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Abstract In this paper, we present a numerical algorithm to compute high-order ap-
proximate solutions to Bellman’s dynamic programming equation that arises in the
optimal stabilization of discrete-time nonlinear control systems. The method uses a
patchy technique to build local Taylor polynomial approximations defined on small
domains, which are then patched together to create a piecewise smooth approxima-
tion. The numerical domain is dynamically computed as the level sets of the value
function are propagated in reverse time under the closed-loop dynamics. The patch
domains are constructed such that their radial boundaries are contained in the level
sets of the value function and their lateral boundaries are constructed as invariant
sets of the closed-loop dynamics. To minimize the computational effort, an adaptive
subdivision algorithm is used to determine the number of patches on each level set
depending on the relative error in the dynamic programming equation. Numerical
tests in 2D and 3D are given to illustrate the accuracy of the method.

Keywords Discrete-time control systems - Nonlinear optimal regulation - Dynamic
programming - Hamilton—Jacobi—Bellman equation - Numerical methods
1 Introduction

A major accomplishment in linear control systems theory is the development of sta-
ble and reliable numerical algorithms to compute solutions to algebraic Riccati equa-

Communicated by Lars Griine.

C.O. Aguilar ()
Department of Mathematics, California State University, Bakersfield, CA, USA
e-mail: caguilar24 @csub.edu

A.J. Krener

Department of Applied Mathematics, Naval Postgraduate School, Monterey, CA, USA
e-mail: ajkrener @nps.edu

@ Springer


mailto:caguilar24@csub.edu
mailto:ajkrener@nps.edu

528 J Optim Theory Appl (2014) 160:527-552

tions [1]. Riccati equation solvers are now standard routines in several commercial
software packages such as MaTLAB® (care, dare), MapLE® (CARE, DARE),

and MATHEMATICA® (RiccatiSolve, DiscreteRiccatiSolve). For non-
linear control systems, the development of analogous algorithms is far less mature
than its linear counterparts. The main difficulty, of course, is the complexity of solv-
ing the associated Hamilton—Jacobi—Bellman (HJB) partial differential equation in
continuous-time and the dynamic programming equation in the discrete-time case.
Although a complete mathematical theory of solutions to Hamilton—Jacobi equations
has been developed under the notion of viscosity solution [2], the lack of stable and
reliable numerical methods to solve the HIB and/or the dynamic programming equa-
tions, even for low-dimensional systems, is a real obstruction to the application of
nonlinear control theory to problems of practical interest.

Various methods have been proposed in the literature for computing numerical
solutions to the HIB and the dynamic programming equations [3—13]. The reader is
referred to [8, 13] for a discussion on the strengths and weaknesses of these methods
and to [14] for a comparison of some of the methods. Recently in [15], a numeri-
cal method for an HIB equation, that also incorporates the concept of patchy vector
fields, is developed for the minimum-time optimal control problem using an iterative
scheme. The original Albrekht method is based on a Taylor series approximation.
Loosely speaking, in the Taylor series method [3, 5], it is shown that if the linearized
version of the problem is solvable, then the full nonlinear version is also (locally)
solvable, and in the real analytic case, it is possible to construct term-by-term a real
analytic solution to the HIB equation. One can then use a truncated power series of
the solution to obtain a suboptimal control [16—18]. Two main drawbacks with the
series method is that the region of attraction of the closed-loop system is not known
in advance and may actually shrink as the order of the approximation increases, and
the computational effort needed to compute the coefficients of the series solution
grows rapidly as the order of the approximation is increased. For these reasons, the
Taylor series method was extended in [12] using the general idea of patchy vector
fields proposed in [19] and a numerical continuation method based on a Cauchy-
Kowalevski technique. Roughly speaking, the method consists in computing Taylor
polynomial solutions on disjoint patch domains and then piecing together the differ-
ent local solutions. The boundaries on adjacent patches are computed as (approxi-
mately) invariant manifolds of the closed-loop system, and the remaining boundaries
are contained in the level sets of the computed value function. The method can be
seen as a finite volume continuation method since new local polynomial solutions
are computed by inheriting some of the derivatives from a previously computed lo-
cal solution and computing the remaining derivatives from the HIB equation using a
Cauchy—Kowalevski-type algorithm. The original method in [12] has been improved,
and a proof of its high-order accuracy is given in [20].

In this paper, we present a discrete-time version of the patchy method in [12].
A motivation for considering discrete-time systems is that, in practice, real-time con-
trollers are implemented digitally and control design based on discretized models
may lead to performance improvements over simply discretizing a continuous-time
controller [21]. Moreover, under certain conditions [22, 23], if the sampling period is
sufficiently fast, a feedback control asymptotically stabilizing an approximate dis-
cretization of a continuous-time model also asymptotically stabilizes the original
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continuous model via a sample-hold implementation. Aside from these reasons, the
functional form of the dynamic programming equation significantly simplifies the
Cauchy—Kowalevski technique needed to compute new solutions from the previously
computed solutions on lower cost level sets. The main simplification is that the Taylor
coefficients for the optimal cost function can be readily obtained by evaluation after
solving for the coefficients of the control. By contrast, in the continuous-time patchy
method [12], one needs to solve a system of linear equations for the coefficients of
the optimal cost function once the coefficients for the control are known. This differ-
ence decreases the overall computational effort of the algorithm and makes it more
practical in higher-dimensional problems.

This paper is organized as follows. In Sect. 2, we review some background ma-
terial on the optimal regulator problem and Albrekht’s method in the discrete-time
setting, and also give a brief description of our patchy algorithm. In Sect. 3, we
present a continuation algorithm that will be used to compute a new local polyno-
mial approximation to the solution of the dynamic programming equation from a
previously computed local polynomial approximation. In Sect. 4, we give a detailed
presentation of our numerical algorithm. In Sect. 5, we describe an adaptive patch
subdivision scheme for determining the number of patch domains on which to build
new polynomial solutions. In Sect. 6, we outline some implementation details of the
method in the 3D case. In Sect. 7, we present some numerical tests illustrating the
method. We end the paper with a conclusion and a discussion of research problems
that merit further investigation.

2 Preliminaries

We first describe some notation used in the paper. If Q and P are matrices, by Q >0
we mean that Q is positive semi-definite, and by P > 0 we mean that P is positive
definite. The transpose of the matrix A is denoted by A’. The Euclidean norm is
denoted || - ||. The interior of a set S C R” is denoted int S. The set of nonnegative
integers is denoted No = {1,2,3,...}. If f: £2 — R is a continuous function on the
compact set §2, we denote || f||cc = maxycg | f(x)|. The complement of a set S is
denoted S¢.
Consider the discrete-time nonlinear control system

x(k+1)= f(xk), uk)), 1)

where x (k) € R" is the state, u(k) € R™ is the control, k € Ny, and f : R" x R" —
R”" are the dynamics, assumed to be C*°. We assume that f (0, 0) =0, i.e., the origin
x% = 0 is an equilibrium of the uncontrolled system. A fundamental problem in con-
trol systems theory is the design of a feedback control that asymptotically stabilizes
the equilibrium x°. Under appropriate conditions [24], the design of such a feedback
control can be accomplished by formulating an optimal control problem as follows.
Given a running cost £ : R" x R™ — R, of class C* and with £(0, 0) = 0, the op-
timal regulator problem for (1) is to find a feedback control x : R” — R™ (defined
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possibly only locally) such that

o]

7 (x0) = M(O)n;l(rll) Ze x(k), u(k)) Z x(k), k (x(k)))

for all xo = x(0) for which 7 (xq) is well defined. If it exists, the optimal cost function
(or value function) m satisfies Bellman’s dynamic programming equation [25]

T(x) = rr}lin[n(f(x, u)) + £(x, u)], )
and the optimal feedback control k is given by
K(x)= argrr}lin[n(f(x, u)) + £(x, u)].

Consequently,
7t(x)=n(f(x,/((x)))+€(x,/<(x)), 3)

and moreover, the resulting closed-loop system x(k 4+ 1) = f(x(k), x(x(k))) has x0
as a locally asymptotically stable equilibrium with Lyapunov function & [24]. Hence,
the problem of designing an asymptotically stabilizing control for (1) becomes that
of solving (3) for the pair (i, ). Regarding the existence of & and «, the following
theorem proved in [26] is suitable for our purposes.

Theorem 2.1 Suppose that f and £ are C*°. Let A=Y 2(0,0), let B= U -(0,0), let
0= %(o, 0), let R = %(0, 0) = 0, let S = L0, 0), and assume that[ *1=o0.

Assume that (A, B) is stabilizable and (A, Ql/z) is detectable. Then there exist C*°
mappings (1, k) solving (3) locally around the origin x° = 0.

Henceforth, when not explicitly stated, we make the assumptions in Theorem 2.1.
Moreover, we make the further assumption that the mapping u +— 7w (f(x,u)) +
£(x,u) is strictly convex for all x € R" for which 7 is defined, and consequently
the following first-order condition for a minimum is satisfied:

o af al
0= ox f(x,/c(x)) » (x,/c(x))+ o (x,/c(x)). “4)

In general, obtaining explicit solutions to (3)—(4) for (;, ) is unrealizable, and
thus one is led to consider numerical methods. A natural approach to compute
approximate solutions to (i, k) is to consider Taylor series approximation meth-
ods, as done in [26] and which we now summarize. To begin, it is well known
that when f(x,u) = Ax + Bu and £(x,u) = lx’Qx + lu’Ru with Q > 0 and
R > 0, there exists a unique symmetric matrix P > 0 such that 7 (x) = 2x/ Px and
k(x) = Kx, where K = —(B'PB + R)"'B'PA, provided that (A, B) is stabiliz-
able and (A, Q'/2) is detectable [27]. Moreover, the closed-loop matrix A + BK
has eigenvalues inside the unit circle in C, and thus the closed-loop system is (glob-
ally) asymptotically stable. Suppose now that f and ¢ are nonlinear and have Taylor
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expansions of the form

f(x,u)=Ax+ Bu+ Zf[k](x, u,
k=2

1 1 >
0(x,u) = Ex/Qx + Eu’Ru +Y M),
k=3

where f¥1(x, u) are the k-order terms of f, and similarly for £/1(x, ). In analogy
with the method of Albrekht [3] in the continuous-time case, the Taylor series coef-
ficients of (i, k) are computed by Taylor expanding (3)-(4) about x° and gathering
terms of the same order. The Taylor expansions of 7 and « take the form

1 o0 0
n(x):Ex’Px—l-kX_;rr[k](x), K(x)=Kx+];K[k](x),

respectively. When computing for the Taylor coefficients, (3) is used to compute the
(d 4 1)-order coefficients of 7, and (4) is used to compute the d-order coefficients
of k, where d > 1 is a positive integer. After computing the first nonzero coefficients
of m and k, the subsequent equations for the higher-order coefficients are linear and
have a triangular structure due to the fact that the equations for the (d + 1)-order
terms of 7 do not involve the d-order terms of «. Hence, once the (d + 1)-order
terms for 7 are solved for, the d-order terms of « can be directly computed. There
is, however, an obstruction to computing the (d 4 1)-order terms of , and it relies
on the spectrum of the closed-loop matrix A 4+ BK. Specifically, when solving for
the Taylor coefficients of w of order d > 3, one is led to the invertibility of the linear
transformation

p(x) > p(x) — p((A+ BK)x), &)

where p(x) is an R-valued d-homogeneous polynomial, i.e., p(ax) = a? p(x) for all
x € R" and o € R. The eigenvalues of the linear transformation (5) are of the form
1 — XAi A, -+ A;, where the A; are eigenvalues of the closed-loop matrix A + BK.
Now, because |A;| < 1, we have that 1 —A; A;, - - - A;, # 0, and thus the transformation
is invertible. Hence, as a consequence of the linear regulator problem, one is able to
solve for the Taylor coefficients of 7 and « to any desired order.

Let 70 and «° denote the Taylor polynomial approximations of 7 and « to de-
gree d + 1 and d, respectively, based at x°. From now on, the pair (7, ¥°) will be
called the Albrekht approximation of (r, k) of order d. As stated in the introduction,
increasing the order d results in a more accurate approximation, but there are two
main drawbacks in doing so. First, increasing d may decrease the size of the domain
on which (79, °) is a satisfactory approximation because of the rapidly growing be-
havior of high-order polynomials away from the origin. Second, the number of Taylor
coefficients of degree d in n variables is ("+371) = (s;(’f__ll))!!, and this number grows
rapidly in d and thereby increases the computational effort substantially.
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In this paper, we present a numerical algorithm that extends the approximation
(9, k%) and produces a piecewise smooth approximation by patching together lo-
cal polynomial approximations on disjoint domains. We now give a brief description
of the method. The Albrekht approximation (79, «°) is accepted on a sublevel set
2%={x eR" : 7%x) < ¢}, with ¢ chosen sufficiently small so that 229 is topolog-
ically equivalent to the closed unit disk D" in R”. We then partition the boundary of
229 into patches, select patch points inside each patch, and compute new polynomial
approximations to (7, x) (based at the patch points) by using (3)—(4) and the deriva-
tives of (7%, k¥) at the patch points. Each new local approximation is accepted on a
domain, called a patch tube, radiating outward from the boundary of £2°. The patch
tubes of the new local approximations are pairwise disjoint, and their outer-most
boundaries define a piecewise smooth hypersurface. We then repeat the procedure
on the newly computed outer-most boundaries of the patch tubes. We can choose to
refine the partition on the outer-most boundaries depending on how well the com-
puted approximations are satisfying the dynamic programming equation, say using
the relative error incurred by the computed solutions.

3 Continuation Algorithm for the Computation of New Local Solutions

In this section, we present a continuation algorithm that is used repeatedly for com-
puting new approximations from previously computed ones. It is the analog of the
Cauchy—Kowalevski-type algorithm in [12]. We will explain the algorithm for the
case where we compute a new polynomial approximation to (m, k) given that we
have computed the Albrekht approximation (7, k%), but the same algorithm applies
when computing solutions on patches contained in higher level sets of the value func-
tion (Sect. 4). We assume that (79, x°) is an approximation of degree d > 1.

The polynomial 7°(x) begins with the quadratic term %x’ Px where P > 0, and
therefore 7 has the origin as a nondegenerate local minimum. Hence, by Morse’s
lemma, the sublevel sets {x : 7%(x) < ¢} near the origin are diffeomorphic to the
unit disc D", provided that ¢; > 0 is sufficiently small, and therefore the level sets
{x : no(x) = ¢ < c¢1} near the origin are diffeomorphic to the sphere S"—1. Hence,
we assume that ¢; > 0 is such that 220 := {xeR" : no(x) <c1} =D", and we let
S!:=902° ="', By making ¢; smaller if necessary, we can assume that 29 is
contained in the domain of attraction of the asymptotically stable closed-loop dy-
namics resulting by applying the control «°. Furthermore, 79 is a Lyapunov function
for the closed-loop dynamics, that is, 70(f (x, k°(x))) — 7°(x) < 0 for x € £2°. In
particular, for all x € S!, we have no(f(x, k%)) <7%x) =¢y, and consequently
£ (x, k%x)) will lie in the interior of 229 for all x € S'.

Now let x! € S!, and we seek to extend (°, °) to a new polynomial approxima-
tion (!, k1) centered at x! and whose domain radiates outward from the boundary
S'. To this end, we solve the single-stage optimization problem

T*(x) = n}[in[no(f(x,u)) +2(x,u)] (6)

for x near x!. The interpretation of this new optimization problem is clear. Indeed,
since ¥ approximates the optimal cost function 7, we replace 7 with 7° on the
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right-hand side of (2) and thus obtain (6). We then seek a minimizer «* satisfying

) =m0 (f (o, () + £(x, £*(x)) (7
and the first-order necessary condition for a minimum

ar® o WOf e,

0= ox f(x,/c (x)) » (x,/c (x)) + ” (x,/c (x)) (8)
for x near x!. Then, we let (nl, Kl) be the Taylor approximation of (7*, k*) at xL.
A major advantage in this formulation of extending (7, x¥) is that the computa-
tion of 7* and «* are decoupled. Indeed, notice that in (8) the only unknown is «*,
whereas in the original necessary condition (4), both the optimal cost 7 and optimal
regulator « are unknown. Moreover, once «! is computed, we can compute 7! by
evaluating the right-hand side of (7) using « ! and reading off the Taylor coefficients.
This is in contrast to the continuous-time version of the patchy algorithm [12], which
requires solving a system of linear equations for each Taylor coefficient of 77!. Now,
regarding the solvability of (8), in the following theorem, we use continuity argu-
ments to establish the existence of a unique and C* solution «* to (8) and describe
how its Taylor series can be computed term-by-term.

Theorem 3.1 Assume that f and £ are C*° and that al (0,0) = 0. Let 7° denote
the Albrekht approximation of 7 of order > 2. There exists a unique and C* map-
ping k* solving (8) in a neighborhood 2* C R" of the origin. Moreover, the Taylor
coefficients of k* at any x* € §2* can be computed term-by-term from (8).

Proof Define the C°° mapping ¢ : R” x R™ — R™ by

ar
W(x,u) = (f( )f )+—(x u).

From £(0,0) =0, ?Lx“(O) =0, and 2£(0,0) = 0 it follows that (0, 0) = 0. Next,
using the fact that £ (0) = P ~ 0 and 26(0,0) = R > 0, it follows that 520, 0) =
B’PB + R is positive definite and therefore %(0, 0) is invertible. By the implicit
function theorem, there exists a neighborhood £2* C R” of the origin and a unique
and C* mapping «* : 2% — R™ such that ¥ (x, «*(x)) = 0 for all x € £2*. In other
words,

dm?

0= == (f(x. k"))

o a—E(x,K*(X)),

%(x, K*(x)) + »

ou
and this proves the first claim. By continuity, we can assume that 2 (x K*(x))
is positive deﬁmte and therefore invertible, for all x € £2*. For convenlence let
M((x,u)= d (x u).

Now fix x* € £2* and consider the computation of the derivatives of x* at x*. To
this end, write (8) in the component form

Zan afa
- 9x, Qg

Bua
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fora =1, ..., m, and then apply %}_ yielding

oK 82710 dofp Of 8710 82 32E

B b 9Ja Ja

0= E Myg—— + E - + E + . 9
5 op 0x; — 0xq0xp 0xj Qug - 0xq Ougdx;  Oug0dx; ©

a

KK . .
The number of unknowns xff (x*) is mn, and (9) produces mn equations. Now be-
J

. . . oKy
cause M (x*, k*(x*)) is invertible, we can solve uniquely for the unknowns x”, (x™)
J

from (9).

. ¥k : L .
Next, to get equations for Vaf;k(x*), we apply adi to (9) yielding (summation

convention is in use)

0 oy 0% [aMa,g IMep 8_/«2‘} g
0x;0xy 00Xy du, Oxi |0x;
7 [8fe | ofc 50 f
0x,0Xxp0Xc |:8xk dug G_xk] E Ol

9*7° [ 3 f N 9 f» 3";}3&

9xa0xp | 3x;0x; | Ox;0up Oxi | Dty

0 ofy[ Pfa | Pfa 0K
0xq0xp 0xj | Qugdxy  Ougdug 0xi
9% Tofy n fp 57 92 fa
0xq0xp | 0xx  Oupg 0xg |Ougdx;
87[0[ 33 f. N 33 f. 8/«,’§]

9%y | Quqdx;dx; | ugdx;dug dxg

3¢ B¢ Okg
Qg dx jOxg + dugdx;dug axy

which can be written as

82KE
0= M Tir, 10
Xﬁ: op 0x;j0xy + Lk (10)

where T is an expression involving the derivatives of 70 to degree 3 and the deriva-

32 *

tives of «* to degree 1. The number of unknowns ax,gi - (x*) is m@ and (10)
oz

produces m” (”2+ D] equations. From the invertibility of M (x*, k*(x*)), we can solve

Pk (x*) from (10)
dxj0xg .

uniquely for the unknowns

. . . .. Vi
By induction, to compute the higher-order derivatives ax,ﬁ (x*), where I =
(i1,ip,...,iy) is a multi-index with i, € {1,2,...,n} and we use the notation
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3N * BN *
% = ﬁ, we apply % to (8) and obtain by induction an expression of the
form
Vi
B
0=)») M + 17, 11
Eﬂ op ox; 1 (11)

where T; is an expression involving the derivatives of 7° to degree < N + 1

NK*
gl (%)

. 9
and the derivatives of «* to degree < N — 1. The number of unknowns

is m(n+x_l), and (11) produces the same number of equations. Invertibility of

3N *
M (x*, k*(x*)) implies that we can solve uniquely for axK[ﬁ (x*) from (11). This com-

pletes the proof. g

Provided that ¢ is sufficiently small, it will be possible to use the algorithm in
the proof of Theorem 3.1 to compute a Taylor approximation «! to k* at x! € S.
In practice, k! is computed to the same degree d > 1 as the Albrekht approximation
«¥. Then, having computed «', we can compute a Taylor approximation 7! to 7*
at x! by simply differentiating the right-hand side of (7) and evaluating the resulting
expression at x!. For consistency with the order of 7°, equal to d + 1, the approxi-
mation 7! is also computed to degree d + 1. By inspection we observe from (7) that
by the chain rule the (d + 1)th derivative of the right-hand-side of (7) depends on the
(d 4 1)th derivative of «*, and the latter has not been computed. It turns out, however,
that computing the (d + 1)th derivative of «* is unnecessary.

Lemma 3.1 Let n* be defined as in (7), where k* satisfies (8) on 2*. Then the
N-order derivatives of m* on §2* depend on at most the (N — 1)-order derivatives of

K™ on £2*.

Proof Using (7), it is straightforward to show by induction that for any N > 1

N+ a9 RV
Ty (S )P w
o,a

0xy 0Xq Oy  Oug ) 0Xg

where I = (i1, ..., iy) is a multi-index, and where S7 is an expression involving the
derivatives of 7 to degree N and the derivatives of k* to degree N — 1. Now, from
(8) we observe that the coefficient of the N-order derivatives of «* in (12) vanish on
£2*. Therefore, on £2* the N'th derivatives of 7* depend only on the N — 1 derivatives
of «*, and this completes the proof. g

Applying Lemma 3.1 with N = d + 1, it follows that in order to compute the d + 1
derivatives of 77!, we need only know the derivatives of ! to degree d.

Having computed (!, k1), we can extend the initial approximation (79, k9 by
constructing a patch tube on which (7!, k') will be accepted and adjoining it to £2°.
This entire process can be repeated at distinct points on S! in such a way that the ini-
tial domain £2° is covered by the patch tubes of the newly computed approximations.
In the next section, we give the details of how to construct the patch tubes.
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Fig. 1 Dynamic construction of
patch domains; (a) partition of
the boundary Sl = 890,

(b) construction of the patch
tubes £21+/

4 Extending the Albrekht Approximation
4.1 Level One Extension

In this section, we describe how to extend the Albrekht approximation (79, k%) de-
fined on 2%to a larger domain 290021, where 22! radiates outward from the bound-
ary S' = 3529 and surrounds £2° in the sense that 29N 21 = §2°.

Let SUL, ... 8171 be a partition of the boundary S! such that each S!'/ has
a nonempty interior relative to the subspace topology on S' € R”. The algorithm
described in Sect. 3 is executed at distinct points x'-/ € ST/ N (3SH7)¢ for j =
1,..., p1, resulting in polynomial approximations (rrl’l,/(l’l),...,(rrl’pl,/cl’pl)
centered at x"!, ... x1P1, respectively. We call the points x'*/ patch points. Fig-
ure la illustrates the setup for a system in R and p; = 4, and in which the white dots
represent the boundaries of S/ and the black dots represent the patch points x'+/.

We now describe how to construct the patch tubes 2"/ in such a way that their
adjacent boundaries are closed-loop invariant. In words, £2'-/ will be the union of
SbJ | lateral boundaries radiating from S L.J and an outer-most boundary contained

in the level set {x : nl’j(x) = 3}, Whe_:re ¢y > c1. For each j € {1,..., p1}, let
Flix) == f(x,kb (x)), and for z € S/, let
_ flj
; z z
vl,j(z) = #,
lz = 5@l

that is, —v !/ (z) is the direction vector from z to its image under the closed-loop
dynamics f'/. To build the domain 2"/, we begin with z € S/ and follow the
curve

e x(t,2) = () (Y @+ @)
in positive time until reaching the level set {x : abi(x) = c2}. In other words,
Q4= {xt.0 : 7" (x(t.2)) <. 1 €10, 21},
ze8ShJ

where t, = min{r > 0 : 71/ (x(t, z)) = c2}. Now let

D1
§*=J{xt:2) s zeS"}.

j=1
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By construction, RV NS =8, and thus we define S'/ as the inner boundary
of 257, define 21/ N S? as its outer boundary, and define the remaining bound-
ary as its lateral boundary. The construction of the domains 2!/ defined above is
illustrated in Fig. 1b for a system on the plane and p; = 4.

Remark 4.1 In practice, the lateral boundaries between patches 21/ will not gener-
ally match nor will S? be a smooth hypersurface. Hence, it will in general be neces-
sary to redefine the patch tubes 2/ to avoid overlaps between adjacent patches.

Remark 4.2 The computation of the curve 7 > x(t,2) = (U~ ) +
v (D)) is relatively straightforward due to the fact that it satisfies an ODE. Indeed,
it is straightforward to show that

3—);(:, =D (x¢t,2)) v @,

and thus we can compute the curve ¢ — x (%, z) using standard high-order numerical
ODE solvers that require only evaluations of the mapping x — (D f 1/ (x))~ v/ (z),
such as Runge-Kutta methods. For example, up to first order x(¢,z) =~ z +
DL () "l (2)r, where

af

. . _ Lj
Dfl(z) = %(z, k' (2)) + a(z, k' (2)) il (2)

dax

can be easily computed.

We now augment to the original polynomial approximation (7°, x%) defined on
29 the domains £2"7 and the corresponding approximations (!7,k"7) for j =
1,..., p1, thereby obtaining a piecewise smooth approximation to  and x defined on
200!, where 2" :=JL| £2"/. In the next section, we use an inductive argument

to describe how to further extend the current approximation beyond 2° U 2.
4.2 Level Two and Beyond Extensions

Suppose that the initial polynomial approximation (%, ¥°) defined on £2° has been
extended to the union 20U 21 U---U Q" r > 1, and we wish to extend it further in
the radial direction from the outer boundary S"+! = 9£2". We recall that the domains
! fori=1,...,r are the unions of patches Qb7 j=1,..., pi,with p; < piy1.In

what follows, for notational consistency, we define Q01.— Q0 (01._ 0 Z01._
79, po=1,and ¢g =0.

We begin by partitioning S" ! into sets S"T11, ... S"T1.Pr+1 and choose patch
points x”t1:7 € §"+1.J not on the boundary of S”+1-7. More precisely, the sets S" 1./
are the result of partitioning the outer boundaries of Qrl .., Q"Pr so that each
S™+LJ c 2" for some unique oj€{l,2,..., p}. For example, a trivial partition
of S"*! would involve taking the outer boundaries of £2” L., Q7P to serve as the

Srtbl ST thrr that is, 77 = 8™t N 277, and thus p,41 = p,. In Sect. 5,
we describe an adaptive subdivision method for partitioning S"*! that takes into ac-
count the error of the numerically computed solutions. We now make the following
assumption.
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Assumption 4.1 For j=1,..., p,41, the image of StV under the corresponding
closed-loop dynamics

xk+ 1) = £(x(k). k"% (x)
is contained in the interior of 2°U 21U ... U Q7.
By Assumption 4.1, for each x"T1/ € S"+1.7  there exists a unique patch £2%-8i,
withO <a; <rand1<p; < Do such that yr+1,J = f(x’“'f,fc""i(x’“’f)) €
22%-Fi and y"+1-7 does not lie in the outer boundary of §2%i-#i. Therefore, as in the

level one extension, to compute a new polynomial approximation (7”17, k7 1.J)
centered at x”T17, we consider the single-stage optimization problem

T7*(x) = n}lin[n“f’ﬁf (f,w)+€(x,u)]

for x near x" 1/ We therefore seek a new pair (77*, k*) satisfying the equations

7* () = 7B (f (x, 1 (0))) 4+ €(x, k% (x)), (13a)
aﬂaf’ﬂj " af . 9¢ .
0= - (f(x.x (x)))ﬁ(x,x (x))+5(x,/< (x) (13b)

for x near x" 1/, As in the level one extension, the computation of 7* and «*
is decoupled, and once «* is known, one can then compute 7* from (13a). We
use (13a)—(13b) and the algorithm in Sect. 3 to compute polynomial approxima-
tions (" 17 k" t7) to (%, k*) of degrees d + 1 and d, respectively, at x” 17,
In Sect. 4.2.1 we consider the solvability of (13b).

We now construct domains §2” 1/ for each new solution (" t17, k" +1-7). To this
end, define the closed-loop system f" 17 (x) := f(x, «" 1/ (x)). We begin with z €
S™+1.J and follow the curve x(z, z) = (f" 1)) ~1(f7 17 (z) + rv" 17 (2)) in positive
time until reaching the level set {x : ot = Cr+1}, where ¢, 41 > ¢,. In other
words,

= | {xt.0 7 (x(t,2) 1. €102},

zeSrtLJ

where £, = min{r > 0 : 7"t (x(z, 2)) = ¢,41}, and we let

Pr+1
S22 = U {x(tz:2) 1 z€ S’“”}.
Jj=1
Setting 2" +! := U;”:ﬁ‘ 27+ we can augment to the running approximation de-

fined on 20U 2! U-.. U L2 the domains £2"+!/ and the corresponding approxi-
mations (7" T1J k" T1J) for j =1,..., py41, thereby extending the approximation
to QO°U ' U... U Q" In Fig. 2, we illustrate the construction of the domain
20U 2'U 2% U 23 for a system on the plane with p; =4, pr = 12, and p3 = 24.
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Fig. 2 Construction of sublevel
set domains
2ueluR?ue’

Each outer boundary on level one is subdivided into three sets to form the inner
boundaries of the patches on level two, and then each outer boundary on level two is
subdivided into two sets to form the inner boundaries of the patches on level three.
The final piecewise smooth approximations to (7, k), which we call the patchy
approximations and denote by mpc : 2 — R and ke 1 £2 — R™, are given by

Tpen(x) = (x), i x € 200 0 (ST,
kpen(X) =71 (x), if x € 27 0 (ST,

where 0 <i <rand 1 <j < p;,and 2 = Uf:() Q1 is the dynamically constructed
patchy computational domain.

4.2.1 Conditions for the Existence of High-level Extensions

In this section, we consider the solvability of (13b) for the unknown «* and the com-
putation of its Taylor series. In general, as we move away from the origin, the ques-
tion of when (13b) is solvable for «* is difficult to answer. That being said, when f
is control-affine, say f(x,u) = fo(x) + G(x)u, and £ is assumed to be quadratic in
u,say £(x,u) = Q(x) + %u’R(x)u, then the mapping

am®i-Bi af

ol
T () 5 (o) + o () (14)

ur—

is a polynomial in # € R™ of degree d > 1. An important case is where d = 1, i.e.,
where 7%-i is quadratic, for then (14) is linear in u. In this case, if 7%/ Bi(x) = Py+
P -x+ %x’sz where Py € R, P; € R'” and P, € R"*", then it is straightforward
to verify that (13b) reduces to the linear equation

0=u'[G(x) P,G(x) + R(X)]+ [P + fo(x) P]G(x),
and consequently
(1) = =[G P.G) + RW)] ' G [P] + P2 fox)],

provided that G (x)' PG (x) + R(x) is invertible.
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Qo

Fig. 3 Inherent rooted tree
structure; (a) rooted tree
associated to the patchy domain
decomposition for the
closed-loop dynamics,

(b) unique path on rooted tree
from x* to the origin

4.3 Inherent Rooted Tree Structure of the Patches

A useful feature of the construction of the patches as described in the previous section
is the inherent rooted tree structure of the patch points, see Fig. 3a. In this rooted
tree, the origin in R” corresponds to the root. The patch points on the outer boundary
S! = 8029 of the Albrekht level set £2° are on the same level in the rooted tree and are
the children of the root. Then, each patch point on the Albrekht level set has children
that are on the next level in the rooted tree, etc. This rooted tree structure is extremely
useful when evaluating the numerically computed solution for the optimal control
because it minimizes the number of patches to search as a closed-loop trajectory
evolves through the patches. For example, suppose that the initial condition of the
system is x*, represented by the blue dot in Fig. 3b. Then as the lateral boundaries of
the patches are (approximately) invariant, i.e., trajectories of the closed-loop system
will not cross the lateral boundaries, one will need to evaluate only the solutions P
that correspond to the green patches as shown in Fig. 3b. Thus, as the closed-loop
trajectory evolves, in order to evaluate the patchy feedback control ipch, it is sufficient
to do a point search in only those patches that correspond to the unique path from the
initial node associated to x* to the root. Hence, the patches corresponding to the
yellow, blue, and red patches can be ignored, and thereby decreases the time it takes
to evaluate the numerically computed control.

5 Adaptive Partitioning of Outer Boundaries

In this section, we outline an adaptive subdivision method for partitioning the outer
boundaries of a newly constructed domain level £2”. The main advantage of the
method, say over a predetermined partitioning scheme, is to reduce the number of
patch points at where the algorithm in Sect. 3 is executed and to determine the re-
gions of the state space where the error is growing more rapidly.

Suppose that the rth-level domain §2” has been computed and we seek to extend
the approximation from the outer boundary S"*! = 3£2”. The boundary S”*! is the
union of the outer boundaries of £27°!, ..., £27°Pr. Therefore, to construct the r+1
level domain £2"F!, we first need to partition the outer boundary of each £2”/. This
can be done in a predetermined manner. For example, we can partition each outer
boundary of £2”/ into two sets so that the number of patches from level-to-level dou-
bles, but this would seriously limit the practicality of the method in high dimensions.
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Instead, one could partition the outer boundary of £2”>/ in an adaptive way by con-
sidering the accuracy of the solutions (7”7, k"/) on §£2"/. To this end, we define the
relative error p"J : 2") — R by

7 (x) = BT (f (k7T () = £0x, 17 (x))

() —
P (x) = )

where0 <a; <r,1 <B; < Paj> and £2%Pi is the unique patch domain that contains
the image of the patch point x"/ under the closed-loop dynamics. We can decide to
subdivide the outer boundary of 2"/ if

sup |pr’j(x)’ > €, (15)

XE€dou 277

for some desired tolerance €, > 0, where by gy 2" -J we denote the outer boundary
of £27-J. If (15) holds, we subdivide d,,£2"/ into g > 2 sets of approximately equal
size. As a result of this subdivision process, we obtain a final partition of each outer
boundary of £2” -J and, consequently, a partition S" +L1 . 8§tLrrt of the bound-
ary S"*1. With this method, the number of sets used to partition the outer boundary of
each £2>/ will vary. In particular, the outer boundaries of the patches £2”/ where the
relative error is growing rapidly will be partitioned into more sets than those where
the relative error is growing more slowly.
For later use, we define the relative error function ppcn : 2 — R by

Ppeh(x) = I (x),  if x € 247 N (ST

for0<i<r,1<j<pi, and where 2 = UfZO.Qi. We also define the absolute
error function ¢ : 2 — R by

Epch(x) = w(x) — Tpch (X).

6 Construction of the Initial Level Set in 3D

In this section, we describe some of the details in constructing the initial level set
70(x) = ¢ for 3D systems. Although the method described in the previous section is
applicable in arbitrary dimensions, we focus on the 3D systems as it is representative
of the general case.

To construct the Albrekht level set S = 92° = {x : 7%(x) = ¢}, we use the fact
that near x°, the level sets of 7° are approximated by the level sets %x’ Px=c.To
this end, we need the following.

Lemma 6.1 Let {v1,...,v,} be a set of orthonormal eigenvectors of the symmetric

matrix P > 0, and form the matrix V = [vy vy --- v,]. Let A1, ..., Ay > 0 denote the
eigenvalues of P and set A =diag(A1, ..., A,). Then

1 —1 1
{x : Ex/Px=51}={X=V\/X Z: EZ/ZZEI}'
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0.1

Fig. 4 Construction of the initial level set in 3D: (a) icosahedral grid of sphere, (b) level set %x/ Px =¢y,
(c) level set ﬂo(x) =c]

Proof We first note that V~! = V’. Suppose that 7'z = 2¢; and let x = V\/Z_lz.
Then

1 1 -1 —1 1 -1 -1 1 -
Ex’sziz’x/X V'PVVA z=§z'«/z AVA z=§z'z=c1.

This completes the proof. O

We can therefore create the level sets S := {x : %x’ Px = ¢1} by mapping the

sphere of radius /2¢ under the transformation V\/Z_l. The value of ¢; is chosen
so that & < ¢; and thus S! C int(£29). We then construct S! as follows. Let fO (x):=

f(x,k%x)), and let v(x) := ”i:;igg;” Starting with x € S!, we follow the curve

a(t,x) = ()7 (') + o) (16)

from ¢ = 0 in forward time until reaching the level set S'. Of course, this is performed
on a discretization of S!. We choose an icosahedral discretization of the sphere [28]
with refinement level k € Ny. In Fig. 4, we illustrate the result of this process for the
3D Example 7.3, starting with an icosahedral partition of level £ = 2. Each vertex z of

the icosahedral grid is mapped under V /A _1, x=VJ/A _lz, and then we follow the
curve (16) until 7°%(a (s, x)) = c1. This results in a grid and corresponding partition
of the level set 7%(x) = ¢; that contains p1 =20 x 4k =320 triangle patches. The
collection of triangle patches is the partition S©!, ..., SUP1 of the level set 7°(x) =
c1. The patch points x!/ € S1:/ are chosen as the centroids of the triangles specified
by SU.
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7 Numerical Tests

In this section, we present three numerical tests that illustrate the high-order accuracy
of our numerical algorithm. The numerical tests were performed on a PC with an Intel
Duo-Core E8600 3.33 GHz processor and with 4 GB RAM, running Windows XP Pro
and Matlab 7.8 (R2009a).

In the first example, we apply our method to a system for which the optimal cost
function 7 and optimal control x are known explicitly.

Example 7.1 Consider the linear system

21tk +1) =z1(k) + hza(k),
22(k + 1) =zp(k) + hu(k)

and running cost £(z,u) = %(z% + z% + u?), where h = 0.05. The optimal cost func-
tion 7 and optimal feedback « are given by 7 (z) = %z’ Pz and k(z) = Kz, where P
and K are the solutions to the associated Riccati equation. Consider now the change
of coordinates x — z = ¢(x) given by

2
2=(z1,22) = (¢1(x), ¢2(x)) = (xl, X2 + sin(m)exp(—%)).

In the x = (x1, x2) coordinates, the system becomes
x(k+ 1) =¢" ($1(x (k) + hepa (x (k). p2 (x (k) + hur).

where ¢_1(zl ,22) = (21,20 — sin(zl)exp(—l%%o)), and the running cost is £(x, u) =
%(qﬁl(x)z + ¢7(x)? 4+ u?). The optimal cost function and optimal control in the
x-coordinates are then 7 (x) = %d)(x)’ P¢(x) and k(x) = K¢ (x), respectively. Hav-
ing an explicit expression for 7, we will be able to explicitly compute the absolute
error function gpch (X) = 7 (x) — Tpch (X).

We computed the patchy approximations (spch, Kpch) t0 (77, k) using our method
with initial Albrekht solution (7°, k°) of degree d = 3. The Albrekht solution was
then extended to N = 220 patch levels as described in Sect. 4. The values of the
cost levels ¢, were chosen as ¢, = (c] + (r — 1)Ac¢)? for r =1,..., N + 1, with
c1 = 0.1 and Ac = 0.02. The outer cost level on the level set N = 220 is therefore
cN+1 = 20.25. The adaptive partitioning method of the outer boundaries as described
in Sect. 5 was performed with the parameters g = 2, e.g., each patch is subdivided
into two patches, and the relative error tolerance was set to €, = 1 X 10~2. The num-
ber of patch points on the first level set initialized to p; = 66. Through the level-to-
level adaptive partitioning scheme, the number of patch points on the last cost level
was py = 114. The total CPU time for the computation was 347 seconds, the max-
imum absolute error was ||&pchllooc = 0.4751, and the maximum relative error was
l opch lloo =9.3629¢-3. In Fig. 5, we plot the domain of computation §2 defined by the
union of the dynamically computed patch domains £2°-/, and in Fig. 6, we display the
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_4t

6}

Fig. 5 Computational domain for Example 7.1:
[—0.35, —0.1] x [0.05, 0.30]

-2t
-4t

-6}

(a) (b)

Fig. 6 (a) Contour plot of patchy value function, (b) contour plot of the relative error function ppch

contour plot of the patchy value function ey (x) and the contour plot of the relative
error function ppch (x).

In Table 1, we perform an error analysis and investigate the dependence of the
errors ||&pch lloo and || ppch |l oo On the cost step-size Ac. To this end, we fixed the degree
d =3 and varied the cost step-size Ac, or equivalently varied the number of level
sets N, but of course required that the value of the final cost ¢y be constant for each
different N. For each test, we fixed the initial cost at ¢; = 0.3 and set the final cost
to cy = 2.25. In Fig. 7a, we display a semi-log plot of the absolute error ||&pchllco
as a function of the cost step-size Ac. The plot displays an exponential dependency
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Table 1 Error as a function of the cost step-size Ac for Example 7.1

Ac # level sets (N) # of patches (X'p;) CPU time (sec) llepch lloo Il opch lloo

0.05 24 1192 19 3.6049e-2 3.1423e-3
0.04 30 1504 24 2.1275e-2 2.3871e-4
0.03 40 2216 35 1.3099¢-2 8.1553e-4
0.02 60 3362 53 6.7619¢-3 9.7153e-4
0.01 120 6943 112 5.8620e-3 3.3256e-4
0.005 240 13969 225 4.1992¢-3 2.2673e-4
0.0025 480 28015 490 3.7223e-3 2.1967e-4
0.001 1200 70143 1225 3.3013e-3 1.9613e-4

10™
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absolute error

=)

_2
log, (Iel_) 1
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&
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cost step-size !
Ac
(a) (b)

Fig.7 (a) Absolute error ||épchlloo as a function of the cost step-size Ac, (b) contour plot of the absolute
error function gpcp

of the absolute error |epch |l on Ac and illustrates that, as we increase the number of
levels to reach a fixed cost value, the error incurred by the patchy solution decreases.
In Fig. 7b, we display the contour plot of the absolute error function.

Example 7.2 In this example, we consider a controlled Duffing oscillator given by

x1(k+1) = x1(k) + hxa(k),

amn
xo(k + 1) = x2(k) + h(x1 (k) — x7 (k) — 8x2(k) + u(k)).

System (17) is an Eulerian discretization (sampling interval /) of the continuous-time
dynamic model of a magneto-elastic beam in the field of two permanent magnets [29].
A thin steel beam is clamped vertically at one of its ends onto a rigid frame. Near the
free tip of the beam, two magnets are symmetrically placed on the frame and exert a
magnetic force on the beam causing it to buckle with its free tip settling close to one
of the magnets. The state variable x; is a measure of the deflection of the beam’s free
tip from the static vertical position. The unforced system has three equilibria, one at
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Table 2 Relative error and

CPU time as a function of d d PN CPU time (sec) l opehllco
1 57 22 3.8113e-3
3 58 25 3.7562e-5
5 58 34 7.2084¢-8
7 58 53 7.7843e-10

the origin and at (%1, 0). The origin is a saddle with eigenvalues 1 — % + % 82 +4
and is therefore unstable, and the other equilibria are sinks. A horizontal force u
can be applied to the rigid frame and the control problem is to stabilize the unstable
vertical position. To this end, we consider the quadratic cost

h 1 1
J(x0,u() =3 Z(xl(k)2 + 500 + Eu(k)z)

k=0

and seek an optimal regulator to stabilize the system. Using our numerical method,
we computed patchy approximations (7pch, kpch) to the optimal cost function and the
optimal control (7, k) using N = 140 patch levels as described in Sect. 4. The sam-
pling interval was set to & = 0.05, and the damping coefficient in the model (17) was
set to 6 = 0.01. The method of adaptive partitioning of the outer boundaries as de-
scribed in Sect. 5 was performed with the parameters ¢ =2 and €, = 1 x 1072, and
with the number of patch points on the initial level set chosen as p; = 24. Through
the adaptive partitioning scheme, the number of patch points on the last level was
pn = 58. The values of the cost levels were chosen as ¢, = (¢; + (r — 1)Ac)? with
c1 =0.01 and Ac =0.01 forr =1, ..., N+ 1. Hence, the cost on the outer boundary
of the last level set is cy+1 = 1.99. The initial Albrekht approximation (710, «%) was
computed to degree d = 3. The total CPU time for the computation was 86 seconds,
and the maximum relative error on the patchy domain §2 was || opchlloo = 3.5904e-4.
In Fig. 8a, we plot the computational domain §2 determined by the dynamically com-
puted patches, and in Fig. 8b, we plot representative closed-loop trajectories with
initial conditions on d£2. In Fig. 9a, we display the contour plot of the patchy value
function 7pch, and in Fig. 9b, we display the contour plot of the relative error function
Ppch-

In Table 2, we perform an error analysis by investigating the dependence of
l opchlloo On the order of approximation d. To this end, we fixed the cost step-size
to Ac = 0.01 and varied the degree of approximation d = 1, 3,5,7. Odd degrees
were chosen because the computed polynomial approximations were of odd degree,
i.e., the degree d = 1 and degree d = 2 polynomial approximations coincided, etc.
The total number of level sets was fixed to N = 50, and the number of patch points
on the last level set py remained (approximately) constant for each chosen degree d.
Using the data from Table 2, in Fig. 10, we plot the relative error as a function of the
order d. The plot displays an exponential dependence of || opchlloo On d and illustrates
the high-order accuracy of our numerical method.
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05

Fig. 9 Duffing oscillator: (a) contour plot of the patchy value function, (b) relative error ppch

Example 7.3 Consider the three-dimensional single-input system

xik+ 1) = x1(6) + h(x2 + x2(0)x3 (k)),
xa(k + 1) = x20k) + h(x3(k) — x7 (R)x3.(K)), (18)
x3(k + 1) = x3(k) + hu(k).
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Fig. 10 Relative error as a 1072
function of d
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Fig. 11 Evolution of the level sets for Example 7.3: (a) level set r = 10, (b) level set r = 25, (c) level set
r =35, (d) level set r =50

As cost we take

he(1 1 1
J(x(0), u() = 3 Z(le(k)z + ng(k)z + Z)C3(k)2 + uz(k)>.

k=0

The value & = 0.05 was chosen. A total number of N = 50 patch levels were
constructed with cost values ¢, = (c; + (r — 1)Ac)? for r = 1,..., N + 1, where
c1 = 0.1 and Ac = 0.02. Hence, the cost on the outer boundary of the last level set
is cy+1 = 1.21. The method of adaptive partitioning of the outer boundaries as de-
scribed in Sect. 5 was performed with the parameters ¢ =4 and €, =5 x 1073, and
with the number of patch points on the initial level set chosen as p; = 320. Through
the adaptive partitioning scheme, the number of patch points on the last level was
pn = 1378. The initial Albrekht solution (7°, x°) was computed to degree d = 3.
The total CPU time for the computation was 501 seconds, and the maximum relative
error was || opchlloo =3.6101e-3. In Fig. 11, we plot the evolution of the level sets of
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x10° x10°

Fig. 12 Relative error of patchy approximation: (a) level set r = 25, (b) level set r = 50

Table 3 Relative error and -
CPU time as functions of the PN CPU time (sec) llopeh llco
number of patch points

64 7 2.7099e-2
90 9 1.8521e-2
176 18 9.6424e-3
348 35 2.8898e-3
535 54 2.0575e-3
684 68 2.0865¢e-3
863 85 1.7612e-3
1064 105 1.6124e-3
1252 123 1.4745e-3
1386 139 1.4099e-3

the value function under the reversed closed-loop dynamics, and in Fig. 12, we plot
the relative error incurred by the patchy approximation on the outer boundaries of the
level sets r =25 and r = 50.

In Table 3, we perform an error analysis by investigating the dependence of
l opchlloo ©n the number of patch points on each level set. To this end, we set the ini-
tial cost to c¢p = 0.1 and fixed the cost step-size to Ac = 0.05. We computed N = 10
levels so that the final cost on the outer boundary was cy 41 = 0.36. We performed 10
numerical tests by varying the number of patch points from 64 to 1386 on each level
set. In all the tests, the adaptive partitioning scheme was not implemented, and thus
the number of patch points p; on each level set was constant foreachi =1,..., N.
Using the data from Table 3, in Fig. 13, we plot the relative error as a function of the
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Fig. 13 Relative error as a function of the number of patch points

number of patch points py. The plot shows that || opch || initially declines rapidly as
the number of patch points are increased but then begins to level off, and the effect
of adding more patch points becomes less noticeable. This is due, in part, to the fact
that the closed-loop trajectories deviate rapidly in some areas of the state space and
simply adding more points on the initial level set does not guarantee that the patch
points will stay close to each other as the level sets evolve under the closed-loop
dynamics. This motivates further investigation in using local geometric information
of the level sets and closed-loop trajectories to identify regions where the density of
points should be increased.

8 Conclusions

We have presented a numerical method that computes an approximate solution to
Bellman’s dynamic programming equation arising from an optimal stabilization
problem for nonlinear discrete-time systems. In our method, we propagate the level
sets of the computed value function under the computed closed-loop dynamics in re-
verse time. Patch domains are dynamically computed from level set to level set, and
polynomial solutions associated to the patch domains are computed using a Cauchy—
Kowalevski-type algorithm. An adaptive scheme is used to increase the density of
points on the level sets depending on the relative error incurred by the computed so-
lution. The adaptive scheme decreases the computational burden of the algorithm by
adding points only on regions where the error is greater than some prescribed rela-
tive error tolerance. Numerical tests in 2D and 3D where included that illustrate the
accuracy of the method.

Future research directions are focused on developing the patchy algorithm on sys-
tems of state dimension n > 4. One of the main tasks consists in developing and
implementing efficient algorithms that describe the local geometry of the level sets
and, in particular, in efficiently storing and dynamically changing nearest neighbor
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information as the level sets are propagated. Nearest neighbor information is needed
when computing the relative error of the patchy solution to determine which patches
need to be partitioned. Another issue is the construction of the initial Albrekht level
set in high dimensions. The current implementation in 3D relies on the ability to
discretize the 2-sphere using an icosahedral discretization, and this intuition is lost in
dimensions n > 4. A possible approach in high dimensions is to uniformly sample the
Albrekht level set 7%(x) = ¢| and then use a local repulsion algorithm to uniformly
distribute the points on the level set [30]. Finally, Fig. 11 shows the onset of a cusp for
the 3D Example 3. This type of nonlinear phenomenon is typical in Hamilton—Jacobi
equations and motivates further investigation of how our numerical algorithm can be
extended to handle this type of nonlinearity. Other future work will investigate error
estimates and convergence results for the numerical method presented.
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