .
.

1

. .
.

. .
. ...

. .
.

. .
. ...

1 1 · · · · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proof. Recall that An is the unique connected graph on n vertices that has exactly only 
two vertices of the same degree. Moreover, it is known [2] that the repeated degree of 
A2k is k, that is, the degree sequence of A2k in non-increasing order is

d(An) =
(
n− 1, n− 2, . . . , n2 ,

n

2 ,
n

2 − 1, . . . , 2, 1
)
. (5)

It is clear that the degree sequence of the graph with adjacency matrix (4) is also (5). 
Since An is uniquely determined by its degree sequence the claim holds. �
Remark 4.1. Starting with the canonically labelled vertex set of An, the permutation

σ =
(
v1 v2 v3 . . . vn−2 vn−1 vn
vn vn vn . . . v v v

)
(6)
2 2 +1 2 −1 n−1 1 n
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relabels the vertices of An so that its adjacency matrix is transformed from (3) to (4)
via the permutation matrix associated to σ. The newly labelled graph is such that 
deg(vi) ≤ deg(vi+1). For example, when n = 8 the adjacency matrix (4) is

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 1
0 0 0 0 0 1 1 1
0 0 0 0 1 1 1 1
0 0 0 1 0 1 1 1
0 0 1 1 1 0 1 1
0 1 1 1 1 1 0 1
1 1 1 1 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

To study the eigenvalues of A we will obtain an eigenvalue equation for A−1. Expres-
sions for A−1 involving sums of certain matrices are known when the vertex set of An is 
canonically labelled [1]. On the other hand, our choice of vertex labels for An produces 
a closed-form expression for A−1. The proof of the following is left as a straightforward 
computation.

Lemma 4.2. Consider the adjacency matrix (4) of An where n = 2k. Then

A−1 =
(

V W

W 0

)

where W = B−1 and V = −B−1(J − I)B−1. Explicitly,

W =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1 1

. .
.

. .
.

. .
.

. .
.

−1 . .
.

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 −1

−1
. . .

. . .

. . .
. . .

. . .

. . . 2 −1
−1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that W is a Hankel matrix and the (k−1) ×(k−1) leading principal submatrix 
of V is a tridiagonal Toeplitz matrix.

Example 4.2. For our running example when n = 8 we have

A−1 =
(

V W

W 0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −1 0 0 0 0 −1 1
−1 2 −1 0 0 −1 1 0
0 −1 2 −1 −1 1 0 0
0 0 −1 0 1 0 0 0
0 0 −1 1 0 0 0 0
0 −1 1 0 0 0 0 0
−1 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

1 0 0 0 0 0 0 0
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5. The eigenvalues of An

Suppose that z = (x, y) ∈ R
2k is an eigenvector of A−1 with eigenvalue α ∈ R, where 

x, y ∈ R
k. From A−1z = αz we obtain the two equations

V x + Wy = αx

Wx = αy

and after substituting y = 1
αWx into the first equation and re-arranging we obtain

(α2I − αV −W 2)x = 0.

Clearly, we must have x �= 0. Let R(α) = α2I−αV−W 2 so that det(R(t)) = det(tI−A−1)
is the characteristic polynomial of A−1. It is straightforward to verify that

R(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f(α) α + 1

α + 1
. . .

. . .

. . .
. . .

. . .

. . . f(α) α + 1
α + 1 α2 − 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where f(α) = α2 − 2α − 2. Since it is already known that α = −1 is an eigenvalue of 
A−1 (this can easily be seen from the last column or row of R(α)), we consider instead 
the matrix

S(α) = 1
(α + 1)R(α) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h(α) 1

1
. . .

. . .

. . .
. . .

. . .

. . . h(α) 1
1 α− 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

where h(α) = α2−2α−2
α+1 . Hence, α �= −1 is an eigenvalue of A−1 if and only if 

det(S(α)) = 0. We now obtain a recurrence relation for det(S(α)). To that end, notice 
that the (k − 1) × (k − 1) leading principal submatrix of S(α) is a tridiagonal Toeplitz 
matrix. Hence, for m ≥ 1 define

φm(α) = det

⎛
⎜⎜⎜⎜⎝
h(α) 1

1
. . .

. . .

. . .
. . . 1
1 h(α)

⎞
⎟⎟⎟⎟⎠ .
m×m
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A straightforward Laplace expansion of det(S(α)) along the last row yields

det(S(α)) = (α− 1)φk−1(α) − φk−2(α).

Hence, α �= −1 is an eigenvalue of A−1 if and only if

(α− 1)φk−1(α) − φk−2(α) = 0.

On the other hand, for m ≥ 2 the Laplace expansion of φm(α) along the last row produces 
the recurrence relation

φm(α) = h(α)φm−1(α) − φm−2(α)

with φ0(α) = 1 and φ1(α) = h(α). We can therefore conclude that φm(α) = Um

(
h(α)

2

)
and thus α �= −1 is an eigenvalue of A−1 if and only if

(α− 1)Uk−1

(
h(α)

2

)
− Uk−2

(
h(α)

2

)
= 0. (7)

Substituting α = 1
λ into (7) and re-arranging yields

λ = Uk−1(β(λ))
Uk−1(β(λ)) + Uk−2(β(λ))

where β(λ) = h(1/λ)
2 = 1−2λ−2λ2

2λ(λ+1) . Recalling the definition (1) of Um(x), we have proved 
the following.

Theorem 5.1. Let n = 2k and let An denote the connected anti-regular graph with n
vertices. Then λ is an eigenvalue of An if and only if

λ = sin(kθ)
sin(kθ) + sin((k − 1)θ) (8)

where θ = arccos
(

1−2λ−2λ2

2λ(λ+1)

)
.

Remark 5.1. In [6, Theorem 3], recurrence relations for the characteristic polynomial 
of the adjacency matrix of An involving Chebyshev polynomials are obtained using 
combinatorial methods.

We now analyze the character of the solution set of (8). To that end, first define the 
function

θ(λ) = arccos
(

1 − 2λ− 2λ2)
.
2λ(λ + 1)
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Fig. 2. Graph of the function θ(λ) = arccos
(

1−2λ2−2λ
2λ(λ+1)

)
on its domain (−∞, −1−

√
2

2 ] ∪ [−1+
√

2
2 ,∞).

Using the fact that the domain and range of arccos is [−1, 1] and [0, π], respectively, it is 
straightforward to show that the domain and range of θ(λ) is (−∞, −1−

√
2

2 ] ∪ [−1+
√

2
2 , ∞)

and [0, π), respectively. The graph of θ(λ) is displayed in Fig. 2. Next, define the function

F (θ) = sin(kθ)
sin(kθ) + sin((k − 1)θ) . (9)

In the interval (0, π), the function F has vertical asymptotes at

γj = 2jπ
2k − 1 , j = 1, 2, . . . , k − 1.

This follows from the trigonometric identity

sin(kθ) + sin((k − 1)θ) = 2 sin (2k − 1)θ
2 cos θ2 .

For notational consistency we define γ0 = 0. Hence, F is continuously differentiable on 
the set (0, γ1) ∪ (γ1, γ2) ∪· · · (γk, π). Moreover, using l’Hópital’s rule it is straightforward 
to show that

lim
θ→0

F (θ) = k

2k − 1

and

lim F (θ) = k.

θ→π
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Hence, there is no harm in defining F (0) = k
2k−1 and F (π) = k so that we can take 

D = [0, γ1) ∪ (γ1, γ2) ∪ · · · ∪ (γk−1, π] as the domain of continuity of F .
We can now prove Theorem 2.1.

Proof of Theorem 2.1. The domain of θ(λ) does not contain any point in the interior of 
Ω and therefore no solution of (8) is in the interior of Ω. At the boundary points of Ω
we have

θ(−1−
√

2
2 ) = θ(−1+

√
2

2 ) = 0.

On the other hand, F (0) = k
2k−1 and thus the boundary points of Ω are not solutions to 

(8) either. The case that n is odd is similar and will be dealt with in Section 7. �
We now analyze solutions to (8) by treating θ as the unknown variable and expressing 

λ in terms of θ. To that end, solving for λ from the equation θ = arccos
(

1−2λ2−2λ
2λ(λ+1)

)
yields the two solutions

λ = f1(θ) =
−(cos θ + 1) +

√
(cos θ + 1)(cos θ + 3)

2(cos θ + 1)

λ = f2(θ) =
−(cos θ + 1) −

√
(cos θ + 1)(cos θ + 3)

2(cos θ + 1) .

(10)

Notice that

f1(θ) + f2(θ) = −1, (11)

a fact that will be used to show the bipartite character of large anti-regular graphs. 
Both f1 and f2 are continuous on [0, π), continuously differentiable on (0, π), and 
limθ→π− f1(θ) = ∞ and limθ→π− f2(θ) = −∞. In Figs. 3–4, we plot the functions 
f1(θ), f2(θ), and F (θ) for the values k = 8 and k = 16 in the interval 0 ≤ θ ≤ π. 
A dashed line at the value λ = −1

2 = f1(θ)+f2(θ)
2 is included to emphasize that it is a line 

of symmetry between the graphs of f1 and f2.
Figs. 3–4 show that the graphs of F and f1 intersect exactly k times, say at θ+

1 , . . . , θ
+
k , 

and thus λ+
j = f1(θ+

j ) for j = 1, 2, . . . , k are the positive eigenvalues of An. Similarly, 
F and f2 intersect exactly (k − 1) times, say at θ−1 , . . . , θ−k−1, and thus λ−

j = f2(θ−j ) for 
j = 1, 2, . . . , k−1 are the negative eigenvalues of An besides the eigenvalue λ = −1. The 
following theorem formalizes the above observations and supplies interval estimates for 
the eigenvalues.
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Fig. 3. Graph of the functions f1(θ), f2(θ), and F (θ) (black) for θ ∈ [0, π] for k = 8.

Fig. 4. Graph of the functions f1(θ), f2(θ), and F (θ) (black) for θ ∈ [0, π] for k = 16.
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Theorem 5.2. Let An be the connected anti-regular graph with n = 2k vertices. Let F (θ)
be defined as in (9) and let f1(θ) and f2(θ) be defined as in (10), and recall that γj = 2πj

2k−1
for j = 0, 1, . . . , k − 1.

(i) The functions F (θ) and f1(θ) intersect exactly k times in the interval 0 < θ < π. If 
θ+
1 < θ+

2 < · · · < θ+
k are the intersection points then the positive eigenvalues of An

are

f1(θ+
1 ) < f1(θ+

2 ) < · · · < f1(θ+
k ).

Moreover, for j = 1, 2, . . . , k − 1 it holds that

f1(γj−1) < f1(θ+
j ) < f1(γj).

(ii) The functions F (θ) and f2(θ) intersect exactly (k−1) times in the interval 0 < θ < π. 
If θ−1 < θ−2 < · · · < θ−k−1 are the intersection points then the negative eigenvalues of 
An are

f2(θ−k−1) < · · · < f2(θ−2 ) < f2(θ−1 ) < −1.

Moreover, for j = 1, 2, . . . , k − 1 it holds that

f2(γj) < f2(θ−j ) < f2(γj−1).

Proof. One computes that

f ′
1(θ) = sin θ

2(cos θ + 1)
√

(cos θ + 1)(cos θ + 3)

and thus f ′
1(θ) > 0 for θ ∈ (0, π). Therefore, f1 is strictly increasing on the interval (0, π). 

Since f2(θ) = −1 −f1(θ) it follows that f2 is strictly decreasing on the interval (0, π). On 
the other hand, using basic trigonometric identities and the relation sin(θ)Uk−1(cos θ) =
sin(kθ), we compute that

F ′(θ) = [−k + Uk−1(cos θ) cos((k − 1)θ)] sin θ

[sin(kθ) + sin((k − 1)θ)]2 .

It is known that maxx∈[−1,1] |Um(x)| = (m + 1) and the maximum occurs at x = ±1
[8]. Therefore, F ′(θ) < 0 for all θ ∈ D\{0, π}. It follows that F is a strictly decreasing 
function on D, and when restricted to the interval (γj, γj+1) for any j = 1, . . . , k − 2, F
is a bijection onto (−∞, ∞). Now, since f1 is a strictly increasing continuous function 
on [γj , γj+1] for j = 1, 2, . . . , k− 2, the graphs of F and f1 intersect at exactly one point 
inside the interval (γj , γj+1). A similar argument applies to f2 and F on each interval 
(γj , γj+1) for j = 1, 2, . . . , k− 2. Now consider the leftmost interval [0, γ1). We have that 
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Table 1
The ratio tk = (θ+

k
−γk−1)

(π−γk−1)
for k =

125, 250, 500, . . . , 32000.
n = 2k tk

250 0.5020031290
500 0.5010007838
1000 0.5005001962
2000 0.5002500492
4000 0.5001250123
8000 0.5000625018
16000 0.5000312567
32000 0.5000156204

f1(0) < F (0) and since f1 is strictly increasing and continuous on [0, γ1], and F is strictly 
decreasing and limθ→γ−

1
F (θ) = −∞, F and f1 intersect only once in the interval (0, γ1). 

A similar argument holds for f2 and F on the interval (0, γ1). Finally, on the interval 
(γk−1, π], we have f2(γk−1) < F (π) and since f2 decreases and F is strictly increasing 
on the interval (γk−1, π) then f2 and F do not intersect there. On the interval (γk−1, π), 
f1 has vertical asymptote at θ = π and is strictly increasing and F is continuous and 
decreasing on (γk−1, π]. Thus, in (γk−1, π], f1 and F intersect only once. This completes 
the proof. �

Theorem 2.2 now follows from the fact that limk→∞ f1(θ+
1 ) = f1(0) = −1+

√
2

2 and 

that limk→∞ f2(θ−1 ) = f2(0) = −1−
√

2
2 . We also obtain the following corollary.

Corollary 5.1. Let λmax > 0 and λmin < 0 denote the largest and smallest eigenvalues, 
respectively, of the connected anti-regular graph An where n is even. Then

F (π) = n

2 < λmax

and

f2

(
2(n/2−1)π

n−1

)
< λmin.

Through numerical experiments, we have determined that the mid-point of the interval 
(γk−1, π), which is (4k−3)π

2(2k−1) , is a good approximation to θ+
k ∈ (γk−1, π), that is,

λmax ≈ F

(
(4k − 3)π
2(2k − 1)

)
.

In Table 1 we show the results of computing the ratio tk = (θ+
k −γk−1)

(π−γk−1) for k =
125, 250, . . . , 32000 which shows that possibly limk→∞ tk = 1 .
2
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6. The eigenvalues of large anti-regular graphs

A graph G is called bipartite if there exists a partition {X, Y } of the vertex set V (G)
such that any edge of G contains one vertex in X and the other in Y . It is known that the 
eigenvalues of a bipartite graph G are symmetric about the origin. Figs. 3–4 reveal that 
for the connected anti-regular graph A2k a similar symmetry property about the point 
−1

2 is approximately true. Specifically, if λ �= λmax is a positive eigenvalue of A2k then 
−1 − λ is approximately an eigenvalue of A2k, and moreover the proportion r ∈ (0, 1) of 
the eigenvalues that satisfy this property to within a given error ε > 0 increases as the 
number of vertices increases.

Recall that if λ+
1 < λ+

2 < · · · < λ+
k denote the positive eigenvalues of A2k then there 

exists unique θ+
1 < θ+

2 < · · · < θ+
k in the interval (0, π) such that λ+

j = f1(θ+
j ), and 

if λ−
k−1 < λ−

k−2 < · · · < λ−
1 < −1 denote the negative eigenvalues of A2k there exists 

unique θ−1 < θ−2 < · · · < θ−k−1 in (0, π) such that λ−
j = f2(θ−j ) for j = 1, 2, . . . , k − 1. 

With this notation we now prove Theorem 2.3.

Proof of Theorem 2.3. Both f1(θ) and f2(θ) are continuous on [0, π) and therefore are 
uniformly continuous on the interval [0, rπ]. Hence, there exists δ > 0 such that if 
θ, γ ∈ [0, rπ] and |θ − γ| < δ then |f1(θ) − f1(γ)| < ε/2 and |f2(θ) − f2(γ)| < ε/2. Let 
k be such that 2π

2k−1 ≤ δ and let j∗ ∈ {1, . . . , k − 1} be the largest integer such that 
2j∗

2k−1 ≤ r. Then for all j ∈ {1, . . . , j∗} it holds that [γj−1, γj ] ⊂ [0, rπ]. Let cj ∈ [γj−1, γj ]
be arbitrarily chosen for each j ∈ {1, . . . , j∗}. Then θ+

j , θ
−
j , cj ∈ [γj−1, γj ] implies that 

|f1(θ+
j ) − f1(cj)| < ε/2 and |f2(θ−j ) − f2(cj)| < ε/2 for j ∈ {1, . . . , j∗}. Therefore, if 

j ∈ {1, . . . , j∗} then

|λ+
j + λ−

j + 1| = |f1(θ+
j ) + f2(θ−j ) + 1|

= |f1(θ+
j ) − f1(cj) + f1(cj) + f2(θ−j ) − f2(cj) + f2(cj) + 1|

≤ |f1(θ+
j ) − f1(cj)| + |f2(θ−j ) − f2(cj)| + |f1(cj) + f2(cj) + 1|

= |f1(θ+
j ) − f1(cj)| + |f2(θ−j ) − f2(cj)|

< ε

where we used the fact that f1(cj) + f2(cj) + 1 = 0. This completes the proof for the 
even case. As discussed in Section 7, the odd case is similar. �

Note that the proportion of j ∈ {1, 2, . . . , k−1} such that 2j
2k−1 ≤ r is approximately r. 

In the next theorem we obtain estimates for |λ+
j +λ−

j +1| using the Mean Value theorem.
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Theorem 6.1. Let An be the connected anti-regular graph where n = 2k. Then for all 
1 ≤ j ≤ k − 1 it holds that

|λ+
j + λ−

j + 1| ≤ 4πf ′
1(γj)

2k − 1
.

In particular, for fixed r ∈ (0, 1) and a given arbitrary ε > 0, if k is such that 4πf
′
1(rπ)

2k−1 < ε

then

|λ+
j + λ−

j + 1| < ε

for all 1 ≤ j ≤ (2k−1)r
2 .

Proof. First note that since f1(θ) + f2(θ) = −1 it follows that f ′
2(θ) = −f ′

1(θ). The 
derivative f ′

1 vanishes at θ = 0, is non-negative and strictly increasing on [0, π). Therefore, 
by the Mean value theorem, on any closed interval [a, b] ⊂ [0, π), both f1(θ) and f2(θ)
are Lipschitz with constant K = f ′

1(b). Hence, a similar computation as in the proof of 
Theorem 2.3 shows that

|λ+
j + λ−

j + 1| ≤ 4πf ′
1(γj)

2k − 1

for j = 1, 2, . . . , k − 1. Therefore, if k is such that 4πf ′
1(rπ)

2k−1 < ε then for 1 ≤ j ≤ (2k−1)r
2

we have that 2πj
2k−1 ≤ rπ and therefore

|λ+
j + λ−

j + 1| ≤ 4πf ′
1(γj)

2k − 1 ≤ 4πf ′
1(rπ)

2k − 1 < ε. �
A similar proof gives the following estimates for the eigenvalues with error bounds.

Theorem 6.2. Let An be the connected anti-regular graph where n = 2k. For 1 ≤ j ≤ k−1
it holds that

|λ+
j − f1(γj)| ≤

2πf ′
1(γj)

2k − 1

and

|λ−
j − f2(γj)| ≤

2πf ′
1(γj)

2k − 1 .

We now prove Theorem 2.4.

Proof of Theorem 2.4. It is clear that {−1, 0} ⊂ σ ⊂ σ̄. Let ε > 0 be arbitrary and let 
y ∈ [−1+

√
2

2 , ∞). Then y ∈ σ̄ if there exists μ ∈ σ such that |μ −y| < ε. If y ∈ σ the result 
is trivial, so assume that y /∈ σ. Since f1 : [0, π) → [−1+

√
2 , ∞) is a bijection, there exists 
2
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a unique θ′ ∈ [0, π) such that y = f1(θ′). Let c ∈ [0, π) be such that θ′ < c < π. For k
sufficiently large, there exists j ∈ {1, . . . , k − 1} such that θ′ ∈ [γj−1, γj ] and 2jπ

2k−1 ≤ c. 
Increasing k if necessary, we can ensure that also 2πf ′

1(c)
2k−1 < ε. Then by the Mean value 

theorem applied to f1 on the interval I = [min{θ′, θ+
j }, max{θ′, θ+

j }], there exists cj ∈ I

such that

|λ+
j − y| = |f1(θ+

j ) − f1(θ′)| ≤ |θ+
j − θ′|f ′

1(cj) <
2π

2k − 1f
′
1(c) < ε,

where in the penultimate inequality we used the fact that f ′
1 is increasing and cj < c. 

This proves that y is a limit point of σ and thus y ∈ σ̄. A similar argument can be 
performed in the case that y ∈ (−∞, −1−

√
2

2 ] using f2. �
7. The odd case

In this section, we give an overview of the details for the case that An is the unique 
connected anti-regular graph with n = 2k + 1 vertices. In the canonical labeling of An, 
the partition π = {{v1, v2}, {v3}, {v4}, . . . , {vn}} = {C1, C2, . . . , C2k} is an equitable 
partition of An [14]. In other words, π is the degree partition of An (we note that this is 
true for any threshold graph). The quotient graph An/π has vertex set π and its 2k×2k
adjacency matrix is

A/π =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 · · · 0 1
2 0 0 1 · · · 0 1

0 0 0 1 · · ·
...

...

2 1 1 0 · · ·
...

...
...

...
...

...
. . .

...
...

0 · · · · · · · · · · · · 0 1
2 1 1 · · · · · · 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In other words, A/π is obtained from the adjacency matrix of the anti-regular graph 
A2k (in the canonical labeling) with the 1’s in the first column replaced by 2’s. It is 
a standard result that all of the eigenvalues of A/π are eigenvalues of An [14]. At this 
point, we proceed just as in Section 4. Under the same permutation (6) of the vertices 
of An/π, the quotient adjacency matrix A/π takes the block form

A/π =
(

0 B

C J − I

)

where
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C =

⎛
⎜⎜⎜⎜⎜⎜⎝

2
1 2

. .
. ...

...

. .
. ...

...
1 1 · · · 1 2

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then

(A/π)−1 =
(−C−1(J − I)B−1 C−1

B−1 0

)
.

After computations similar to the even case, the analogue of (7) is

(α2 − 1/2)
α + 1 Uk−1

(
h(α)

2

)
− 1

2Uk−2

(
h(α)

2

)
= 0.

After making the substitution α = 1
λ and simplifying one obtains

(2 − λ2)
λ(λ + 1)Uk−1(β(λ)) − Uk−2(β(λ)) = 0

or equivalently

(2 − λ2)
λ(λ + 1) = Uk−2(β(λ))

Uk−1(β(λ)) = sin((k − 1)θ)
sin(kθ) .

The analogue of Theorem 5.1 in the odd case is the following.

Theorem 7.1. Let n = 2k + 1 and let An denote the connected anti-regular graph with n
vertices. Then λ �= 0 is an eigenvalue of An if and only if

(2 − λ2)
λ(λ + 1) = sin((k − 1)θ)

sin(kθ) (12)

where θ = arccos
(

1−2λ−2λ2

2λ(λ+1)

)
.

Define the function g(λ) = (2−λ2)
λ(λ+1) . Changing variables from λ to θ as in the even case, 

and defining g1(θ) = g(f1(θ)), g2(θ) = g(f2(θ)), and in this case F (θ) = sin((k−1)θ)
sin(kθ) , we 

obtain the two equations

g1(θ) = F (θ)

g2(θ) = F (θ).
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Fig. 5. Graph of the functions g1(θ), g2(θ), and F (θ) (black) for θ ∈ [0, π] for k = 8.

The explicit expressions for g1 and g2 are

g1(θ) = 2 + 3 cos(θ) +
√

(cos θ + 1)(cos θ + 3)

g2(θ) = 2 + 3 cos(θ) −
√

(cos θ + 1)(cos θ + 3).

The graphs of g1, g2, and F on the interval [0, π] are shown in Fig. 5. In this case, the 
singularities of F occur at the equally spaced points

γj = jπ

k
, j = 1, 2, . . . , k.

If θ+
1 < θ+

2 < · · · < θ+
k denote the unique points where F and g1 intersect then f1(θ+

1 ) <
f1(θ+

2 ) < · · · < f1(θ+
k ) are the positive eigenvalues of A2k+1. Similarly, if θ−1 < θ−2 <

· · · < θ−k denote the unique points where F and g2 intersect then f2(θ−k ) < f2(θ−k−1) <
· · · < f2(θ−1 ) are the negative eigenvalues of A2k+1.

Theorems 2.1–2.3 hold for the odd case with now λ = 0 being the trivial eigenvalue. 
Theorem 5.2, Theorem 6.1, and Theorem 6.2 proved for the even case hold almost ver-
batim for the odd case; the only change is that the ratio 2π

2k−1 is now πk .

8. The eigenvalues of threshold graphs

In this section, we discuss how a characterization of the eigenvalues of An could be 
used to characterize the eigenvalues of general threshold graphs. Let G be a threshold 
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graph with binary creation sequence b = (0s1 , 1t1 , · · · , 0sk , 1tk), where 0si is short-
hand for si ≥ 0 consecutive zeros, and similarly for 1ti . Let V (G) = {v1, v2, . . . , vn}
denote the associated canonical labeling of G consistent with b. The set partition 
π = {C1, C2, . . . , C2k} of V (G) where C1 contains the first s1 vertices, C2 contains 
the next t1 vertices, and so on, is an equitable partition of G. The 2k × 2k quotient 
graph G/π has adjacency matrix

Aπ = A2k + diag(0, β1, . . . , 0, βk)

where A2k is the adjacency matrix of the connected anti-regular graph with 2k vertices 
and βi = 1 − 1

ti
, see for instance [13]. The eigenvalues of G other than the trivial 

eigenvalues λ = −1 and/or λ = 0 are exactly the eigenvalues of Aπ. Presumably, the 
characterization of the eigenvalues of A2k that we have done in this paper will be useful 
in characterizing the eigenvalues of Aπ. We leave this investigation for a future paper.
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