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Let G be a graph on n vertices with Laplacian matrix L and 
let b be a binary vector of length n. The pair (L, b) is con-
trollable if the smallest L-invariant subspace containing b is 
of dimension n. The graph G is called essentially controllable
if (L, b) is controllable for every b /∈ ker(L), completely un-
controllable if (L, b) is uncontrollable for every b, and condi-
tionally controllable if it is neither essentially controllable nor 
completely uncontrollable. In this paper, we completely char-
acterize the graph controllability classes for threshold graphs. 
We first observe that the class of threshold graphs contains 
no essentially controllable graph. We prove that a threshold 
graph is completely uncontrollable if and only if its Laplacian 
matrix has a repeated eigenvalue. In the process, we fully char-
acterize the set of conditionally controllable threshold graphs.
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1. Introduction

Consider the single-input linear control system
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ẋ(t) = Fx(t) + bu(t) (1)

where F ∈ R
n×n, b ∈ R

n, x(t) ∈ R
n, and u(t) ∈ R. If for each x0 ∈ R

n there exists a 
control signal u : R → R such that the trajectory of (1) with initial condition x(0) = x0
reaches the origin in finite time, then the pair (F, b) is called controllable. It is well-known 
that (F, b) is controllable if and only if the smallest F-invariant subspace containing b, 
denoted by 〈F; b〉, has full dimension n [12]. Although controllability of linear systems 
is a well developed subject, the problem has drawn recent interest due to applications 
in networked dynamical systems and distributed control. Specifically, the case where F
is the Laplacian matrix L of a graph G = (V, E), and b ∈ {0, 1}n is a binary vector, 
has drawn a great deal of attention in recent years [20,18,11,10,17,15]. In engineering 
applications, the vertices Vb := {vi ∈ V | (b)i = 1} are seen as leader agents and 
influence the remaining follower agents V\Vb through the control signal u : R → R

and the connectivity of the communication network defined by the graph G. A major 
problem of interest is to characterize the controllability properties of (L, b) in terms of the 
topological properties of G as b is allowed to vary within the set {0, 1}n of binary vectors. 
The reason for studying (1) with the Laplacian matrix is that it serves as a benchmark 
for studying consensus algorithms [16], and moreover, the problem is of independent 
interest since its characterization reveals valuable information about the eigenvectors of 
the Laplacian and adjacency matrices of graphs [5,4,3].

In this paper, we study the topological obstructions to controllability via the notion 
of graph controllability classes, recently introduced in [1].

Definition 1.1. Let G be a connected graph with Laplacian matrix L. Then G is called

(i) essentially controllable on {0, 1}n if (L, b) is controllable for every b ∈ {0, 1}n\
ker(L);

(ii) completely uncontrollable on {0, 1}n if (L, b) is uncontrollable for every b ∈ {0, 1}n; 
and

(iii) conditionally controllable on {0, 1}n if it is neither essentially controllable nor com-
pletely uncontrollable on {0, 1}n.

For each integer n ≥ 2, let an be the number of asymmetric connected graphs and 
let en be the number of essentially controllable graphs, of order n. It is known that 
an essentially controllable graph of order larger than two must be asymmetric. On the 
other hand, the block graphs of Steiner triple systems generate asymmetric graphs of 
arbitrarily large order that are completely uncontrollable. However, it is conjectured that 
limn→∞ en/an = 1.

In this paper, we consider threshold graphs and show that the presence of a repeated 
eigenvalue is a necessary condition for complete uncontrollability and in the process com-
pletely classify the set of conditionally controllable threshold graphs. Threshold graphs 
were introduced in [2] and in [9], and their interesting properties has led to a large 
body of literature, see [6] and [13], and references therein. In applications, threshold 
graphs appear as models of social networks [19], in the problem of synchronizing parallel 
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computer processes, cyclic scheduling problems, and problems in psychology [13]. The 
results of this paper rely on the spectral properties of the Laplacian for threshold graphs 
characterized in [8,14] in terms of the degree sequence and which enables us to explicitly 
determine the only threshold graphs with simple eigenvalues.

1.1. Notation

In this section we establish some notation used throughout the paper. Let G = (V, E)
be a graph (undirected, unweighted, no loops or multiple edges) with vertex set V =
{v1, v2, . . . , vn}. The set of vertices adjacent to v ∈ V will be denoted by N (v) := {w ∈ V |
{v, w} ∈ E} and the degree of v will be denoted by dv := |N (v)|. Accepting a slight 
abuse of notation, we denote an edge by (v, w) with the understanding that this pair is 
unordered. The adjacency matrix of G will be denoted by A, the diagonal degree matrix 
by D, and the Laplacian matrix of G by L = D −A. The Laplacian L is symmetric and 
positive semi-definite, and thus its eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn are real and non-
negative. The all ones vector 1n := [1 1 · · · 1]T is an eigenvector of L with eigenvalue 
λ1 = 0, and if G is connected then λ1 = 0 is a simple eigenvalue. We assume throughout 
that G is connected so that 0 < λ2. For our purposes, by the eigenvalues (eigenvectors) 
of a graph G we mean the eigenvalues (eigenvectors) of its Laplacian matrix L.

Finally, we denote by {e1, e2, . . . , en} the standard basis of Rn, and if v ∈ R
n we 

denote by (v)a the a-th component of v.

2. Threshold graphs

We recall the definition of threshold graphs from [8]. We start with a single vertex v1
and let G1 = ({v1}, ∅). Suppose now that Gk = (Vk, Ek) has been defined for some 
k ≥ 1. Then Gk+1 is obtained from Gk by adding a new vertex vk+1 and defining the 
new edge set as either Ek+1 = Ek ⊕ {vk+1} := Ek or Ek+1 = Ek ⊗ {vk+1} := Ek ∪
{(v1, vk+1), . . . , (vk, vk+1)}. In other words, the ⊕ operation simply adds the vertex vk+1
to the graph Gk without connecting it to any vertex of Gk and the ⊗ operation connects 
vk+1 to each vertex of Gk. Henceforth, we assume that the vertex set V = {v1, . . . , vn} of 
a threshold graph is labeled according to the above inductive construction. Following [7], 
we associate with a threshold graph G of order n a binary creation sequence TG ∈ {0, 1}n
defined as TG(i) = 0 (respectively TG(i) = 1) if the ⊕ operation (respectively ⊗) was 
used when adding vertex vi, for all i ∈ {1, . . . , n}. We note that a threshold graph is 
connected if and only if TG(n) = 1.

Let G be a threshold graph of order n and let D(G) = (d1, . . . , dn) be the degree se-
quence of G, i.e., |N (vi)| = di. Let δ1 < δ2 < · · · < δs, where s ≤ n, be the distinct degrees 
appearing in D(G) and let ni be the number of times δi appears in D(G). With a slight 
abuse of notation we write D(G) = (δn1

1 , . . . , δns
s ). Similarly, by Λ(G) = (μm1

1 , . . . , μmh

h )
we denote the spectrum sequence of L where μ1 < μ2 < · · · < μh are the distinct non-zero
eigenvalues of L, where mi is the algebraic multiplicity of μi. With this notation we have 
the following theorem [8].
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Theorem 2.1. Let G be a connected threshold graph with degree and spectrum sequences 
D(G) = (δn1

1 , . . . , δns
s ) and Λ(G) = (μm1

1 , . . . , μmh

h ), respectively. Then s = h and:

1. If h is odd, say h = 2r + 1, then

μi =
{
δi, i = 1, . . . , r,
δi + 1, i = r + 1, . . . , h and mi =

{
ni − 1, i = r + 1,
ni, otherwise.

2. If h is even, say h = 2r, then

μi =
{
δi, i = 1, . . . , r,
δi + 1, i = r + 1, . . . , h and mi =

{
ni − 1, i = r,

ni, otherwise.

3. Controllability classes for threshold graphs

We start by proving the following straightforward consequence of the definition of 
threshold graphs.

Lemma 3.1. Any threshold graph has at least one non-trivial graph automorphism.

Proof. The result is trivial if the order of the graph is n = 2 so assume that n > 2. 
Consider the vertices v1 and v2. By the inductive construction of threshold graphs, any 
vertex v ∈ V\{v1, v2} is adjacent to v1 if and only if it is adjacent to v2. Hence, the 
element of the automorphism group that interchanges v1 and v2 and fixes the rest of the 
graph vertices is a nontrivial graph automorphism. �

We next prove that there exists no essentially controllable graphs but first we need 
the following [1].

Theorem 3.1. Let G be a connected graph with Laplacian matrix L and let b be a binary 
vector not equal to the zero or all ones vector. Suppose that there are positive integers 
α, β such that for each vi ∈ Vb, we have α = |N (vi) ∩ V\Vb|, and for each vj ∈ V\Vb
we have β = |N (vj) ∩ Vb|. Then

L2b = (α + β)Lb,

and in this case, dim〈L; b〉 = 2. In particular, α + β is an integer eigenvalue of L with 
corresponding eigenvector Lb.

Proposition 3.1. For any connected threshold graph of order n ≥ 2 we have

dim〈L; en〉 = 2.

In particular, there exists no essentially controllable threshold graph of order n > 2.
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Proof. Using the notation in Theorem 3.1, if b = en, then clearly α = n − 1 and β = 1, 
and therefore 〈L, en〉 = span{en, Len}. Hence, if n > 2 then (L, en) is uncontrollable. �

We now state one of our main results.

Theorem 3.2. Let G be a connected threshold graph of order n > 2. Then G is completely 
uncontrollable if and only if L has a repeated eigenvalue.

Before proving Theorem 3.2, we make the following remark.

Remark 3.1. It is well-known that for a diagonalizable matrix M ∈ R
n×n with distinct 

eigenvalues μ1, . . . , μh, its minimal polynomial is m(x) = (x − μ1)(x − μ2) · · · (x − μh). 
Consequently, dim〈M; b〉 ≤ h for every b ∈ R

n, and thus one direction of Theorem 3.2
is immediate. However, it is not difficult to construct a symmetric matrix M having 
distinct eigenvalues such that dim〈M; b〉 < n for every b ∈ {0, 1}n. For example,

M =

⎡
⎢⎢⎢⎣

2 0 −1 −1
0 2 −1 −1
−1 −1 5 −3
−1 −1 −3 5

⎤
⎥⎥⎥⎦

has distinct eigenvalues λ1 = 0, λ2 = 2, λ3 = 4, λ4 = 8, and it is readily verified that 
(M, b) is uncontrollable for every b ∈ {0, 1}4.

The proof of Theorem 3.2 relies on the following sequence of results.

Proposition 3.2. Let G be a connected threshold graph with creation sequence TG. Then G
has simple eigenvalues if and only if one of the following holds:

(i) TG = (0, 1, 0, 1, 0, 1, . . . , 0, 1), or
(ii) TG = (0, 0, 1, 0, 1, 0, . . . , 0, 1).

Proof. We claim that if G satisfies one of the following conditions

a) TG(i) = TG(i + 1) = 0, or
b) TG(i) = TG(i + 1) = 1,

for some i ≥ 2, then G has a repeated eigenvalue. To prove the claim, it is enough to 
show that in the degree sequence D(G) = (δn1

1 , δn2
2 , . . . , δns

s ) there are distinct k, � ∈
{1, 2, . . . , s} such that nk, n� > 1, for then by Theorem 2.1 we have that either mk > 1
or m� > 1, that is, the eigenvalue μk or μ� is repeated. Note that, for any threshold 
graph G, d1 = d2; hence in the sequence D(G), there exists k∗ ∈ {1, 2, . . . , s} such that 
nk∗ > 1.
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Suppose that (a) holds for some i ≥ 2. Then clearly di = di+1 and thus there exists 
an index � 
= k∗ such that n� > 1. Hence, by Theorem 2.1, regardless of the fact that h
is odd or even, either μ� or μk∗ is a repeated eigenvalue of G.

Now suppose that (b) holds. Then we have that

di = (i− 1) + 1 +
n∑

j=i+2
TG(j),

di+1 = i +
n∑

j=i+2
TG(j),

since vi is adjacent to all vertices in {v1, . . . , vi−1}, to vi+1, and to any vertex in 
{vi+2, . . . , vn} that has a corresponding 1 in TG , and similar reasoning holds for comput-
ing di+1. As a result, di = di+1, and a similar argument as in case (a) establishes that G
has a repeated eigenvalue.

Clearly, the binary creation sequences TG = (0, 1, 0, 1, 0, 1, . . . , 0, 1) and TG = (0, 0, 1,
0, 1, 0, 1, . . . , 0, 1) are the only sequences that do not satisfy (a) and (b). Hence, it is 
enough to prove that the threshold graphs associated with these sequences have dis-
tinct eigenvalues. Consider first, TG = (0, 1, 0, 1, 0, 1, . . . , 0, 1), of even length n. It is 
straightforward to verify that the degree sequence is

D(G) =
(

1, 2, . . . , n2 − 1, n2 ,
n

2 ,
n

2 + 1, . . . , n− 1
)

and therefore there are h = n − 1 distinct degrees. From Theorem 2.1, the number of 
non-zero distinct eigenvalues is n −1, and hence all the eigenvalues of TG = (0, 1, . . . , 0, 1)
are distinct. From Theorem 2.1 with h = 2r + 1 odd, where r = n

2 − 1, we have

Λ(G) =
(

1, 2, . . . , n2 − 1, n2 + 1, . . . , n
)
.

Finally, consider TG = (0, 0, 1, 0, 1, 0, 1, . . . , 0, 1) of odd length n. In this case the degree 
sequence is

D(G) =
(

1, 2, . . . , n− 1
2 − 1, n− 1

2 ,
n− 1

2 ,
n− 1

2 + 1, . . . , n− 1
)

and therefore there are h = n − 1 distinct degrees and the same number of distinct 
non-zero eigenvalues. From Theorem 2.1 with h = 2r odd, where r = n−1

2 , we have

Λ(G) =
(

1, 2, . . . , n− 1
2 ,

n− 1
2 + 2, . . . , n

)
.

This completes the proof. �
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Next, we construct the set of eigenvectors of the two classes of threshold graphs 
given in Proposition 3.2. To that end, it is straightforward to verify that for TG =
(0, 1, 0, 1, . . . , 0, 1) of even length n we have

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 −1 0 −1 0 −1 · · · 0 −1
−1 d2 0 −1 0 −1 · · · 0 −1
0 0 d3 −1 0 −1 · · · 0 −1
−1 −1 −1 d4 0 −1 · · · 0 −1
0 0 0 0 d5 −1 · · · 0 −1
−1 −1 −1 −1 −1 d6 · · · 0 −1
...

...
...

...
...

. . .
...

0 0 0 0 0 0 · · · dn−1 −1
−1 −1 −1 −1 −1 −1 · · · −1 dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the degree sequence d = (d1, d2, . . . , dn) is

dj = n− j

2 + (j − 1) = n + j

2 − 1

if j is even, and

di = n− (i + 1)
2 + 1 = n− i + 1

2

if i is odd.
For each � ∈ {2, 3, . . . , n}, let u� = − 

∑�−1
i=1 ei + (� − 1)e� ∈ R

n be the vector whose 
entries from 1 through (� − 1) are all equal to −1 and the �-th entry is equal to (� − 1), 
and all other entries are equal to zero, that is,

u� = [−1 −1 · · · −1 (�− 1) 0 · · · 0 ]T . (2)

For example, for n = 8, if U = [18 u2 u3 · · · u8] then

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1 −1 −1 −1 −1 −1 −1
1 1 −1 −1 −1 −1 −1 −1
1 0 2 −1 −1 −1 −1 −1
1 0 0 3 −1 −1 −1 −1
1 0 0 0 4 −1 −1 −1
1 0 0 0 0 5 −1 −1
1 0 0 0 0 0 6 −1
1 0 0 0 0 0 0 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Clearly, 1T
n · u� = 0 for � ∈ {2, 3, . . . , n}.
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Lemma 3.2. Let G be the threshold graph with creation sequence

TG = (0, 1, 0, 1, . . . , 0, 1)

of even order n. Let u� be defined as in (2) for � ∈ {2, 3, . . . , n}. Then if j ∈ {2, 3, . . . , n}
is even we have

Luj = (dj + 1)uj , (3)

and if i ∈ {2, 3, . . . , n} is odd we have

Lui = diui. (4)

In particular, {1n, u2, . . . , un} is a set of mutually orthogonal eigenvectors of L.

Proof. It is clear that for u� ∈ {u2, u3, . . . , un} we have that (Lu�)a = 0 for a > �, and 
thus we need only consider (Lu)a when 1 ≤ a ≤ �.

Suppose first that j ∈ {2, 3, . . . , n} is even. We consider three cases:

(i) Suppose that a < j is even. Then, seeing as how the a-th row of L is

[−1 · · · −1 da 0 −1 · · · 0 −1 ]

and that da = n−a
2 + (a − 1), a direct computation shows that

(Luj)a = −(dj + 1).

(ii) Suppose that a < j is odd. Then, seeing as how the a-th row of L is

[ 0 · · · 0 da −1 0 −1 · · · 0 −1 ]

and that da = n−(a+1)
2 + 1, a direct computation shows that

(Luj)a = −(dj + 1).

(iii) It is clear that for a = j, we have

(Luj)j = (j − 1) + (j − 1)dj = (dj + 1)(j − 1).

This proves the even case.
Suppose now that i ∈ {2, 3, . . . , n} is odd. As in the even case, we consider three cases 

for a:
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(i) If a < i is even then a direct computation shows that

(Lui)a = −di.

(ii) If a < i is odd then a direct computation shows that

(Lui)a = −di.

(iii) It is clear that for a = i we have

(Lui)i = di(i− 1).

This proves the odd case. �
Now consider the threshold graph G with creation sequence

TG = (0, 0, 1, 0, 1, . . . , 0, 1)

of odd length n. It is straightforward to verify that

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 0 −1 0 −1 · · · 0 −1
0 d2 −1 0 −1 · · · 0 −1
−1 −1 d3 0 −1 · · · 0 −1
0 0 0 d4 −1 · · · 0 −1
−1 −1 −1 −1 d5 · · · 0 −1
...

...
...

...
. . .

...
...

0 0 0 0 0 · · · dn−1 −1
−1 −1 −1 −1 −1 −1 · · · dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the degree sequence d = (d1, d2, . . . , dn) is

dj = n− j

2 + (j − 1) = n− (j − 1)
2 = n− j + 1

2 ,

if j is even, and

di = (i− 1) + n− i

2 = n + i

2 − 1,

if i is odd. The proof of the following is very similar to that of Lemma 3.2 and is omitted.

Lemma 3.3. Let G be the threshold graph with creation sequence

TG = (0, 0, 1, 0, 1, . . . , 0, 1)
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of odd order n. Let u� be defined as in (2) for � ∈ {2, 3, . . . , n}. Then if j ∈ {2, 3, . . . , n}
is even we have

Luj = djuj

and if i ∈ {2, 3, . . . , n} is odd we have

Lui = (di + 1)ui.

In particular, {1n, u2, . . . , un} is a set of mutually orthogonal eigenvectors of L.

The complete classification of the eigenvectors of the threshold graphs TG = (0, 1,
0, 1, . . . , 0, 1) and TG = (0, 0, 1, 0, 1, . . . , 0, 1) given in Lemma 3.2 and Lemma 3.3, respec-
tively, allows us to completely classify the binary vectors b rendering (L, b) controllable 
for threshold graphs. Before we prove our next main result, we need the following binary 
invariance controllability property [1].

Proposition 3.3. Let G be a connected graph of order n ≥ 2, let b ∈ {0, 1}n, and let 
b = 1n − b be the binary complement of b. Then the pair (L, b) is controllable if and 
only if the pair (L,b) is controllable. In fact,

dim〈L;b〉 = dim〈L;b〉,

provided b /∈ {1n, 0n}.

Theorem 3.3. Let G be the threshold graph defined by TG = (0, 1, 0, 1, . . . , 0, 1) or TG =
(0, 0, 1, 0, 1, . . . , 0, 1) of order n > 2. Define the partition

{0, 1}n = B1 ∪B2 ∪B3 ∪B4

as follows:

B1 =
{
b ∈ {0, 1}n

∣∣ (b)1 = 1, (b)2 = 0
}
, B3 =

{
b ∈ {0, 1}n

∣∣ (b)1 = (b)2 = 0
}
,

B2 =
{
b ∈ {0, 1}n

∣∣ (b)1 = 0, (b)2 = 1
}
, B4 =

{
b ∈ {0, 1}n

∣∣ (b)1 = (b)2 = 1
}
.

The following hold:

(i) The pair (L, b) is controllable if and only if b ∈ B1 ∪B2.
(ii) Exactly half of the binary vectors b ∈ {0, 1}n yield a controllable pair (L, b).
(iii) If b ∈ B3\{0n} and

�1(b) := min
{
� ∈ {3, . . . , n}

∣∣ (b)� = 1
}
,

then dim〈L; b〉 = n + 2 − �1(b).
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(iv) If b ∈ B4\{1n} and

�0(b) := min
{
� ∈ {3, . . . , n}

∣∣ (b)� = 0
}
,

then dim〈L; b〉 = n + 2 − �0(b).

Proof. To prove (i) let b ∈ B1. Then clearly uT · b 
= 0 for every eigenvector u ∈
{1n, u2, . . . , un}, and therefore (L, b) is controllable. Hence, every vector b ∈ B1 yields a 
controllable pair (L, b). Now let b ∈ B2. Then clearly b ∈ B1, and therefore by invariance 
of controllability under binary complements, it follows that (L, b) is also controllable for 
every b ∈ B2. Now let b ∈ B3 and consider the eigenvector u2 = [1 −1 0 0 · · · 0]T . Then 
clearly uT

2 ·b = 0, and therefore (L, b) is uncontrollable. If now b ∈ B4 then clearly also 
uT

2 · b = 0, and thus (L, b) is uncontrollable.
Part (ii) follows from |B1| + |B2| = 2n−2 + 2n−2 = 2n−1.
To prove (iii), let b ∈ B3\{0n} and let �1 = �1(b) be as above. Then by definition of u�

in (2), we have that uT
2 ·b = · · · = uT

�1−1 ·b = 0 and uT
� ·b 
= 0 for � ∈ {�1, �1 +1, . . . , n}. 

Also, it is clear that 1T
n ·b 
= 0. Hence, the number of eigenvectors that b is not orthogonal 

to is n − (�1 − 1) − 1 = n − �1 + 2. The result now follows since dim〈L; b〉 is equal to the 
number of eigenvectors that b is not orthogonal to.

To prove (iv), if b ∈ B4 then clearly �0(b) = �1(b). Then, by invariance of controlla-
bility under binary complements,

dim〈L;b〉 = dim〈L;b〉 = n + 2 − �1(b) = n + 2 − �0(b).

This ends the proof. �
We now prove Theorem 3.2.

Proof of Theorem 3.2. If L has a repeated eigenvalue then (L, b) is uncontrollable for 
every b ∈ R

n, and in particular for every b ∈ {0, 1}n.
Now suppose that G is completely uncontrollable. Assume by contradiction that G

has simple eigenvalues. Then G is either the threshold graph TG = (0, 1, 0, 1, . . . , 0, 1) or 
TG = (0, 0, 1, 0, 1, . . . , 0, 1). By Theorem 3.3, G is conditionally controllable, which is a 
contradiction. This completes the proof. �
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