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Abstract

In this thesis, we develop a feedback-invariant theory of local controllability for affine
distributions. We begin by developing an unexplored notion in control theory that
we call proper small-time local controllability (PSTLC). The notion of PSTLC is
developed for an abstraction of the well-known notion of a control-affine system, which
we call an affine system. Associated to every affine system is an affine distribution, an
adaptation of the notion of a distribution. Roughly speaking, an affine distribution
is PSTLC if the local behaviour of every affine system that locally approximates
the affine distribution is locally controllable in the standard sense. We prove that,
under a regularity condition, the PSTLC property can be characterized by studying
control-affine systems.

The main object that we use to study PSTLC is a cone of high-order tangent
vectors, or variations, and these are defined using the vector fields of the affine system.
To better understand these variations, we study how they depend on the jets of
the vector fields by studying the Taylor expansion of a composition of flows. Some
connections are made between labeled rooted trees and the coefficients appearing in
the Taylor expansion of a composition of flows. Also, a relation between variations
and the formal Campbell-Baker-Hausdorff formula is established.

After deriving some algebraic properties of variations, we define a variational cone
for an affine system and relate it to the local controllability problem. We then study

the notion of neutralizable variations and give a method for constructing subspaces



of variations.
Finally, using the tools developed to study variations, we consider two important
classes of systems: driftless and homogeneous systems. For both classes, we are able

to characterize the PSTLC property.
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Chapter 1

Introduction

1.1 Literature review

Beginning with the work of Chow [14], it has been known for some time that Lie
bracket configurations are the key objects to study in the problem of differential ge-
ometric controllability. In 1966, Nagano [34] published a result, later generalized
by Sussmann [42], that gave a precise reason as to why this is so. To state the
Nagano—Sussmann theorem, let us introduce some notation. For a real analytic man-
ifold M, I'(TM) denotes the Lie algebra of real analytic vector fields on M. Given a
subset L of T'(TM) and x € M, let L(z) = {&(z) | £ € L}. If L is a Lie subalgebra
of I'(TM), the set of all £ € L such that £(x) = 0,, i.e., £(x) is the zero vector at
x, is called the isotropy subalgebra of L and is denoted by L,. A transitive subalge-
bra of I'(TM) is a Lie subalgebra L C I'(TM) such that dim L(z) = dim M for every
x € M. With this notation we state a slightly weaker version of the Nagano—Sussmann

theorem.

Theorem 1.1 (Nagano—Sussmann) Let M and N be connected and simply con-
nected real analytic manifolds. Let L C I'(TM) and let L' C I'(TN) be transitive

Lie subalgebras such that each element of L and L' is complete. Let W: L — L'



be a Lie algebra isomorphism. Assume there exists x € M and y € N such that

V(L,) = L. Then there exists a unique diffeomorphism ¢: M — N such that ¢(x) =y

and ¢ (&) = V(&) for every & € L.

A local version of the Nagano—Sussmann theorem holds in which the connected,
simply connected, and complete assumptions can be dropped, thereby only resulting
in the existence of a local diffeomorphism ¢: Q — Q') with ¢(z) = y, such that for
every ¢ € L, the restriction of £ to the neighbourhood €2 of x and the restriction of
® (&) to the neighbourhood €’ of y correspond under ¢.

With the knowledge that Lie bracket configurations completely determine the
local behaviour of the trajectories of a family of vector fields that generate a transi-
tive Lie subalgebra, a systematic effort to characterize controllability in terms of Lie
bracket configurations has resulted in many sufficient conditions for local controlla-
bility [31], [46], [18], [30], [19], [43], [20], [44], [7], [45], [5], [8], [9], [2], [22], [28]. A
class of systems that has received a lot of the attention in this effort are the so-called
control-affine systems. These are control systems specified by a family of vector fields
X = {Xo, X1,..., X} and a subset U C R™, and whose trajectories are absolutely

continuous curves y: [0,7] — M satisfying the differential equation

V() = Xo(y(®) + ) ut()Xa(¥(1)),
a=1
for some Lebesgue integrable U-valued function t — u(t) = (u'(t),...,u™(t)) on

[0, 7. Assuming that the family of vector fields

DCU = {XO—I—iuaXa

a=1

uEU}

generates a Lie subalgebra that is locally transitive about xy € M, and under mild

geometric assumptions on the set U, local controllability from xq for the control-affine



system (X, U) is equivalent to studying the local behaviour of the set of trajectories
emanating from x, of the family of vector fields Xy, i.e., by studying the set of
end-points

B0 - 0B (), (1.1)

for ti,...,t, sufficiently small, &,....§, € Xy, p > 1, and where (¢,2) — Dt (z)
denotes the local flow generated by £. By the Nagano—Sussmann theorem, the local
behaviour of the set of points of the form (1.1) can be described using the isotropy
subalgebra of the Lie algebra generated by Xy, the latter we denote by Lie(Xy).
Assuming that U affinely spans R™, it is easy to show that Lie(Xy) = Lie(X), and thus
much attention has been given to studying the isotropy subalgebra Lie(X),,. There
are some inherent difficulties that arise, however, by fixing one’s attention on Lie(X)
in the way that has been done in the literature. To be precise, and at the same time
keep the discussion as simple as possible, let A = (A{) be an invertible m x m matrix,
and set Yo = Xo, set YV, =" AYX, forb=1,...,m,set Y = {Y;,Y1,...,Y,}, and
finally set V' = A(U). Then, it is easily seen that the trajectories of the control-affine
system (Y, V') are the same as those of (X, U). Currently, many sufficient conditions
for local controllability for control-affine systems, for example those of [45] which
generalize many known results, are not invariant under the Lie algebra isomorphism
U: Lie(X) — Lie(Y) that is induced by the mapping X; — Y;, for j € {0,1,...,m}.
In other words, the obtained results are not invariant under feedback transformations.

Let us illustrate this with a simple example.
Example 1.2 Consider the following data:

0 0 0

M =R, = (0,0,0), Xo=((a") = 2(*)") 55, X1 = 55, Xo = 5.

Let 3 = ({Xo, X1, X2}, U), where U is the unit cube in R? centered at the origin. By



Theorem 7.3 in [45], ¥ is locally controllable from zy if
(X1, [ Xy, Xoll(20) + [ X2, [X2, Xof|(w0) € span {Xi(x0), Xa(w0)} -

One can check that this condition does not hold, and so the theorem is inconclusive.
Consider the matrix A = (\{)5 (1)), and let Y = {Y;, Y1, Y5} be defined as above. One
checks that

(Y1, Y1, Yoll (o) + [Ya, [Y2, Yo]|(20) = Oay,

and thus, by Theorem 7.3 in [45], the control-affine system (Y, V) is locally controllable
from ¢ and, therefore, so is 2. In this case, the Lie algebra isomorphism induced by

the mapping X; — Yj, for j € {0,1,2}, does not preserve the isotropy subalgebras
Lie(X),, and Lie(Y),, because

(X1, [X1, Xo]}(wo) + [Xa, [X2, Xo]|(x0) # Osp-

With the above example in mind, one sees that, in order to obtain a feedback-
invariant result for local controllability using the current methods, one must verify
that the obtained conditions are satisfied by all families representing the same control-
affine system, i.e., by all families that generate the same trajectories. The work of
Elkin [16] on the equivalence of control-affine systems can be used to start such an ap-
proach. Instead, one can consider the affine distribution generated by a control-affine
system. Indeed, a control-affine system ¥ = ({Xy, X1,...,X,,},U) on M generates
the affine distribution Ay, C TM defined by

As(x) = Xo(z) + span { X;(x), ..., X;n(2)},

and two control-affine systems have the same trajectories if and only if the affine

distributions they generate are the same [16, pg. 117]. Hence, a feedback-invariant



theory can be developed by studying the local controllability of affine distributions.
To obtain a practical theory, however, one should consider affine distributions with
some regularity properties, e.g., possessing local generators. But all constructions

should be developed in a generator independent way.

1.2 Contribution of thesis

In this thesis, we propose a feedback-invariant theory of local controllability for affine
distributions. The main approach is to use the jets of sections of the affine distribution
to study high-order tangent vectors to the reachable set. Below we outline the contents

and contributions of the thesis.

e In Chapter 2, we establish our notation and review some basic material from jet
bundle theory and set-valued maps. We also prove a technical result regarding

the high-order derivatives of an integral curve with respect to a parameter.

e In Chapter 3, we begin by laying a basic foundation for the study of a generator
independent theory of local controllability for affine distributions. We start by
defining the notion of an affine system, which can be seen as a generalization of
a control-affine system. With affine systems in hand, we are then able to give a
definition of local controllability for affine distributions that we call proper small-
time local controllability (PSTLC). We then prove that, in the regular case, our

notion of PSTLC can be characterized by studying control-affine systems.

e In Chapter 4, we define a type of high-order tangent vector, which we call an
end-time variation. These tangent vector variations are constructed by concate-
nating flows of vector fields and parameterizing the switching time between the
integral curves of the flows. To better understand these variations, we study
how they depend on the jets of the vector fields by studying the Taylor expan-

sion of a composition of flows. This study leads to a theorem which asserts



the existence of a linear map on an appropriate jet space of the tangent bun-
dle whose image describes the set of variations. Some connections are made
between labeled rooted trees and the coefficients appearing in the Taylor ex-
pansion of a composition of flows. We end the chapter by relating variations to

the formal Campbell-Baker—Hausdorff formula.

Using the tools developed in Chapter 4, in Chapter 5 we study a variational
cone and its connection with the local controllability problem. We then study
the variational cone at low orders and give a method for constructing subspaces

in the variational cone.

In Chapter 6, we consider two important classes of systems, namely, driftless
systems and homogeneous systems. For driftless systems, we prove that, under
the standard regularity assumptions, there are no obstructions to local con-
trollability. Also, we give a simple proof using our methods to show that, for
driftless systems, any Lie bracket direction is realizable as a variation. We then
move onto homogeneous systems, which play a key role in many known sufficient
conditions for local controllability. We prove that, for homogeneous systems,
the variational cone contains all the information needed for the characterization
of local controllability. The proof of this result is constructive in the sense that
it gives a method for determining the directions that will verify the local con-
trollability, or lack thereof, of the system. Furthermore, for these systems we
are able to answer an open question in control theory regarding whether it is

possible to determine local controllability in a finite number of differentiations.

We end the thesis with a summary of the main results and list some natural
problems to study using our methods. We also describe how our methods can

be used to study Kawski’s fast-switching example [24].



Chapter 2

Preliminaries

In this section we establish some of our notation and review some material from jet
bundle theory and set-valued maps. We also prove a proposition on the high-order

derivatives of the solution of an ODE with respect to a parameter.

2.1 Notation and conventions

If f is a mapping, its domain is denoted by dom(f) and its image by img(f).

Let V be a finite-dimensional vector space. Most of our notation regarding vector
spaces and linear maps can be found in [12]. The convex hull, affine hull, cone hull,
and interior of a set S are denoted by co(SS), aff(S), cone(S), and int(.S), respectively.
The interior of S relative to W is denoted by inty (S). Given a linear map f, ker(f)
will denote its kernel. We identify the kth tensor power of V*, denoted by T*(V*),
with the set of k-multilinear maps from V to R, denoted by L¥(V;R). Similarly,
we identify S*(V*), the kth symmetric power of V* with the set of symmetric k-
multilinear maps from V to R, denoted by Lt (V;R). With these identifications we

sym

have that T#(V*)@W = LF(V; W) and that S*(V*)@W = L}

sym

(V;W). The symbol

® will denote the symmetric product in the symmetric algebra S(V*) = @2, S4(V*),



that is,

a® f=Sym(a® 3),

where Sym: T'(V*) — S(V*) denotes the symmetrization operator given by

1
Sym(a)(vl, c. ,'Uk) = H Z a(va(l), c. ,Ua(k)),

oeSy,

where G, denotes the permutation group on k symbols. For each integer ¢ > 1, define
§o: V. — SYV) by §p(v) =v®@v®---®wv. The proof of the following can be found
in Propositions 13 and 15, pg. 54-56, [11].

Lemma 2.1 ([11]) Let V and W be R-vector spaces with V' finite-dimensional and
let f:V — W be a homogeneous polynomial mapping of degree £ > 1. Then there is
a unique mapping h € L(S*(V); W) such that f(v) = h(5,(v)) for allv € V.

By a manifold we mean a Hausdorff, second countable, connected, smooth mani-
fold. When not explicitly stated, all maps between manifolds will be assumed to be
smooth. We will frequently employ the summation convention in which summation is
implied over repeated indices. For a manifold M, TM and T*M denote its tangent and
cotangent bundle, respectively, and T,M and T M denote its tangent and cotangent
space at x, respectively. The zero vector in T,M is denoted by 0,. If f: M — N is a
map differentiable at x, T, f denotes its derivative at z.

For a complete vector field £ on a manifold M, ®¢: R x M — M will denote its
flow. For fixed t € R, ®¢ is the diffeomorphism  — ®¢(¢, 2), and for fixed z € M, P
denotes the curve t — ®%(t,z), i.e., the integral curve of ¢ through x.

Let £ and n be vector fields of M, defined locally about a common point xq € M.
We say that £ and n are equivalent at xz( if there is a neighbourhood €2 of x( such
that (x) = n(z) for all x € Q. This defines an equivalence relation on the set of

vector fields defined locally about xy. The germ of & at zq is the equivalence class of



¢ and is denoted by [£,,]. The set of germs of vector fields at zp has a natural Lie
bracket structure inherited from the Lie bracket structure of I'(TM). Indeed, given
germs [£,,] and [1,,], we define their Lie bracket [[£,,], [77z,]] by computing the vector
field Lie bracket of the vector fields & and 1 on some neighbourhood of x4 and letting
[[€20], [720]] be the germ of the local vector field [, n]. In this way, if X is a family of
vector fields defined locally about a common point, we can talk about the Lie algebra
generated by the family of vector fields X by passing to germs.

Given a smooth function f: 2 — R™, on the open set {2 C R", the derivative
of f will be denoted Df, i.e., the R"*™-valued map on R" whose ij-entry is %.

The higher-order derivatives of f are denoted by D% f. which is a map from R" to

LE (R™;R™). Also, we denote by ng) f the R"-valued map on R"™ whose ith entry

sym
is %. The zero vector in R? will sometimes be denoted by 0,, to avoid possible
confusion with the zero vector in a different Euclidean space.

Finally, the symbol * will denote concatenation. For example, if v = (z1,..., ;)
and ¥y = (y1,...,Y,), then x xy = (x1,...,2p,y1,...,y,). We will sometimes write
xxy = (x,y). For maps f;: X; — Y;, j = 1,2, the symbol f; % f, denotes the map

(f1* f2) (21, 22) = (fi(21), fa(z2)).

2.2 Jets

In this section we review some basic notions from jet bundle theory, all taken from
38, 27].

Given a vector bundle 7: E — M, I'(E) will denote its smooth sections. Given
&,n € I'(E), we say that £ and n are k-equivalent at x if £(x) = n(x) and if, in some
adapted coordinate system around x, the partial derivatives of £ and 1 at x agree up
to order k. This defines an equivalence relation on the sections of 7. The equivalence

class of ¢ at x of order k is denoted by j*¢ and is called the k-jet of & at z. The set



of all k-jets at z is denoted by J*E and the set of all k-jets is denoted by JYE. We
will sometimes find it convenient to denote these sets as J¥m and J*n, respectively.
The set JFE can be given the structure of a smooth manifold by using vector bundle
coordinates for E to assign the coordinates of j*¢ as the derivatives of £ up to order k
at z. Note that J°7 is naturally identified with E. The map 7;: J*)E — M that takes
j%¢ to x defines a vector bundle. In 7, '(z) = JFE, addition and scalar multiplication
are defined as j*¢ + jkn = j5(€ +n) and - j*¢ = j¥(AE), respectively, where \ € R.
For non-negative integers ¢ < k, there is a canonical projection 7} : J*E — J’E, that
maps ;¢ to jL€. When ¢ = k — 1, the map 7f_,: J)E — J*7'E can be given an affine
bundle structure modeled on the pull-back of the vector bundle S*(T*M) ® E — M
to J)"IE. Explicitly, for smooth functions fi,..., f; vanishing at x, the action of

(dfi(z) © - o dfi(z) @n(x) € S¥HTM) ® E, on j*¥¢ € JFE is given by
Jx€ + (dfi(2) © - O dfi()) @ n(x) = jy (€ + (fr- filn).

The affine structure can be represented via the following exact sequence of vector

bundles over M,
€ T 1
0—= SHT*M) ® E— J)f — Jh-1E——=0
where ¢,: S¥(T*M) ® E — J*E is the injection defined as
ex((dfi(z) © - © dfi(x)) @n(z)) = jy ((fr- - fi)n),
for smooth functions fi,..., fr vanishing at . The elements of

img(e,) N JEE = ker(7f_,) N JFE

10



are the k-jets of sections of E that vanish up to order k — 1 at z; that is, elements
whose (k — 1)-jet at = agrees with the (k — 1)-jet at x of the zero section. Given
jk ¢ € ker(my_,), the corresponding element in S*(T M) ® E,, will be denoted by

Bé“. In a coordinate system (z',...,z") about w, Bé“ is given by

= Z Z ) dz! (z0) ® e, (2.1)
j=1 I
where e, ..., e, is a basis for E; , the inner sum runs through all multi-indices / =

(i1,...,i) C {1,...,n}* of length k,

o o

B I 4. i i
5% = BeiBah - Ogn and dr' =dz" @d2”? ® --- @ dx'*.

That (2.1) is indeed in S*(T* M) ® E,, follows from the symmetry of the derivative.
We will say that £ € T'(E) is of order k at x if j5¢ € ker(wF_,), but j*¢ is not the
zero vector. In other words, £ € I'(E) is of order k at x if the first non-zero derivatives
of £ at x are of order k.
Given manifolds M and N, define the trivial bundle my: MxN — M by 7y (2, y) =
x. A section of my is naturally identified with a mapping from M to N. The jet space
JE(M x N) can be defined in the same way as was done for vector bundles. Explicitly,

Jk

(.0) (I\/I x N) is the space of equivalence classes of mappings from M to N that map

r to y and whose derivatives at x agree up to order k. The set J¥(M x N), which
we prefer to denote by J¥(M; N), is the set of all such equivalence classes. The space
J(w ) (M;N) can be given an algebraic structure in the following way. We give the

vector space

TH*M = J(xo (M; R)

a R-algebra structure by defining multiplication as j*¢ - j¥ = jk(¢), for smooth
functions ¢,1 on M. The set J’(fx’y)(l\/l; N) can then be identified with the R-algebra

11



homomorphisms Hom(Tsz;Tsz) by defining, for j*f € J’(“%y)(M;N) and j;jgb €
TFN,
52 f(5y0) = J2(¢< ).

Similarly to the vector bundle case, we have an exact sequence of vector spaces
e |k TR ket
0 —= SH(T;M) @ TN —==J¢, ) (M N) == J¢70 (M;N) — 0 (2.2)

where €;: S¥(T:M) @ TN — J¥ (M;N) is the mapping defined by

(z.y)
ex((dfi(2) © - O dfi(x) @vy) = G (Yo, o (ffo- - fi)),

for smooth functions fi,..., fr on M that vanish at z, and where vy, ,: R — N is
any curve at y such that y;y(O) = vy. A case that will be of interest to us is when
M = R. In this case, since S*(T*R) is canonically isomorphic to R, it follows that
SHTR)®T,N = T,N. Hence, if y: R — N is a curve at y such that j&y € ker(mf_,),
then jYy can be canonically identified with a tangent vector in T,N. Hence, the

sequence (2.2) becomes

wk.
0 TN =% J5 ) (R N) == J( 1 (R;N) ——0 (2.3)

(0,y)

Another important case of the exact sequence (2.2) is when N = R. In this case, for

y = 0, the sequence (2.2) becomes
€ Tho1
0 —= SHT;M) —> Ti*M —— 13- ——0 (2.4)
When M = RP; the set (RP)* := J]fop,o) (RP;R) can be canonically identified with

polynomial functions of order k& with zero constant term via Taylor’s expansion and,

12



therefore, we have the isomorphism
(RP)™ 2= (RP) =D @ S*((R)").

Explicitly, for a function h: R? — R vanishing at the origin, jgph as a polynomial is

defined as
k
, Mp ¢
(o, h)(t) = Z W(Op ik
1]=1
where |I] := iy + - 44y, I! = iylip!---4,!, for a multi-index I = (i1,...,1,) € ZZ,

and £/ = {142 .4 for t = (ty,...,t,) € RP.

2.3 Set-valued maps

In this section we review some basic material from set-valued analysis following [4].
Let A and B be sets. A set-valued map F' from A to B, denoted by F': A = B,
is a rule that assigns to each a € A a subset of B, possibly empty. We say that
F : A = B is compact (convex, when B is a vector space) if F'(a) is a compact
(convex, when B is a vector space) set for each a € A. Suppose that A and B are
Hausdorff topological spaces and that F': A = B has non-empty values. We say that
F' is upper semi-continuous (usc) at ag € A if, for any open set V' containing F'(ay),
there exists a neighbourhood 2 of ay such that F(Q2) C V. We say that F' is lower
semi-continuous (Isc) at ag if, for any by € F(ap) and any neighbourhood V' of by,
there exists a neighbourhood € of ag such that F(a)NV # () for all a € 2. We call F
continuous at agp if it is usc and lsc at ag. If F' is usc (Isc, continuous) at each point
in A then we say that it is usc (Isc, continuous). A set-valued map is completely

determined by its graph, that is, the set
gph(F)={(a,b) e Ax B| be F(a)}.

13



Given a non-empty subset G C A x B, there is a F': A = B such that gph(F) = G,
namely, F'(a) = {b€ B| (a,b) € G}. The proof of the following result can be found
in [37, Theorem 5.9].

Theorem 2.2 Suppose that F : R"™ = R™ has non-empty values, is conver and
int(F(ag)) # 0. Then F is lsc at ag if and only if, for all by € int(F(ag)), there exists
neighbourhoods 2 3 ag and V' 3 by such that Q x V' C gph(F), that is, V C F(a) for
all a € ).

The following will be useful.

Proposition 2.3 Let A be a topological space and let B a topological vector space.
Let Fy be a set-valued map from A to B and define Fy : A = B by Fy(a) = co(Fi(a)).

If F is lsc at ag then so is F.

Proof: Let b € Fy(ag) and let V be a neighbourhood of b. We can write that

b= Xm:vbj
j=1

for some by,...,b, € Fi(ag) and some \!,... A™ > 0 with > oy A = 1. Consider

the map p: B"™ — B defined by
p(wr,. . wm) = > Na.
j=1

Then p(by,...,b,) =b € V. Because p is continuous, for each j € {1,...,m}, there
is a neighbourhood Vj of b; such that p(V; x---xV,,) C V. By lower semi-continuity
of Fy at ag, there is a neighourhood € of ag such that W;(a) := Fi(a) NV; # 0 for all

a€ Qandall j€{l,...,m}. Then, by the definition of p,
p(Wi(a) x -+ x Wy,(a)) C Fy(a),

for all @ € Q. This proves that Fy(a) NV # ) for all a € Q, and, therefore, F; is lsc

at ag. [ |
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A set-valued map F' : A = Bis locally C" selectionable at aq if, for each by € F'(ay),
there exist a neighbourhood Q of ag and a C™ map f: Q — B such that f(ag) = by
and f(a) € F(a) for all a € Q. We say that F'is locally C" selectionable if it is locally

C" selectionable at each point in A. The following is straightforward to show [4].

Proposition 2.4 A locally continuously selectionable set-valued map is lower semi-

continuous.

2.4 Derivatives of the solution of an ODE with re-
spect to a parameter

In this section we prove a technical result regarding the high-order derivatives of the

solution of an ODE with respect to a parameter.

Proposition 2.5 Let I C R be an open interval containing the origin and suppose
that (: I x M — TM is a smooth map with the following properties:
(i) s = C((s,-) is a smooth vector field on M for each s € I;
(i1) C(0,z) =0, for all x € M;
(111) the curve (uo: I — T, M defined by (. () = ((s,20) has vanishing derivatives
of orders 1,2,...,0 —1 at s =0.
If vy denotes the integral curve of the vector field (s through xq, then the curve s +—

v(s) = v,(1) satisfies j5y = 7Cao € TuoM.

Remark 2.6 Let T > 0. From the continuous dependence on the parameters of the
solution of a smooth differential equation and the fact that the integral curves of the
zero vector field ¢y = (0, -) exist on any compact interval [—7, T, the integral curves
of the vector field (, also exist on the interval [—T,T] provided s is sufficiently close

to zero.
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The proof of Proposition 2.5 will follow from the next two lemmas.

Lemma 2.7 Let (: I x Q@ — R" be a smooth map, where I C R 1is an interval
containing the origin and where € C R™ is an open set containing the origin, and
suppose that ((0,x) =0 for all z € Q. Let v: (=0,0) x [=T,T] — R™ be the smooth
map such that vy = v(s,-) is the integral curve of (s through o = 0 € Q. Then, for

each integer £ > 1, it holds that

4

o /% O%v v o
a (@) = DgZ)C(S, U) + DQC(S, U) . w + Gy <87 v, %> R %) ) (25)

where Go: W — R" is a smooth map on a neighbourhood W C R x (R™)* of the origin
such that Gy(s,41,0,...,0) =0, for all (s,y1) € R x R™. Consequently,

0" ¢ 0 ot
Y0, 1) :Dg@g(o,xo)H/ G, (0,:60,8—;’(0,0),...,884_?1’(0,0—)) do.  (26)

¢
Os 0

Proof: The proof is by induction on ¢. By definition of v,

v(s,t) = vs(t) = xg +/0 ((s,vs(0))do,

and, therefore,

o (0 0
5 (5 ) = Dics.0) + Dacs.0) - 57

The claim holds for ¢ = 1 by setting G(s,71) = 0. Assume the claim holds for
¢ > 1. Let DG, denote the derivative of G, with respect to y for k € {1,...,¢}. By

commutativity of partial differentiation,

o (Fy 0 (0 (o
ot \ 9s'*t1 ) 9s \ ot \ Os’ ’

Hence, by the induction hypothesis and the chain-rule (we omit evaluation at (s, v)
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for the derivatives of ¢ for compactness of notation),

0 85—1—11) (e+1) () ov 8% @ 9 8521 854‘1@
a (aseﬂ) =D; " '(+D2D; g-%_FDlng.w_i_Dz C<$v @ 2CW
0G, v 91y ‘ 5o VN
+§ <s,v,%,...,w> +;Dsz (S’U’%’W’W) S
Let

Ger1(S, Y15 -, Yey1) = DzDgg)C(S, y1)-y2+D1Do((s, yl)'yé+1+D§2)C(S> y1)- (Y2, Yeg1)

¢
oG
+ 8—; (591 u) + > DRGe(s,y1,- - Ye) Yt
k=1
Then Gy 4 is clearly smooth, and, moreover,
oG
Grir(s,1,0,...,0) = a—; (s,91,0,...,0) =0,

and the latter vanishes by the induction hypothesis. This proves (2.5). Equation (2.6)
now follows because D5( (0, z) is the zero matrix for all x € Q and vy is constant and

equal to xg. This completes the proof. [ |

Lemma 2.8 Let ¢ and v be given as in Lemma 2.7. Let { > 1 be an integer and
suppose that ng)Q(O,xo) =0 forj€{0,...,0—1}. Then, for allt € (=T,T) and
for all j € {0,..., 0 =1}, 22(0,1) = 0 and

7 9sI

A
Proof: The proof is by induction on ¢ > 1. For ¢ = 1, we have that G; = 0, and,
therefore, by (2.5) it holds that $2(0,¢) = D1 (0, z)t for all t € (=T, T). The proves
the claim for ¢ = 1.
Now suppose that ng)C(O,xo) = 0 for j € {0,1,...,¢} and assume the claim
for ¢ > 1. By the induction hypothesis, %(O,t) =0 for j € {0,1,...,¢— 1} and
%(0,1&) = DgZ)C(O,:cO)t, for all t € (=T,T). By assumption, DgZ)C(O,:L’O) = 0, and
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thus also %(O,t) =0, for all t € (=7,T). Then by (2.6), for all t € (=T1,T),

8“_11) (e+1) ! ov 841]
W(O,t):Dl C(O,xo)t+/0 Gé+1 (O,xo,%(O,U),...,w(O,U)) dU
— D0, zo)t,
and this completes the proof. [ |

Proof of Proposition 2.5: Choose a coordinate neighbourhood of xy, mapping x, to the
origin, and let, by abuse of notation, (: I x{2 — R" be the coordinate representation of
(: I xM — TM about xy. By assumption, ng)C(O,xo) = 0,, for j € {0,1,...,0—1},

and, therefore, by Lemma 2.8, 222(0,¢) = 0 for all j € {0,1,...,¢— 1} and

? Osd
8ZU 0
5t (0:8) = D0, x0)t,
for all t € (=T, T). Choosing T > 1 and setting t = 1 completes the proof. [ |
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Chapter 3

Local controllability of affine

distributions

The purpose of this chapter is to lay the basic foundation for a theory of local con-
trollability for affine distributions. We start by reviewing the notion of an affine
distribution and prove some basic results regarding their local structure. We then
introduce an unexplored notion in control theory called an affine system and use it
to give a definition of local controllability for an affine distribution. A special type
of affine system is a control-affine system, and we prove that, in the regular case, it
is sufficient to study control-affine systems to prove controllability of affine distribu-
tions. Even with this being the case, the setting of affine systems has the advantage

of forcing one’s viewpoint to be feedback-invariant.

3.1 Affine distributions

By an affine distribution on M we mean a subset A C TM such that, for each x € M,
A, == AN T,M is an affine subspace of T,M. We say that A is smooth if, for each

o € M, there exists a neighbourhood §2 of zy and smooth vector fields X, Xy,..., X,
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on ) such that

A, = {Xo(x)} +span{Xi(z),..., X,n(2)}

for all = € . The set of vector fields {Xg, X1,...,X,,} is called a local frame for A
at xo. Henceforth, we deal exclusively with smooth affine distributions.

An affine distribution will be called a distribution if A, is a subspace for each x.
Distributions will typically be denoted with the symbol D. A vector field ¢ is said
to belong to A, if £(z) € A, for each z in the domain of £&. We let I'(A) denote the
set of smooth A-vector fields and let I},(A) denote the set of smooth A-vector fields
containing = in their domain. The linear part of A at x is denoted by L(A),, and

L(A) C TM denotes the corresponding distribution on M. Explicitly,

L(A), = {&(z) = &i(x) | &1,6 € L(A)}.

We say that xq is a reqular point of A if there is a neighbourhood of zy in which the
dimension of the subspace L(A), is constant, and we call A regular if it is regular at
every point. We say that A is singular at xg if it is not regular at xy. The following
three lemmas, describing some local properties of affine distributions, will prove to

be useful in subsequent analysis.

Lemma 3.1 Let k = dim(L(A),,). There is a local frame {Xo, X1, ..., X} for A at
xg such that Xyij(xg) = 0y for j =1,...,m — k. Moreover, if 0,, € A,,, then X

can be chosen to satisfy Xo(xg) = 0y, -

Proof: To prove the first statement, let » = m — k and assume that r» > 0; otherwise
there is nothing to prove. Let { Xy, Xi,..., X%, Y7,...,Y,} be a local frame for A on
2 about xy such that L(A),, = span{X;(z¢),..., Xx(z)}. Foreach j € {1,...,r},
there exist \; € R* such that Yj(zo) = A X,(z0) (we are employing the summation

convention). Let X ; = Y; — A'X;. Then Xi,; € L(A) and Xy () = 0Oy, for
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jef{l,...;rk Let A=\ Xy -+ A\J] € RM" ie. A’s jth column is \;. Now
let z € Q and v, € L(A), be arbitrary. Then v, = a?X,(x) + a5Y.(z) for some

(a1, an) € RF x R”. Set 1 = ay + A and g = ap. Then,
WEXo(a) + 15 Xiro(2) = (a8 + Noa) Xilo) + a5 (Vale) — XXi(2)
= b Xy(x) + a5Ya(z) + (\oas — Nas) Xy (z) = v,.

This proves that {Xi,...,X,,} is a local frame for L(A) on 2, and, therefore,
{Xo, X1,..., X} is a local frame for A on Q.

To prove the second statement, suppose that 0., € A,, and let {Yy, X1,..., X, }
be a local frame for A on Q about 2. There is a A € R™ such that 0,, = Yy(zo) +
N Xy (x0). Let Xo = Yy + A\X,, so that Xy(zg) = 0,,, and, moreover X, € A. Let
r € Qand v, € A, be arbitrary. We can write v, = Yy(z)+a’X;(z) for some o € R™.

If f =a— A, then
Xo(x) + p* Xp(7) = Yo(z) + (1° + \) X (2) = Yo() + o’ Xy (7) = v,
Thus {Xo, X1, ..., X} is a local frame for A on 2. This completes the proof. [ |

Lemma 3.2 Let A be reqular at xo. Suppose that &, ..., &, are A-vector fields such
that aff ({&1(x0), ..., &p(x0)}) = Asy. Then there exists a neighbourhood € of xy such
that

aff({&1(x),. ... & (x)}) = A,

for all x € Q.

Proof: It is straightforward to show that, for any ¢ € {1,...,p},

aff ({&1(z0), - - -, &p(w0)}) = &i(wo) + span {&;(wo) — &i(wo) | J # i},

so that
sSpall {fj(ifo) —&i(wo) |7 # i} = L(A)zp-
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By lower semi-continuity of the rank and regularity of A at xq, there exists a neigh-
bourhood 2 of x( such that span{{;(x) — & () |7 # i} = L(A), for all z € Q. There-

fore,
Ay = &i(x) +span{§;(z) — &Gi(x) [j # i} = alf({&u(2), .. ., §(2)})

for all x € €). This completes the proof. |

The next lemma asserts the existence of a particularly nice frame for a regular

distribution.

Lemma 3.3 Let M be an n-manifold and let D be a smooth distribution that is reqular
at xg and of rank m at xo. Then there is a coordinate system (x',... x") about x
and a local frame {X1,..., X} for D such that, in these coordinates,

Xj 0 +iC§L

 Oxd ) Gamtt’

for smooth functions c§ vanishing at xq.

Proof: Without loss of generality assume that M = R" and that zy = 0. Let
{Xl,...,f(m} be a local frame for D on a neighbourhood Q of zy. Thinking of
the X,’s as column vectors, define the matrix A(z) = [X;(z) Xa(z) - X,n(z)]. By
permuting the coordinates, if necessary, we can assume that the uppermost m x m
submatrix in A(z) is invertible on Q. Call this submatrix A(z). Multiplying A(z) on

the right by A(z)~", we obtain a new frame {X;,..., X,,} for D on Q of the form

P n—m , .
Xj:@_'_g:lbjW, jE{l,...,m},

for smooth functions bf. Define the coordinate change ¥: R" — R" by

E=Ut 2 = (™ e = ST b (xg)a L2 — BT 0T () a).
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A direct computation gives that

7) = ¥ (20)) 5oy
which completes the proof. |

Let ¢ be a vector field of order k at xy and let

Zza < (o) dat xo)®%(%) (3.1)

denote the associated symmetric k-multilinear map on T,,M, in the coordinates
(x',...,2") about g, where n = dim(M). The next proposition states that, in

the regular case, if ( belongs to a distribution D then Bé? will take its values in Dy, .

Proposition 3.4 Let D be a smooth distribution, on the n-dimensional manifold M,
that is reqular at xqo. If ¢ is a D-vector field that is of order k at xq, then img(Bf) C
D.,-

Proof: Let m be the rank of D at x;. By Lemma 3.3, there is a local frame

{X1,...,X,,} for D about x of the form

n—m

0
j = 8—+ Zcﬁgxmﬂ’

(=1

0

for smooth functions ¢ vanishing at zg, and, thus,

D,, = span {%(%), o axim(:co)} . (3.2)

There exist smooth functions u!, ..., u™ such that, locally, ( = v/ X;. Now since ( is
of order k at x(, the partial derivatives of the functions w’/ of order less than k vanish

at xo. That is, 8‘ ‘“J S (x9) = 0 for multi-indices 0 < |I| < k. Therefore,

M (ckud)
ox!

Zo =0
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for all multi-indices I such that 0 < |I| < k because ¢§(x9) = 0. It therefore follows

from (3.1) that

\I\uj K
Z Z a:L'I ZL’Q d!L’ (ZL’()) & %(ZL’Q),
and, therefore, by (3.2), img(Béf) C Dyg,- [ |

The following example shows that the conclusion of Proposition 3.4 is no longer

true in the singular case.

Example 3.5 Let M = R?, write a typical point z € R? as z = (2',2?), and let

7o = (0,0) € R? denote the origin. Consider the distribution D given by

span { 52 ()}, ! =0,
D, =
span {%(m), %(z)} . xt#0.
The vector fields X; = 1 and X, = 2! a =< form a global frame for D and so D is

smooth. The vector X, is of order k = 1 at 2. In the canonical coordinates on R?

we have

0
B}(Q = dl’l(l'o) X w(l’o),

which does not take its values in D, = span {52 (z0) }.

3.2 Affine systems

In this section we introduce affine systems and their trajectories. To begin, we will

say that F: M = TM is a multi-valued vector field if F(x) C T,M for each x € M.

Definition 3.6 Let A be an affine distribution. An affine system in A is a multi-
valued vector field A : M = TM such that aff(A(x)) = A, for each z € M.
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If A is an affine system in A, then, necessarily, A(z) # ) and A(x) C A, for each
x € M. Henceforth, when the affine distribution A is understood or it is not important
in what is to follow, we will simply refer to A as an affine system, without mentioning
A. The restriction of A to an open set 2 C M will be denoted by A|q. Given an open
set 2 C M and a multi-valued vector field A : @ = TM such that aff(A(z)) = A, for
each z € Q, we will call A a local affine system in A or an affine system in A on (2.
Given two affine systems A; and A, in A with dom(A;) Ndom(Az) # 0, we will write
that Ay C A, if Aj(x) C As(x) for all x € dom(A;) N dom(As).

By an A-vector field on an open set {2 C M we will mean a vector field £: 2 — TM
such that &(x) € A(x) for each x € . We say that A is smooth at z if, for each
v, € A(z), there exists a smooth A-vector field ¢ such that {(z) = v,, ie., A is
smoothly selectionable at x. The set of all smooth A-vector fields will be denoted by
['(A) and [(A) will denote the set of smooth A-vector fields containing x in their

domain. Finally, we say that A is proper at xq if

0z, € inta,, (co(A(zo))).

Definition 3.7 Let A : M = TM be an affine system. An A-trajectory is a locally
absolutely continuous curve y: I — M such that v'(¢) € A(y(t)) a.e., where I C R is

an interval.

There are various sufficient conditions for an affine system, or more generally a
differential inclusion, to possess trajectories under the above definition of a trajectory
[4]. The conditions are of two types, namely, continuity conditions and geometric or
topological conditions (convexity, compactness). For example, if A is a smooth affine
system, then it trivially has (smooth) trajectories through each point x € M with any
given initial velocity vector v, € A(z). To see this, let £: 2 — TM be a A-vector field

with {(z) = v,. Then the differential equation y'(¢) = £(y(t)) has a (unique) smooth
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solution through z with y'(0) = v,. More generally, we have the following.

Theorem 3.8 ([4]) Let Q C R" be an open subset containing xo and let F : Q@ = R”
be continuous with non-empty compact images. Then there exists T > 0 and an

absolutely continuous curve y: [0,T] — Q such that y'(t) € F(y(t)) and y(0) = xo.

This theorem can be applied locally to multi-valued vector fields. We include the

details for completeness.

Theorem 3.9 Let F: M = TM be a continuous multi-valued vector field with non-
empty compact images. Then, for any xo € M, there exists T > 0 and an absolutely

continuous curve y: [0,T] — M such that y'(t) € F(y(t)) and y(0) = xy.

Proof: Let (€2, ¢) be a coordinate chart for g and set n = dim(M). Let f: p(Q2) — R"
be the map defined by f(y) = T,-1)@(F(¢ " (y))). This map is well-defined since
F(z) C T,M for each x € M and it is continuous because it is a composition of
continuous maps. Moreover, its images are non-empty compact subsets of R". By
Theorem 3.8, the differential inclusion y/(t) € f(y(t)) with initial condition y(0) =
©(zo) has a solution y: [0,7] — ¢(Q2) for some 7" > 0. It follows then that t —
v(t) = ¢ (y(t)) is such that v'(t) € F(y(t)) and y(0) = xo, and y is absolutely

continuous. [ |

Corollary 3.10 A continuous and compact affine system contains trajectories

through any point in its domain.

In this thesis, we will not be concerned with existence issues of solutions of affine

systems since we will be focusing on smooth affine systems.

3.3 The Lie algebra rank condition

Given a set X of smooth vector fields, we let X(z) = { X(x) | X € X}, and denote

by Lie(X) the smallest Lie subalgebra of vector fields that contains X. If X consists
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of vector fields that are defined locally about a common point xy, then X generates a
set of germs at xg of vector fields, which by abuse of notation we denote by the same
symbol X. In this case, Lie(X) will denote the smallest Lie subalgebra of germs at x

of vector fields generated by the set of germs X.

Definition 3.11 A set X of smooth vector fields is said to satisfy the Lie algebra
rank condition (LARC) at xy if Lie(X)(xq) = T, M.

Let A be a smooth affine distribution. If X = {Xo, X3,..., X,,} is a local frame
for A at g, then it is clear that Lie(X) C Lie(I;,(A)), and hence a way to test if the
LARC holds for I, (A) at xg, is to compute Lie(X)(zq). However, since it is generally
not true that Lie(I},(A)) C Lie(X), a bad choice of a local frame can lead to an

inconclusive result. Here is a simple example to demonstrate this.

Example 3.12 As in Example 3.5, let M = R? and let x5 = (0,0) € R? denote the

origin. The distribution D is

span { 52 ()} , xh =0,
D, =

span { 52: (), 52 ()}, «' #0.

The vector fields X; = % and X, = x1% form a global frame for D and so D is
smooth. One computes that [X;, Xo] = 52 and therefore Lie({X1, Xa})(z0) = T, M.
Now let X, = gp%, where ¢: R — R is a smooth function whose derivatives of all

orders (including the zeroth derivative) vanish at ' = 0 and p(2') > 0 for 2! # 0.

Then X; and X, also form a global frame for D, but direct computations show that

Lie({X1, X3})(z0) = span {=}-

Remark 3.13 Example 3.12 can be used to show that, if D is a smooth distribution

that is singular at xo and {X;, X5} is a local frame for D about zg, then, for £ € D,
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there may not exist smooth functions u',u?, locally defined about z, such that
¢ = u'X; + u?X,. For example, and referring to Example 3.12, if X; = 52 but now
X, = (2')?5%, then {X;, Xo} is still a global frame for D. It is clear that £ = 2%

is a D-vector field, but there is no smooth function u, defined in a neighbourhood of

Zo, such that & = uXs.

The previous example is typical of what can happen in the case that A is singular

at xg. Let us now prove a lemma regarding the regular case.

Lemma 3.14 Let A be an affine distribution that is reqular at xo. Then for any

frame X = {Xo, X1,..., Xm} of A at xo, it holds that Lie(L},(A))(zo) = Lie(X)(zo).

Proof: It is clear that we only need to show that Lie(I},(A))(xq) C Lie(X)(z0). To this
end, let ny,m9 € I, (A). In a neighbourhood €2 of zy, we can write that 7, = Xo+u®X,
and that 7y, = Xy + v°X,, for smooth functions u®, v* on 2. By the properties of the

Lie bracket, we can write that
[, 12) = f[Xo0, Xa] + 9" X + W[ X, X4
for some smooth functions f¢, g*, h*®, where 1 < a,b,c,d < m. Let
X = f*(20)[Xo, Xo] + ¢°(20) Xy + 2 (20) [ X, Xa].

Then X € Lie(X) and [y, 12](z0) = X (20). This procedure can be repeated for any
vector field of the form [ng, [me—1,[ -+, [, m]] -], for any ny,...,n € I, (A) and
k > 1. Using the Jacobi-identity, one can show [35, Proposition 3.8] that any element
of Lie(I},(A)) can be written as a linear combination of Lie brackets of the form

[y (k=15 [+, [m2,m]] - - -], and so the claim follows. |

The LARC plays an important role in controllability theory. For example, in
the analytic case, the LARC at x( is a necessary condition for controllability [46].

Moreover, if one assumes the LARC at zg, the type of trajectories that characterize
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local controllability take a relatively simple form [17]. With this in mind we give the

following definition.

Definition 3.15 We say that an affine system A satisfies the LARC at z if the
family I, (A) satisfies the LARC at x.

3.4 Local controllability definitions

In this section we define the notion of local controllability for affine distributions that
we will study in this thesis.

Let A be an affine system and let 7" > 0. The reachable set of A from xy in time
T is

Ra(xo, T) ={v(T)| v:1[0,T] — M is a A-trajectory such that y(0) =z},
and the reachable set of A from xq in time at most T is

iR Io,ST U :RA Jf(],

0<t<T

The reachable set of A from g is Ra(xg) = Ui>oRa (o, t).
An affine system A is called small-time locally controllable (STLC) from z if, for

each T > 0, it holds that xy € int(R4(xo, < T))).

Remark 3.16 Let ¥ : M = TM be a multi-valued vector field. Then the sets
Rg(xo, T), Ry(xo, < T'), the definition of the LARC at xq (if F is smoothly selection-
able at xg), and the property of STLC from zg, can all be defined in the same way

for I as was done for an affine system.

We now give our local controllability definitions for an affine distribution.
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Definition 3.17 Let A be an affine distribution on M and let 2y € M.

(i) We say that A is properly small-time locally controllable (PSTLC) from xz, if
every affine system A in A that (1) is proper and smooth at xy and (2) satisfies
the LARC at zg, is STLC from x.

(ii) We say that A is small-time locally uncontrollable (STLUC) from zy if every
affine system A in A that (1) is upper semi-continuous at zy and (2) for which
A(zg) is compact, is not STLC from .

(iii) We say that A is conditionally small-time locally controllable (CSTLC) from x
if it is neither PSTLC nor STLUC from .

The following two examples illustrate some of the motivations for studying
PSTLC. In the first, we give an example that shows that controllability of the lin-

earization is not invariant under feedback transformations.

Example 3.18 Let M = R?, let 29 = (0,0,0) € M, and consider the affine distribu-
tion

A, = XO(':C> + span {Xl(x>7X2(x)} ’

X, =2 %, and Xy = 8%3. Consider the affine system A given by

_ .20
where Xo = 2757,

A(z) = { Xo(z) + u' X1 (z) + v’ Xo() } (u',u?) € [-2,2)* C R*}.

The linearization of A satisfies the equations

which is not STLC from z since 2% = 0. Consider the transformation

(ut,u?) — (', %) = (u' — 1,u%).

30



The corresponding new frame for A is given by Y, = z? ax + a3 axQ, Yi=x 882, and

Y, = %. In the new frame, the affine system A is given by

z) = {Yo(z) + v'Yi(z) + v*Ya(z) | (v',0%) € [-3,1] x [-2,2] C R?*}.

The linearization of A in this frame satisfies the equations

Using the standard Kalman rank test, this system is STLC from x.

In the next example, we show how the size of the control set can affect controlla-

bility.

Example 3.19 Let M = R3, let 2y = (0,0,0) € R?, and consider the affine distribu-

tion

A, = Xo(x) + span { X, (z), Xo(2)},
where X, = (2')?2 5.3, X1 = a ==, and Xy = 55 + (I;F 8%3. Consider the affine system
Ay given by

Ar(z) = { Xo(z) + u' X1 (2) + v’ Xo(2) | (u',u?) € [-1,1]> CR*}.

It can be shown that A; is proper and smooth at zy (Proposition 3.21) and, moreover,

A satisfies the LARC at zo. An A;-trajectory will satisfy the differential equation
it =ul; i? = u? i® = (2')*(1 + $u?).

It is clear that A; is not STLC from x because @® > 0 for all A;-trajectories. Hence,

A is not PSTLC from xy. Roughly speaking, the set U; = [—1, 1] x [—1, 1] is not “big
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enough” to counteract the effects of Xy. Now let € > 0 and consider the affine system
As(z) = { Xo(2) + u' X1 (2) + v’ Xo(2) } (u',u®) € [-1,1] x [-2 — ¢, 1]} .

It is clear that As(xg) is compact, and it can be shown that A, is upper semi-
continuous at o (Proposition 3.21). With the set Uy = [—1,1] x [-2 — ¢, 1], one

suspects that A, is STLC from z, since now i*

can be made positive and negative.
The proof that this is indeed true will have to wait until Example 5.8. Thus, A, is
STLC from zy. Hence, A is CSTLC from x,. We note that a direct computation
shows that

span { X1 (o), Xa(70), [X1, [X1, Xo]|(z0)} = To, M,

i.e., the value of the Lie algebra generated by L(A) is T,,M, but one cannot conclude

STLC for A, from the results of, say, [9] since Us is bounded.

Hence, a motivation for the notion of PSTLC is that one would like a property
of controllability that does not depend on the size of the control set but only on the
local differential geometry of the affine distribution.

As given, the definition of PSTLC is difficult to check. In this regard, the next
proposition states that, in the regular case, PSTLC can be determined by considering
affine systems that are generated by a finite set of vector fields. To state the proposi-
tion, we need some notation. For a finite family of vector fields £ = (&1, .. ., §,) defined
on an open set @ C M, let Ag : 2 = TM be defined as A¢(z) = {&(x), ..., ()} A

set-valued map of the form Ag is clearly smoothly selectionable.

Proposition 3.20 Let A be an affine distribution that is reqular at xo. Then A is
PSTLC from xq if and only if, for every finite collection & of smooth A-vector fields

such that Ag is proper at xy and § satisfies the LARC at x, A¢ is STLC from x.

Proof: Assume that, for every finite collection &€ of smooth A-vector fields such that
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Ag is proper at xy and § satisfies the LARC at z, A¢ is STLC from z, and let us
prove that A is PSTLC from xy. To this end, let A be an affine system in A that
is proper and smooth at zy and satisfies the LARC at zy. By smoothness of A at
xo, there exists a neighbourhood €2 of xy, and a finite family of A-vector fields &
defined on € such that 0,, € inta, (co(Ag(7o))). By augmenting a finite number of
A-vector fields to the family &, if necessary, we can assume that &€ satisfies the LARC
at z9. Now since aff(A¢(zg)) = Ay, by Lemma 3.2, we can assume by shrinking €2 if
necessary, that aff(Ag(x)) = A, for all z € Q, and, therefore, Ag is an affine system
in A. By construction, A¢ C A and, therefore, since Ag is STLC from z, then so is
A. Since A was arbitrary, this proves that A is PSTLC from x.

Now assume that A is PSTLC from zy and let & be a finite collection of smooth
A-vector fields. If Ag is proper at xy then again, by Lemma 3.2, A¢ is a local affine
system in A. Therefore, if A, satisfies the LARC at z, then A¢ is STLC from x

because A is PSTLC from xy. This completes proof. |

3.5 Control-affine systems

In this section, we describe an important class of affine systems called control-affine
systems. After proving some basic properties of control-affine systems, we will show
that, in the regular case, it is enough to consider control-affine systems to study the
PSTLC property.

A control-affine system is a triple ¥ = (M, {Xy, X1,..., X, },U), where M is a
manifold, {Xo, Xi,...,X,,} is a set of vector fields on M, and aff(U) = R™. The set
U is called the control set of ¥, and we say that U (or X) is proper if 0 € int(co(U)).

One can associate to X an affine distribution Ay, and an affine system Ay, in Ay by

(As). = { Xo(z) + u'X,(2) | u=(u',...,u™) € R™}
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and

As(z) = { Xo(z) + u'Xo(2) | u=(u',...,u") €U},

respectively. We will say that ¥ is convex (compact, STLC from xg, etc.) if the
associated affine system Ay, is convex (compact, STLC from zg, etc.). Ify: [0,7] — M
is a trajectory of Ay, i.e., y is absolutely continuous and y'(t) € Ax(y(t)) a.e., then
there is an integrable map u: [0,7] — R™ such that u(t) = (u'(t),...,u™(t)) € U

and
m

V() = Xo(v() + Y u"(D)Xa(v(1)).

a=1

The next proposition gives some basic properties of control-affine systems.

Proposition 3.21 Let ¥ = (M, {Xo, X1,...,X.,},U) be a control-affine system.
Then the following statements hold:

(i) As is smooth and, in particular, lower semi-continuous;

(i1) if U is compact then As is upper semi-continuous;

11) if U is proper and Xo(xg) = 04, then Ay, is proper at xg.
0

Proof: To prove (i), let z € M and let v, € Ag(x). Then there exists u € U such that
vy = Xo(x)+u*X,(x). Let £ = Xg+u®X,. Then £ is a Ax-vector field and &(x) = v,.
Hence, Ay, is smooth, and by Proposition 2.4, Ay is lower semi-continuous.

To prove (ii), fix 2o € M. Since upper semi-continuity is a local property, we can
work locally and consider a coordinate representation of Ay, on some neighbourhood
of xg. Hence, we can think of Ay, as a map Ay, : Q2 = R", where 2 C R" is an open set
containing zo. Let f: Q@ x R™ — R" be defined by f(z,u) = Xo(x) +u*X,(x). Then
As(z) = f(z,U) for all x € Q. Let W be an open set containing f(xg,U). Then,
for each ug € U, f(zo,uo) is contained in W. Since f is continuous, there exists a
neighbourhood €y of xy and a neighbourhood Uy of ug such that f(z,u) € W for all
(x,u) € QyxUpy. By compactness of U, there exists a finite number of neighbourhoods

Qo1, ..., n containing xy such that, if z € ' = ﬂj-vzlﬂo,j, then f(z,u) € W for all
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u € U. In other words, for x € ', f(z,U) C W, ie., Ax(x) C W for all x € . This
proves that Ay is upper semi-continuous at .

To prove (iii), let f : M x R™ = TM be defined by f(z,u) = Xo(x) + u*X,(z).
Then co(Ax(z)) = f(z,co(U)) for each x € M. Now, since Xo(zg) = 04,
(As)z, 18 a subspace and, because dim((Ayg).,) < m, f(xg,) is a linear map onto
(As)sz,, and is therefore an open mapping. Thus, 0 € int(co(U)), implies that
0z € int(ay),, (co(Asx(70))). [ |

Because of their relatively simple structure in the setting of affine systems, one
would like to use control-affine systems to study the local controllability of affine

distributions. To this end we give the following definition.

Definition 3.22 Let A be an affine distribution. We say that the control-affine
system X = (Q,{Xo, X1,..., X, },U) is a local realization for A at xo if  is a neigh-
bourhood of zg and Ay = A|q.

The next proposition asserts the possibility of including a control-affine system in

an arbitrary convex affine system.

Proposition 3.23 Suppose that xq is a reqular point of A and let m = dim(L(A),,).
Let A be a convex affine system in A that is lower semi-continuous at xo. Then
there is a neighbourhood 2 of xo, a convex set U C R™, and a control-affine system
Y= (Q,{Xo, X1,..., X\n},U) that is a local realization for A at zq and Ax, C A.

Moreover, if A is proper at xq, then X can be chosen so that Ay, is proper at xg.

Proof: Let {Xg, X1,..., X,,} be alocal frame for A on a coordinate neighbourhood €2
of zg, and let f: Q X R™ — A|q be defined as f(z,u) = Xo(z) + u*X,(z). Then, for
xr €, f(x,-) is a bijective affine map. Define F : Q = R™ as F(x) = pryo [ (A(x)),
where pr, is the canonical projection onto the second factor. Then F is convex because

A is convex, and int(F(x)) # 0 for each = € Q since inta, (A(z)) # () for each z. Let
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ug € int(F(zp)). By Theorem 2.2, there exists a convex open set U C int(F(zy))
containing uy and a neighbourhood € 3 zg such that U C int(F(z)) for all z € Q.
The first part of the claim follows by letting ¥ = (Qq, { X0, X1, ..., X}, U).

If A is proper at zo, by Lemma 3.1 we can assume that Xo(x¢) = 0,,. The
linear independence of X;(zo),..., X;n(xo) and properness of A at xy imply that
0 € int(F(zo)). Hence we can choose uy = 0 € R™, and, therefore, U contains the

origin in its interior. Therefore, Ay is proper at xg. [ |

The method of proof of Proposition 3.23 can be used to prove the following useful

lemma.

Lemma 3.24 Let A be regular at ¢ and let A be an affine system in A that is lower
semi-continuous at xo. If vy, € inta, (co(A(xo))) and £ is an A-vector field such that
E(xg) = vy, then & is a locally co(A)-vector field. In fact, there exists a neighbourhood

Q of x¢ such that, for x € Q,

£(x) € inta, (co(A(x))).

Proof: By Proposition 2.3, lower semi-continuity of A at xy implies that co(A) is lower
semi-continuous at zy. Using the notation of the proof of Proposition 3.23 applied
to the convex affine system co(A), let uy € int(F(xg)) be such that f(xg,ug) = vy,-
Now &(z) = Xo(z) + u®(z)X,(x) for some smooth functions ', ..., u™ on Q such
that (u'(zo),...,u™(z9)) = ug. By shrinking  if necessary, and by lower semi-
continuity, Theorem 2.2 implies that there is a neigbourhood Uy of wug such that
Uy C int(F(x)) for all z € Q. By continuity of v, ... u™, and shrinking € if necessary,
(ul(x),...,u™(z)) € Uy for all x € Q. In other words, £(z) € inta, (co(A(x))) for all

x € Q. In particular, £ is a co(A)-vector field. |

We are now ready to state the result we have been eluding to, namely that, in the

regular case, we can consider control-affine systems to study the PSTLC property.
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Theorem 3.25 Suppose that xg is a reqular point for A and that 0,, € A,,. Then A
1s PSTLC from xq if and only if every control-affine system that

(i) satisfies the LARC' at xy,

(i1) is a local realization for A at xo, and

(11i) has a proper and convex control set,

1s STLC from xy.

Proof: Assume that (i)-(iii) hold and let us prove that A is PSTLC from z,. By
Proposition 3.20, it is enough to show that, for every finite family & of A-vector
fields such that Ag is proper and satisfies the LARC at x(, A¢ is STLC from z,. By
Proposition 3.23, there exists a control-affine system > that is a local realization for
A at x¢, with a control set that is proper and convex, such that Ay, C co(Ag) on some
neighbourhood of xy. Moreover, by Lemma 3.14, Ay, satisfies the LARC at x,. Hence,
Ay is STLC from zy, and, therefore, so is co(Ag). By Proposition 3.30 below, Ay is
also STLC from xy. This proves that A is PSTLC from zy. The converse statement

is obvious. [ |

The following corollary to Theorem 3.25 will be useful.

Corollary 3.26 Suppose that xq is a reqular point for A with m = dim(A,,) and that
Oz € Asy- Let {Xo, X1,..., Xin} be a local frame for A at xq that satisfies the LARC
at xg. Then A is PSTLC from xq if and only if, for every convez set U that is proper,
the control-affine system 3 = (2, {Xo, X1, ..., X}, U) is STLC from xq, where ) is

a neighbourhood of xg.

Proof: Let Y be a control-affine system that is a local realization for A at xg, satisfies
the LARC at g, and has a proper and convex control set. The affine system Ay is
clearly convex and, by Proposition 3.21, is also lower semi-continuous. Therefore, by

Proposition 3.23, there is a neighbourhood §2 of zy and a convex and proper control
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set U C R™, such that control-affine system ¥ = (2, {Xo, X1,..., X}, U) satisfies
As(z) C As/(x) for each = € . Properness of U implies that aff(U) = R™ and,
therefore by Lemma 3.14, Ay, satisfies the LARC at zy. If Ay is STLC, then so is
Asy. Since Y/ is arbitrary, by Theorem 3.25, this proves that A is PSTLC from x.

The converse statement is obvious. [ |

To prove Theorem 3.25, a key ingredient that was used was that if £ is a finite
family of vector fields that satisfies the LARC at g, then Ag is STLC from =z if
and only if co(Ag) is STLC from xy. This fact can be shown to be a corollary of a
proposition in [45, Proposition 2.3]. However, to prove Proposition 3.30, we will use
some results from [32] and [6] that relate the reachable set of a multi-valued vector
field with the reachable set of its smooth selections. To begin, for an arbitrary family

& of vector fields on M, o € M, and T' > 0, we let
Re (20, T) = {@f;o.-. 08 () | St =T, t,>0, ¢ Ef,pZO},

and let Re(zo, < T') = Up<i<rRe(x0,t). Next, we recall that, if (M, d) is a metric
space and A and B are subsets of M, then the Hausdorff distance of A and B is
defined by

dy(A, B) = max {sup inf d(a,b),sup inf d(a, b)} :

acA bEB beB acA
It is well-known [33] that, when dj is restricted to the non-empty, closed, and bounded
subsets of M, we obtain a metric space. Let {2 C R™ be an open set and let F : = R”
be a Lipschitzean map with respect to the Hausdorff metric, that is, there exists a
constant L such that dy(F(x), F(y)) < Ld(x,y) for all z,y € Q. Suppose that F
admits Lipschitz selections about any point in €2, that is, for any xq € Q and yy €
F(xp), there is a Lipschitz function f: Qy — R™, where 0y C Q is a neighbourhood

of xg, such that f(x¢) = yo and f(z) € F(x) for all z € Q. Let I, (F) denote the set
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of all Lipschitz selections of F containing z( in their domain. It is clear that
RI}O(?)(l'm T) C Rg(:co, T) C :R@(g)(l'o, T),

where ¢6(.5) denotes the closure of the convex hull of S. In fact, we have the following.

Lemma 3.27 ([32]) Let F : Q = R" be a Lipschitzean map that admits Lipschtiz
selections about any point in Q. Then, for each T > 0, Ry, (5 (0, T) is dense in

Res(5) (20, T'). Consequently,
IR, () (0, < T) = el Regy() (w0, < T')

Proof: The proof of the first statement is the contents of [32]. To prove the second

statement, we have that

ARy (@0, <T)=cl | | R, (20,t) D | ARy, (z0,t)

0<t<T 0<t<T

— U Res(3) (0, ) = Reo(3) (20, < T).

0<t<T

It follows that

cl Reo(3) (w0, < T) C Ry (39 (w0, < T).

The reverse inclusion is obvious. [
The following result is Theorem 3.1 in [6].

Theorem 3.28 ([6]) Let f: M x R™ — TM be a smooth map such that, for each
u € R™, x +— f(z,u) is a smooth vector field on M. Let U C R™ and let I'(fy) =
{f(-;u) | we U} and suppose that Lie(I'(fu))(xo) = T,,M. Then

int cl Rr(s,) (20, < T') = int Rep,) (20, < T).
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The following is an easy consequence of Theorem 3.28.

Lemma 3.29 Let £ = (&1,...,&,) be a family of smooth vector fields on M that
satisfies the LARC at xo. Then

int cl Re(zo, < T') = int Re(zo, < T).

Proof: Define f: MxR™ — TM by f(z,u) = > "_, u*&,(x). Then f(-,u) is a smooth
vector field for each u € R™. Let U be the standard basis in R?. Then I'(fy) = &,
and, therefore, Lie(I'(fy)) = Lie(§). We then apply Theorem 3.28 to the map f to

conclude the proof. [ |

We finally have the following proposition, whose proof is an adaptation of the proof
of Proposition 2.2 in [10], the difference being that we are not assuming analyticity,

but instead assume the LARC and use the standard proof of accessibility [29].

Proposition 3.30 Let & be a finite family of smooth vector fields defined on an open
set 0 C R™, let Ag : Q@ = R" be the associated set-valued map, and let o € 2. If §
satisfies the LARC on 2, then, for each T > 0 and € > 0,

int Reo(a) (0, < T') Cint Re(wo, < T + €).

Consequently, Ag is STLC from o if and only if co(Ag) is STLC from xy.

Proof: We first note that, since &£ is finite and consists of smooth vector fields, Ag
is Lipschitzean with respect to the Hausdorff metric and admits Lipschitz selections.
Let T > 0 and let y € int Reo(a,) (0, < T). Let € > 0 and consider R_¢(y, < ),
where —§ = {—¢| £ € €}. Because n = dim Lie(§)(y) = dim Lie(—&)(y), it follows
that R_¢(y, < €) has non-empty interior [29]. Let V), C Reora,) (20, < T') be a neigh-

bourhood of y. By the well-known accessibility theorem [39, page 156, Theorem 9],
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there exists a sequence &1, ..., &, of elements of £ and t* = (¢],...,t}) € RY,, with

t7 < €/n, such that the map
(o tn) o @t tn) = B o e 0@, 5 (y)

is defined for 0 < t; < €/n, its image belongs to V,,, and it has rank n at t*. Hence
there is a neighbourhood Wy of t* such that ¢(W3+) is an open set and is contained
in V, Nint R_¢(y, < €). Hence, there is a z € ¢(W-) and a neighbourhood V, of z

such that
‘/z C Vy C Rco(Ag)(a:O’ S T) C CliRco(‘Ag)(xm S T) =cl :Rg(l'o, S T),

where the last equality follows from Lemma 3.27. By Lemma 3.29, it holds that
int cl Re(xg, < T') = int Re(xo, < 1), and hence V, C Re(zo, < T'). Now by definition
of z, it holds that y = ®§"o - - o(IDfll(z) for some 0 < t; < ¢/n. Therefore, the open
set <I>f: o <><I>fl1 (V>), which is contained in R¢(zo, < T+ €), is a neighbourhood of y.

This completes the proof. [ |

We end this chapter with a corollary to Proposition 3.30 which states that, in the

regular case, there is no loss in generality that affine systems are convex.

Corollary 3.31 Suppose that zq is a reqular point for A and that 0,, € A,,. Then
A is PSTLC from xy if and only if every smooth conver affine system in A that is

proper and satisfies the LARC at x¢ is STLC from xy.

Proof: First assume that every convex affine system in A that is proper, smooth, and
satisfies the LARC at xg, is STLC from z, and let us prove that A is PSTLC from
xo. By Proposition 3.20, it is enough to consider affine systems of the form Ag, where
£ is a finite family of vector fields that satisfies the LARC at zy and such that Ag is
proper at xo. By Proposition 3.23, there exists a control-affine system Y that is a local

realization for A at zp and has a proper and convex control set, and Ay, C co(Ag).
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By Lemma 3.14, ¥ satisfies the LARC at xy. Moreover, Ay, is clearly convex. Hence,
Ay is STLC from z, and thus so is co(Ag¢). By Proposition 3.30, Ag¢ is also STLC

from xy. This proves that A is PSTLC. The converse is obvious. |
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Chapter 4

Composition of flows and related

computational tools

The content of this chapter is a set of computational tools for the study of high-order
tangent vectors constructed using compositions of flows of vector fields. We start
by defining a type of high-order tangent vector that we call an end-time variation.
We then proceed to describe how these variations depend on the jets of the vector
fields used to construct them. We describe a connection between the coefficients of
the Taylor series and labeled rooted trees, in a similar way as Butcher [13] relates
the coefficients of the Taylor series of the solution of an ODE to rooted trees. We
end the chapter with the relationship between a variation and the continuous Camp-

bell-Baker—Hausdorff formula.

4.1 End-time variations

In this section, for ease of presentation and without loss of generality, all vector fields

are assumed to be complete. If £ = (&,...,§,) is a family of vector fields on M, we
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define the map ®¢: R”? x M — M by

(b, a) = B o @Yo oo 0B (@),

tp—1

The map ®% is defined as z — ®$(z) = D4(t, ) and D¢ is the map defined as
t— OE(t) = (¢, 7).

For a positive integer p, an end-time is a smooth map T: R>y — ]Rgo such that
T(0) = 0,. The set of all such maps is denoted by ET,. Given a family of vector fields
£=(&,...,&) and T € ET,, ®¢ ot: R — M is a curve at 2y whose image consists of
points obtained by following concatenations of the integral curves of &;,...,&,. The

order of the pair (&, T) at xo, denoted ord,, (&, T), is the smallest integer k& such that

jg(q)go OT) % 0:207

provided such an integer exists, and we set ord,, (&, T) = co if no such integer exists.
If k = ord,,(&,T), we call

Ver = Jo (85, °7)

the (&, T)-end-time variation or just variation when (&, T) is understood. Recall that,
from the exact sequence (2.3), V¢« can be canonically identified with a tangent vector

at g, and this is how we will view Vg ..

4.2 A linear map describing variations

To better understand how a variation V¢ . depends on the jets of £, we note that, as

R-algebra homomorphisms,

36 (08, o) = joTosh @

xo’
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where we think of
jo© € Hom((R?)™*; (R)™) and jj @5 € Hom(T;*M; (R?)**),

and where we recall that (RP)** = Jlfop,o) (RP; R). Thinking of jets as Taylor polynomi-
als, it is easy to understand what j¥t is. On the other hand, it is not easy to see how
jgp ¢ , depends on the jets of £ To understand this dependence, we first introduce
some multi-index notation. For a family of vector fields & = (¢, .., §,), a multi-index
I =(iy,...,i,), and a smooth function f: M — R, let &' f be the function defined by
(') (z) = (€& f)(x), where we think of vector fields as differential operators.
Similarly, for t = (¢,...,t,) € R, we set t/ = . -t;". With this notation we have

the following.

Theorem 4.1 Let f: M — R be a smooth function, let & = (&1,...,,) be a family
of smooth vector fields on M, and let xo € M. The Taylor expansion of the function

fo®S, : RP — R at the origin is

> (€ )) (4.1)
|7]=0 '
Proof: We must show that, for any multi-index I = (i1, ..., 1),
ol ¢

(f o ®5,)(0p) = (€' f)(20)-

dxl
Since the order of differentiation does not matter, we begin by differentiating with

respect to t,. It is clear that

%(f@ﬁo)(t) = (&1)(®f o -+ @] (o))

and, therefore,

T To08,)(6) = (G @ o+ 206 (),
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from which it follows that

—(fo®E ) (tr, - tpe1,0) = (2 F)(DF Lo -+ 0D (xp)).

We repeat this procedure with ¢,_; to obtain
g1t ¢ ip—1 iy Ep—2 &1
W(fcq)xg)(tb e 7tp—2> Oa O) = (gp—l gp f)(¢tp72 o O(I)tl (xO))
p—1 P
This procedure is done repeatedly to obtain the desired result. |

We now introduce some notation that will be used throughout the rest of the
thesis. Given a smooth mapping ¢: R" — R", written ¢(z) = (¢'(x),...,¢"(x)), and
a smooth vector field £ on R”, let £¢: R™ — R” be the smooth mapping whose ith
component is £¢°. Let idgn : R” — R™ denote the identity mapping. For a multi-index
I = (iy,...,ip), let & : R" — R™ denote the mapping (&')(z) = (&I - 5;5 idgn ) ().

We this notation we have the following corollary to Theorem 4.1.

Corollary 4.2 Let & = (&1, ...,&p) be a family of smooth vector fields on R™ and let

xg € R™. The Taylor series of the mapping (I>§O: RP — R™ at the origin is

0 o
> él(xo)ﬁ. (4.2)
17]=0

Using Theorem 4.1, we now want to describe how j('fp <I>§O depends on the jets of €.

We do this in the following theorem which gives the existence of a linear map on an

appropriate jet space of the tangent bundle and whose image, on a suitable subset,

determines j(’fp <I>§0 for every family £ = (&,...,&,) of smooth vector fields. To state
the theorem, let 7y : @©%_; TM — M denote the vector bundle over M whose total
space is the p-fold direct sum of TM. By abuse of notation, a family of p-vector fields

€= (&, ..., &) will be identified with a section of ©4),.

Theorem 4.3 Let M be a manifold and let xo € M. For positive integers k and p,
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there exists a unique linear map
@55 (St (m)) — L(THEM; (RP)*)
such that, for every family of smooth vector fields & = (&,...,&,) on M,
Tro(Bi=100(7zy '€)) = Jo, BS,-

Moreover, the diagram

51(J20W$M> @5:1 (JZ 17TTM><—®Z 1 (JZ 17TTM)(—

71 o772 73

Hom(T;;M; (R?)*) <— Hom (T2 M; (R?)*?) <— Hom(T;>M; (R”)*) <—
commutes, where the horizontal arrows are the canonical projections.

Proof: We first recall that (RP)** can be canonically identified with polynomial func-
tions of order k with zero constant term via Taylor’s expansion, and thus we will
think of elements in (R?)** in this way.

The proof is by induction on k. Let £ = 1 and let £ be a family of p-vector
fields. We define 77} : )0 7%y, — L(T:iIM;(RP)*!) by asking that I (&(x)) €
L(T:M; (RP)*') be defined as

L $
T E()G P(E) = 38, (7298,)(8) = S (€ F)(mo) 7y
71]=1

where the last equality follows from Theorem 4.1. If 1 is another family of p-vector
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fields, then

T (€(m0) + o)) Gl f)(8) = T (€ +m)(0)) (G, /) B
i, (F B 0)
- Y+ D)
|I]=1 )
= 4, (2 98,)(8) + 3 (/= 22,)(8)
= (60 L, 1)8) + T (o)), F)(E).

This proves that 7, !"is linear. Moreover, by definition, Z&) is the unique map such
that 7, (&(x0)) = ]0 ®% . Hence, the claim holds for k = 1.
By induction, assume the claim for £ > 1 and let £ be a family of p-vector fields

on M. From Theorem 4.1 and the induction hypothesis,

k

e s )G ) = (€ ) a:o + > (€ f) (o) ],

|T]=1 ! |I|=k+1

— SN+ Y €N

|I|=k+1

= THELLL NG + X €N

\I|=k+1

= T (B1=10¢(iry ' €)) U S (E) + U (g ) G 1) (B),

where ¢+ bl L(THETIM; (RP)*64D) s defined as

UGG A ) (1) = II§+1(£If)(xo)§—I!-
If A € R, then
PTG 0 = T G I = T (0017 i
= 3 NIE a0 = A A G )0,

|I|=k+1
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Hence, wk“ is a homogeneous polynomial mapping of degree k¥ + 1. By Lemma 2.1,

there exists a unique linear mapping
\I,k+1 Sk+1(Jk+1ﬂ_TM> - L(T*(k+1)M. (Rp)*(k—i—l))
o Y

such that
Uh (Opa (aT1€)) = i (GE1€).

Now define the mapping

k41
yk-ﬁ-l @Sﬁ JZ 17TT|\/| _ L(T;gk+1)M7 (Rp)*(k-i-l))

by asking that, for

k+1

V1D - Dvg D vky € @SZ JZ 17TTM)
/=1

we have
T 1@ @0 @) (o f) = T (018 - o) (J [)+HVE T (01 (G5 ), (4.3)

where I} : D, SHIE ) — L(TZEM; (RP)*F) is the unique linear mapping whose
existence is ensured by the induction hypothesis. Because ZE’Z and \Ifﬁjl are linear,

it follows that .7/*! is linear. Moreover,
T @100 (g €)) Uy ) = Ty (@106 (g ) Uy ) + W (O (g €)) (i, )

= (7,25, Uao f) + Uy (€)= (g @5,) (Ui ).

Now since 77" is uniquely determined by .7 and W it follows that 7 is the
unique mapping satisfying the claim of the theorem for & + 1. This proves the first

statement. Commutativity of the diagram follows from (4.3). |
Since we are only interested in the image of 7% on ) (5 1), we define

the map J%: JE-Axl — L(TM; (RP)*") by asking that

TE(GeE) = TE(®-100(j0,E)).
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Hence, with this notation, for £ = (&;,...,§,) and T € ET,,
76 (%, 0m) = oo T (Jy €).

For k € Z>( and a smooth function f, define the polynomial function egf RP - R

by
k t

S5 = 3 (€ o)y (4.4)

|T|=0
i.e., by Theorem 4.1 egf(t) is the Taylor polynomial of fo(bfco of order k. It will be
important for us to know how the Taylor polynomials (4.4) decompose when we view

&= (&,...,&) as being a concatenation of two families of vector fields. The following

lemma will be key.

Lemma 4.4 Let &, and &, be families of smooth vector fields on M of length p and
q, respectively, and let f: M — R be a smooth function that vanishes at xo. Let

& =&, x&,. Then, for each positive integer k and (t;,t;) € RP x RY,
eSO (4, ty) = ef T (8) + e (82) + m¥ (81, 1),

where

k—1

tJ
mif (b 1) = 30 e (6) and by = &f — & (x).
[J]=1 """
Proof: From (4.4),
(€146,)f € 6t S tity
et T (b, t) = et (b)) + e (t2) + Z (flfzf)(xo)l,—ﬂ
|+|7|=2 o
17121
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Now, directly,

k k—1 k—|J|

tftJ tftJ
Z (€ 52 ]'J' Z Z € €2 I'J'
|\11|\J,r\‘j]||212 |J|=1 |I]|=1
k-1 Jk [J]
= Z Z f £2f 52 (xo))(xo) 71
|J|= 1 =1

el s
= Z Tk ),
|J]=1 J!

where the last equality follows because the function &) f — &) f(zo) vanishes at .

This proves the claim. |

The following lemma will also be useful.

Lemma 4.5 Let & be a family of smooth vector fields of length p and let T € ET,.
Suppose that k = ord,,(&,T) > 2 and let p: R — R? be a smooth map such that
p(0) = 0,. For any smooth function f: M — R and any multi-index J = (j1,. .., jq)
with 1 < |J| < k — 1, the derivatives of the function s — p”(s )eifm( T(s)) of orders

0,1,...,k vanish at s = 0, where p’(s) = (p*(s)) - - - (p9(s))%

Proof: Suppose that 1 < |J| < k — 1. By the Leibniz rule, the derivatives of the
function s — p’(s) of orders 0,1,...,]|J] — 1 all vanish at s = 0. By definition
of ord,,, the derivatives of the function s — egfw(rl(s)) of orders 1,...,k — |J]|
all vanish at s = 0. Therefore, by the Leibniz rule, the derivatives of the function

S pJ(s)egfu‘(T(s)) of orders 0,1,...,k all vanish at s = 0. |

4.3 The Taylor series of <I>§0 and rooted trees

In this section, following the work of Butcher [13], we make a graph-theoretic connec-

tion between the coefficients in the Taylor series (4.1) and labeled rooted trees. To
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state Butcher’s formula and our extension of it, we introduce some basic notions from
graph theory [15]. If G is a graph, we let |G| denote the number of vertices of G. A
tree is a connected graph with no cycles. A rooted tree is a tree with a distinguished
vertex called the root, which we denote by r. The set of all rooted trees is denoted
by T and a typical rooted tree will be denoted by 7', V, or W. The rooted tree with a
single vertex is denoted by T. If vy, vy are vertices of the rooted tree T, let v;Tvy be
the unique path from v; to vy. There is a natural ordering imposed on the vertices
of a rooted tree: vy < vy if vy € rTwy. In other words, vy < vy if vy is closer to the
root than v, and it is easy to see that the root r is the greatest vertex. If u and
v are adjacent vertices in a rooted tree and v < v, then we say that v is the parent
of w and u the child of v. A leaf of a rooted tree is a vertex with no children. For
a finite subset K C N with k& elements, let Tx denote the set of rooted trees with
k vertices and labeled with the elements of K such that the root is labeled max(K)
and for each a € K'\{max(K)}, the labels of the nodes on the unique path from the
root to the node labeled a forms a decreasing sequence. If K = {1,... k}, then we
write Ty, for T. If T' € Tx and 11,715, ..., T, denote the rooted trees obtained by
removing the root of T and its incident edges, the labeling of T induces a set parti-
tion Ky, Ko, ..., K, of K\{max(K)} satistfying T, € Tk, for a = 1,...,m. For this
reason, we write 7' = [T, T, ..., T,,]. We now introduce the notion of an elementary
differential corresponding to a labeled rooted tree, which is a generalization of the

elementary differentials considered by Butcher [13].

Definition 4.6 Let K = {ay,...,ar} C N, let n = {n4,...,n,,} be aset of smooth
vector fields on R, and let K’ C K be a non-empty subset. The elementary
differential of m corresponding to T € Tk is the map np: R" — R" defined as

N7 (2) = Pmax(xy (), if |[K'| =1, and

nr(r) = (D(m)nmaxm)(fﬁ))(% ()., nTm($)),
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Figure 4.1: Some labeled rooted trees.

if |K'| > 2, where T, ...,T,, are the rooted trees obtained by removing the root of

T and its incident edges.

The following example illustrates the idea of an elementary differential for labeled

rooted trees.

Example 4.7 The elementary differentials corresponding to the labeled trees in
Figure 4.1 are (from left to right) Dy DnisD?*ns(n3,75), D*na1(Dns(ns), Dnus(ns)),

D?*115(Dns, D, Drjg), and 75, respectively. 0

Let there be given a multi-index I = (i1, ...,4,) such that i, +---+1i, = k and let

&= (&,...,&) be a family of vector fields. Define a new family of vector fields &; by

£I = (517'"7£17'--7£p7”’7£10)'
S——— N’
i1 —times ip—times

Foreach T € Ty, let [€;]r: R™ — R" be the elementary differential of €; corresponding

to T. With this notation we have the following formula.

Theorem 4.8 Let & = (&1,...,&,) be family of smooth vector fields on R™ and let
1
xo € R™. Then, for a multi-index I = (iy,...,i,) such that |I| = k, it holds that
o ¢
. . —®> (0,) = .
(0t1)(0tz)™ - - - (Ot S0 (0p) = D [Exlr(wo)

TeTy
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The case p = 1 in Theorem 4.8 is Butcher’s formula [13]. Let us recall Butcher’s
construction. If 7' is a rooted tree, let a(7) denote the number of ways of labeling T’
with the set {1,2,...,|T|} such that the root is labeled 1 and for each 2 < a < |T|, the
labels of the nodes on the unique path from the root to the node labeled a forms an
increasing sequence. Let £: R™ — R” be a smooth vector field. To each rooted tree T,
Butcher associates an elementary differential &2 R™ — R™ defined as &r(x) = £(x)
if |T| =1, and

ér(x) = (D™E) (@) (En (), - . x, ()

if |T'| > 2, where T1,...,T,, are the rooted trees obtained by removing the root of T’
and its incident edges. With this notation we state Butcher’s formula, which is an

immediate corollary of Theorem 4.8.

Theorem 4.9 ([13]) If&: R* — R" is (k— 1) times differentiable at xo and y'(t) =

£(y(t)) with y(0) = o, then

0= Y allerlw)

T a rooted tree
|T

To prove Theorem 4.8 we will first need to prove the following.

Theorem 4.10 Let = (11, ...,m) be a family of smooth vector fields on R™. Then,

for all x € R,

(mnz -+ ne)(z) = Z nr(x).

TeI

Let us prove Theorem 4.8 using Theorem 4.10

Proof of Theorem 4.8: By Corollary 4.2, it follows that, for a multi-index I =
(i1,...,14,) satisfying |I| =k,

ok o .
(atl)il(at2)i2 - (atp)ip (I)go (0p> = (ﬂl ;2 o 'f;p)(%)-
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Define k vector fields n = (ny, ..., 1) via the equation

n= (77177727--'777k) - (gla'"7517"'?5}37"'76}0)'
S—— N’
i1 —times ip—times

Then, for any 7' € T and multi-index I = (iy,...,t,) with |/| = k, by definition
Ny = [€;]r. Therefore,
(611652~ &) (wo) = (72 - - = nplzo) = > [&]r(xo),
TeT, TeTy
where the second equality follows from Theorem 4.10 and the third equality follows

from the definition of [£;]r. This completes the proof. [

The rest of this section is devoted to proving Theorem 4.10. Let K =
{a1,...,ax} C Nand let Ky = {ag,a1,...,ar} CN, where ag < min(K). If V € Tg,,
and the vertex labeled with ay (which is necessarily a leaf) is removed along with its
incident edge, then the resulting labeled rooted tree is an element of Tx. Conversely,
every element of Ty, can be obtained by adding a leaf to a vertex of some element
of Tk and labeling it with ag. Hence, if T" € T and Zr C Tk, denotes the subset
whose elements are obtained by adding a leaf to a vertex of T and labeling with ay,
we have T, = Upcq, Zr. The next lemma states that the operation of adding a leaf
to each vertex of a rooted tree is equivalent to taking the derivative of the associated

elementary differential.

Lemma 4.11 Let K = {ay,...,a;}, let K/ C K be a non-empty subset, and let
K ={ao} UK', where ay < min(K). Let T € Tg: and let ¢ = {Cays Cayy---+Car } be a

set of smooth vector fields on R"™. Then

D(Cr)(Car) = D Sy (4.5)

Vegr

where D(C7)((,): R™ — R™ denotes the smooth mapping x — D({7)(x)((a ().
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Proof: Let T,, denote the rooted tree with one vertex and labeled with ay. Let
P(Tk,) denote the power set of Tx,. The set Zr is the image of 7" under the map
d: T — P(Tk,) defined recursively as d(T") = {[1,,]} if |7 = 1, and

A(T) = {[tuo, T, To, . TS LU U AT T W T, T} |
J=1Wed(Ty)

(4.6)
if |T| > 2. It is straightforward to show that (4.5) holds for T' € Tk, whenever
|K| = 1. Assume by induction that the claim holds for K/ ¢ K and T € Tk,
whenever |K| = k — 1. To prove the induction step, let K C N have k elements,
K' C K is non-empty and 7' € Tgs. Write T' = [11,...,T,,], and let K7,..., K] be
the induced partition on K"\{max(K")} such that T; € Tg;. Then each K7 is a subset
of K\{max(K)}, which has k — 1 elements, and so the claim holds for each T} by the
induction hypothesis. Now, by the definition of an elementary differential ¢, and

letting r := max(K’) = max(K)), we have {; = D(m)Q(CTl, ..,Cz. ). Therefore,

from the chain rule, it follows that

D(¢r)(Gao) = DG (Crys -+ S Cao)
+> DG Gy D) (Cao) Sy G )-

j=1
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On the other hand, from the definition of 2y = d(T') given in (4.6),

> ¢y =D (LG Cao)

Vegr

_|_Z Z D CTp"'?CTj,NCW’CTJ#l""’CT’")

J=1 Wed(Ty)

_ D(m+1)C (CTp NN Cao)
_|_ZD CTN“‘?Cijl’ Z CW7CTj+1"">CTm)

WEd(Tj)

_ D(m+1)cr(CT1’ s Cr 5 Cag)
+ Z D(m)Cr(CTu S CijﬂD(CTj)(C“O)’ CTJ+17 B CTm)’
j=1

where the second equality follows from multilinearity and the last equality follows

from the induction hypothesis. This completes the proof. [ |

The following lemma is an easy consequence of our notation and the definition of

the Lie derivative.

Lemma 4.12 For any collection of smooth vector fields ny,...,m on R™, it holds

that

(2 -+ me) (@) = D2 - - i) (@) (1 (),
for any x € R™.
We now prove Theorem 4.10.

Proof of Theorem 4.10: The proof is a modification of Lemma 302B in [13]. The

proof is by induction on k. The case k = 1 is trivial. Assume it holds for £ > 1. Let

CO = 7719(1 - 772,~~~>Ck = Mk+1, C = {C0>C1a--'>Ck}a and KO = {Oa]-a?k} Then>
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from Lemma 4.12,
mnz - M1 = D2+ M) (m) = D(G- -+ G)(Go) =D (Z CT) (So)
TET,
=D D)= D Cv= > .
TeT, VeTk, VeTki

where the third equality follows from the induction hypothesis and the penultima

equality follows from Lemma 4.11. [ |

To give an application of some of the ideas in this section, we will give a Lie
bracket interpretation of the vector-valued symmetric k-multilinear map Bf, for a
vector field ¢ of order k at zo. Recall that, in a coordinate system (z!,. .., 2™) about

o, Bf € S¥(T; M) ® T, M is given by

8’“ 9 0
ZZ LUO dLE‘ .TZ,’(])@%(I())

Hence, identifying T,,M with R" via the basis {32 (2o), ..., 52 (20)}, the action of

Bé? on vy,...,v; € R" is given by

Bf(vi, ..., vk) = D*¢(x0)(v1, . .., vp). (4.7)

With (4.7) in mind we have the following.

Proposition 4.13 Let ( be a vector field of order k at xo. Then Bé? € Sk(T;jOM) ®

T.,M s given by

Bé?(vl, convg) = [ X, [Xoy [ [ Xk, ] - - ](20),

where X;(xo) = v;, for vector fields Xy, ..., Xj.
Proof: By a simple induction, one can show that, for vector fields Xi,..., Xy11, as
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differential operators,
[Xla [X2> [ ) [Xka Xk-l-l]] o ] = X1X2 c 'Xk+1 + \II(Xla cee >Xk+1)a

where W(Xy,...,Xy1) is a linear combination of monomials of the form

)(2.1)(2.2 o X

Ikt1

with 4,41 # kK + 1. That is, X;,1 does not appear as the right-
most factor in any monomial in the sum W(Xy, ..., X;y1). From Lemma 4.12, the
coordinate expression of X; X, --- X, (70) is a sum of terms involving the deriva-

tives at xg, of X, ., up to order k, the derivatives of X;, up to order k—1, etc., and the

k+1

zeroth derivative of X, . Therefore, if Xy, is of order k at xg, ¥(Xy,. .., Xir1)(x0)

vanishes. Hence, by Lemma 4.12, if X} is of order k at ¢, then
X1 X5+ X Xgpa(20) = DXy (w0) (X1 (20), Xa (o), - -, Xi(0)),

which proves the claim. |

4.4 The continuous Campbell-Baker—-Hausdorff
formula

In this section, we establish a connection between a variation and the formal Camp-
bell-Baker—-Hausdorff formula. The algebraic material that follows can all be found
in [23)].

Let J be a set. The free R-vector space generated by J will be denoted by V' (.J).
By definition, V(J) is the set of maps ¢: J — R such that ¢(j) = 0 for all but
finitely many j € J and the vector space operations on V' (.J) are the usual pointwise
definitions. A basis for V'(.J) is the set of maps e;: J — R defined by e;(j') =1if j =
j" and zero otherwise. We let A(J) = @2, TH(V(J)) and A(J) = [[22, T*(V(J))

denote the free associative R-algebra and the R-algebra of non-commutative power
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series generated by J, respectively. We have the canonical projections

Using the usual commutator definition, A(.J) and A(.J) become Lie algebras. We let
L(J) c A(J) and L(J) C A(J) denote the Lie subalgebras generated by the basis
(ej)jes. We say that b € L(J) is of degree k if it belongs to T*(V(J)), and the set of
clements in L(.J) of degree k is denoted by L¥(J). Let Aq(J) = [To2, T*(V(J)), which
is easily seen to be a subalgebra of A(J), and that L(J) C Ag(J). For a € Ay(J),
exp(a) =Y 1, ‘,‘g—’? and log(1+a) = 2211(—1)“1% are well-defined elements of Ag(.J).
Moreover, a direct calculation shows that exp(log(1+4a)) = 14 a and log(exp(a)) = a.
The Campbell-Baker-Hausdorff formula gives a map CBH: L(J)x L(J) — L(J) such
that exp(by)-exp(be) = exp(CBH(by, b)) [23]. The formula for CBH(by, b2) up to order

three is
1
CBH(by,b2) = by + by + = [bb bo] + o [bb b1, bo]] + E[b2’ [bo, b1]] +

Given by,...,b, € L(J) and applying the CBH formula recursively, there exists
CBH(by,...,b,) € L(J) such that

exp(by) - exp(by) - -+ - exp(b,) = exp(CBH(by,...,b,)).

The formula for CBH(by, ..., b,) up to order three is

CBH(br, - by) = Y bt 5 Sl bl + 1122<[bi,[bi,bj1]+[bj,[bj,bm)

1<j 1<j

4+ Z iy 105, 0k]] + [bi, [bi, bj]]) +

z<]<k
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Now let ¢: J — I'(TM) be a map, and recall that the set of vector fields on a manifold
M has the structure of a Lie algebra. By the universal property of the free Lie algebra
L(J), there exists a unique Lie algebra homomorphism Ev,: L(J) — I'(TM) such
that Ev,(e;) = ¥(j) for each j € J. One cannot in general extend Evy, to L(.J), and
so for example, the expression Ev,(CBH(by,...,b,)) does not generally make sense.
However, it is possible to use the CBH formula to relate the flows of a family of vector
fields & = (&1,...,&y) and the vector field obtained by truncating the formal CBH
formula. Explicitly, let & = (&1, .., ;) be a family of vector fields, let J = {1, ..., p},
and define ¢: J — I'(TM) by ¢(j) = &;. Let {e1,...,e,} be the canonical basis of
V(J). For k € Z~y, let

CBHg(&, .. .,&p) = Evy (7, (CBH(eq, ..., €p))),

that is, CBH,,(§) is the vector field obtained by “plugging in” &; for e; in the kth-order
truncated Lie series CBH(ey, ..., e,). With this notation we can state the following

result.

Theorem 4.14 ([41]) Let & = (&1, ..., &p) be a family of smooth vector fields. Then
O (tr,. .. ) = OTPIAE I8 (1) L O((1y + - - 4 1,)FFY),

as (t1,...,tp) — 0, in RZ.

Combining Proposition 2.5 and Theorem 4.14, we obtain the following.

Proposition 4.15 Let € = (&1,...,&,) be a family of smooth vector fields and let

T € ET,, and suppose that ord,,(§,T) = k. Then

k

(@, 01) = | CBH(T ()61, P (5)6) (o).
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Proposition 4.15 and uniqueness of the CBH formula, immediately gives the ex-
istence and uniqueness of a “universal” Lie bracket at each order k such that, when
evaluated at x¢, gives the variation of every pair (£, T) with k& = ord,, (&, T), on every

manifold M.

Theorem 4.16 Let p be a positive integer and let J = {1,...,p}. Letv: J — T'(TM)
be defined as (j) = &;. Then, for each positive integer k, there exists a unique map
[ J(IB,O,,)(R§ RP) — L*(J) such that
(i) for every manifold M and every xo € M and
(i1) for every family of smooth vector fields & = (&1, ...,&,) on M and every T € ET,,
with ord,, (&, T) = k,
it holds that

36 (D5, 0T) = Evy (85 (j50)) (o).
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Chapter 5

A variational cone for affine

systems

In this chapter we describe a class of high-order tangent vectors to the reachable set
of an affine system and relate them to the local controllability of the affine system.
We then discuss the notion of a neutralizable variation and show that variations of
orders k = 1 and k = 2 are always neutralizable, provided the affine system is proper.

We then give a method for construction subspaces of variations for affine systems.

5.1 A wvariational cone

Fix a smooth affine system A and zo € M. Let [ (A?) denote the set of p-tuples of
elements of T}, (A) and let V4 = Up>1L, (AP) x ET,. For a positive integer k, let V&

denote the elements of V4 of order k at zg, and let

VoA = {Vex | (€7) €V} U {04}
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and let
VoA = | VEA.

k>1
By definition, V,,A is a set of high-order tangent vectors at z, to the reachable set
of A from zy. It is well-known that a curve y: [0,¢] — M is of order k at 0 if and
only if for any smooth function f: M — R, the derivatives at 0 of the function foy
vanish up to order £ — 1, and in this case

dk
dsk

(f=¥)(0) =V,

where V = y®(0) € S¥(T;R) @ TyyM = T,0)M. Therefore, if k = ord,, (&, T), then,
for any function f: M — R, the derivatives of the function egf ot: [0,¢] — R vanish

up to order kK — 1 at s =0, and

k

d
@(egf 0T)(0) = Ve o f.

With this in mind, let us state and prove the most important property of ngofl.

Proposition 5.1 The set VJ:O.A IS 4 convex cone.

Proof: We first prove that Vi A is closed under addition. Let (&;,7T1), (&, T2) € V},
set € = &€, % &,, and set T = T * To. We will show that (¢,7) € V& and that
Ver = Ve, i+ Ve, n,- We can assume that Ve, o, # —Vg, «,; if not, then Ve « +Ve, -, =

0y, € VEA. Let f: M — R be a smooth function that vanishes at x. By Lemma 4.4,

et/ ((s)) = ep (11(5)) + €2 (T2(s)) + mi! (11(s), T2(s)),

where
N~ (5 en)
mgf(’fl(s)aﬁ(s)) = 2J! - |JJ\ (t1(8)),
17|=1
and hy = &) f — &€Jf(20). By Lemma 4.5, the first k derivatives of the function
&f

s — my’ (T1(s), T2(s)) at s = 0 vanish. This proves that V¥ A is closed under addition.
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To prove that Vfoﬂ is closed under R..-multiplication, let (£, T) € V%, let a € Ry,

and define T, by T,(s) = T(a'/*s). By the chain-rule, for all £ € Z,,

d* d*
@@50 °To)(0) = O//k@(q)go °T)(0).
Therefore, (&, T,) € V4 and Vg ., = aVg.. This completes the proof. [ |

Lemma 5.2 ([30]) For positive integers k and m, Vi A C VE™A.

Proof: If (€,7) € V&, then, for any function f vanishing at o,
&f s* k
ci (T(5)) = (Vewf) 75 +0(s7).

Therefore,

Skm

ei’ (T((k!/(km)1)!/*s™)) = (V&Tf)m +o(s").

It follows that if

p(s) = T((k!/(km)1)/*s™),

then (&, p) € VE™ and Ve, = Ver. [ |
Corollary 5.3 V, A is a convex cone.

Proof: The set V,,A is a cone because it is a union of cones. By Lemma 5.2, if
Vi, s Ve € VA, with V; € Vi A and k = lem(ky, ..., k,), then Vi,...,V, € VE A.
By Proposition 5.1, VfO.A is convex and, therefore, any convex combination of
Vi,...,V, is an element of Vfofl C Vi A. This proves that V, A is convex. This

completes the proof. [ |

Remark 5.4 Our definition of a variation uses smooth functions t: R>o — R%, so
that in general we do not have VA C VEFLA If the end-times T are allowed to be
C" at s = 0 for r > 1, then a variation of order k£ can be realized as a variation of

order ¢ > k. However, one then needs to keep track of the order of differentiability of
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the end-times T to be able to work with high-order jets. For this reason we choose to
work with smooth end-times, and Lemma 5.2 ensures that essentially nothing is lost
by doing so. The use of smooth end-times are employed for instance in [30], whereas

[19] uses end-times that are C", r > 1.

The following theorem relates V,,A and STLC of A at x.

Theorem 5.5 Let A be a smooth affine system in A C TM and let o € M. If
VeoA = T,oM then A is STLC from x.

Proof: Let T' > 0. By assumption, there exists V¢ «,..., Vg 1, € V,, A such that

0z € int(co{Ve, xrs---, Ve, x, })-

k

By Lemma 5.2, we can assume that Ve, ., € Vi A for some k € Z~, foralli =1,... 7.

Consider the map p: Q@ NRL; — M defined by

— El Er

O +s+ 0O

M(Slu ) 37‘) - (I)Tl((k!sl)l/k) q)TT((k!sT-)l/k)(xO)’

where € is a neighbourhood of the origin in R” such that if (s1,...,s,) € QN RL,
then Y7, . t;:((k!s;)'/*¥)) < T. By construction, p is continuously differentiable at the
origin, u(0) = zo, and the image of u consists of points reachable from z( in time at

most 7. The theorem now follows by Lemma 5.6 below. |

Lemma 5.6 ([3]) Let u: R” — R™ be Lipschitzean, p(0) = 0, and differentiable at
0. Assume that Du(0)(R%,) = R"™. Then, for any neighbourhood S of the origin in
R",

0 € int (2 NRL).
Let us state an immediate corollary to Theorem 5.5.

Corollary 5.7 Let A be an affine distribution on M and let o € M. If, for every
smooth affine system A in A that is proper and satisfies the LARC xq, it holds that
VoA = TpoM, then A is PSTLC from xy.
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The following example illustrates the usage of Theorem 5.5 and at the same time

proves the claim made in Example 3.19.

Example 5.8 As in Example 3.19, let M = R?, let zq = (0,0,0), and consider the
affine distribution A, = Xo(z) + span {X;(x), Xo(z)}, where
5 0 0 a (2 0

— (l — —
Xo = (z7)"=— Xl—@,and)ﬁ—&xz—i- 5 9

A trajectory of an affine system in A satisfies
it = ul; i? = u?; i’ =a3(1+ fu?).

Let U = [-1,—1] x [-2 — ¢,1], for € > 0, and let ¥ = (M, {X,, X1, X2}, U) be the
associated control-affine system. It is clear that span {%(:co), %(wo)} C Vi As.
Hence, to prove that X is STLC from x( using Theorem 5.5, we need only construct
variations in the £.%; directions. Let & = X, + u; Xy + uz X, for j = 1,2,3, let

€= (&,8,8), and let t(s) = (s,s,5). Suppose that ut + ul +ui = u? +u3 +u3 = 0.

Then
L (@8 o) (0) = 19 (0)&, (o) = (ul + b+ )2 (o) + (1 + v+ ) 2 (0)
ds ' @0 J\+0 1 2 302:1 0 1 2 303:2 0

- Oxov

and, therefore, ord,, (&, T) > 2. Moreover, since §£;(zo) vanish at xy, for any 7,5 €

{1,2,3}, by Theorem 4.1 we actually have that ord,, (&, T) > 3. For ease of notation,

1

set a; = u;

and b; = u?, for j = 1,2,3. Then a direct computation gives that

d? )
@(cbﬁo o1)(0) = (a3 (10 + 2by) + araz(10 — 2by + by) + a3(4 — bl))%(:co).

%)

If by = by = 0, then, for all a;, a, the above produces a variation in the 5= direction.
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Let by = by so that

a3 0
@(cpgo o1)(0) = (a?(10 + 2by) + ayas(10 — by) + a2(4 — b2))%.

The determinant of the matrix associated with the quadratic form
Q(al, ag) = a%(lO + 2b2) + a1a2(10 — bg) + CL%(4 — bg)

is x(bg) = 60+ 1205 — 903 = 3(2 + by)(10 — 3by). Therefore, the quadratic form @ can
be made to have a saddle at the origin by choosing —2 —¢ < by < —2. Hence, for such
bo, there are values of aq, ay arbitrarily close to the origin that produce a variation in

the _3%3 direction. By Theorem 5.5, Ay, is STLC from xy.

5.2 Neutralizable variations

Given (£&;,7;) € V& under what conditions does there exist a (£,,T2) € V& such that

Ve, i = — Ve, x ! Motivated by this question we give the following definition.

Definition 5.9 We say that (£;,7T,) € V% is neutralizable if there exists (£,,T2) € V&

such that Ve, -, = — Ve, 1,

The following result is a trivial consequence of Proposition 5.1

Proposition 5.10 Every element of V% is neutralizable if and only if Vgljofl s a

subspace.

For orders £ = 1 and k = 2, we will show that neutralizability is ensured by

properness of the affine system. In fact, for £ = 1 we have the following.

Proposition 5.11 Let A be an affine system in A that is proper at xq. Then

VA = Ay,
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Proof: Given (&, T) € V4, a direct calculation yields that

d

- (©€0T)(0) = (0)¢ (o).

Since /(0) > 0, it follows that V) A = cone(co(A(xp))), and the result follows by

properness of A at xg. [ |

To treat the k = 2 case, we derive the expression for a second order variation. If

&, n are vector fields, then, as differential operators,

1 1
&n = §(£n+n£) + 5[5#7]-

Therefore, by Theorem 4.1, if f: M — R is a smooth function, & = (&,...,§,) is a
family of vector fields, and T € ET),, then

d2 Ef p
12 (8 em(0) = D> (G (@) (0) + Y _(6&,1) (w0) F'(0)¥(0)

7j=1 i<j

=D (&N (@) T (0) + (T1(0)& + - - + T(0)6,)*(f) (o)

]:

+ > 16 &) (o)t (0)(0).

1<j

Hence, if ord,, (€, T) = 2, then (t'(0)& 4 - - - + t(0)&,)*(f)(20) = 0, and, therefore,

p
Ver =D _&(10)(0) + )& &1(20)T'(0)7(0). (5.1)
j=1 i<j
Lemma 5.12 Let A be an affine system in A that is proper at xo. If &, n € T, (A),
then [€,n](zo) € V2 A.

o

Proof: Set &y := & and 1y := 7. By properness of A at x, there are positive constants
ap, aq, . .., ap and A-vector fields &, . .., &, such that Z?:o a;€;(zg) = 04,. Similarly,

there are positive constants [, 31,..., 3, and A-vector fields 7,,...,n, such that
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ZZ:O /64776(370) = Oxo' Let € = (50) Mo, 517 s agpa My anq) and let
T(s) = (s, Bos, s, ..., s, 318, ..., 3,5).
Then ord,,(&,T) > 2 and, if ord,, (&, T) = 2, then, by (5.1) (we will suppress evalua-

tion of the Lie brackets at zo to simplify the notation),

Ve = aofoléo, m0] + Z o0&, &l + Z o 3e[€o, me] + Z Boevi[nos &1
=1 Jj=1

0<i<yj<p

+ > BB + D Bl -

0<k<t<q j=1 ¢=1

Now let é = (nq> s an1>€p> s agla 507770) and let
T(s) = (ByS, .-, 1S, s, ..., 18, 008, FoS).

Then ord,, (€, %) > 2 and, by (5.1),

Vee= > Bubilneml + ) Bl &) + ZZ aoBe[ne, &o]
=1

0<k<t<q =1 j=1

+ Z o585, &)+ Zajﬁo[fjﬁo] + 0 /%0[&o, 10]-

0<i<j<p Jj=1
One computes that Ve + Vz 2 = 2a060[S0, 0] (7o), and, therefore, [£o, m0](z0) € V2 A

because ngofl is a cone. This completes the proof. |

For an affine system A define

DY ={le,n]| &nellA)}.

With this notation we have the following.

Proposition 5.13 Let A be an affine system in A that is proper at xo. Then
2
V2 A = Ay, + span{DT (z()}.

. 2 .
In particular, V; A is a subspace.
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Proof: By (5.1) it is clear that V2 A C A, + Span{ﬂf) (z0)}. Now let
w € Agy + span{@f) (x0)},

and write
P r
w=>Y v+ g &l (w0),
i=1 j=1
for v; € A,y and &, € T, (A). Since V) A = A,,, it follows that v; € V; A C V2 A.
By Lemma 5.12, [£;1,&;2](z0) € V2, A, and we can assume without loss of generality

that a; > 0. Hence, w is a sum of elements of V2 A, and thus w € V2 A since V2 A

is closed under addition. This proves the reverse inclusion. [ |

The next step would be to consider the cases £ > 3, but this seems to be a
difficult task. Notwithstanding, some results have been obtained by fixing a set of
local generators for the affine distribution and identifying “bad Lie brackets” that are
potentially non-neutralizable [9, 45]. These results, unfortunately, are not invariant

under a change of local generators for the affine distribution.

5.3 Subspaces of variations

In this section, using a technique from Krener [30, Section 4], we construct subspaces
of variations. The idea of this section is to obtain linear approximations, i.e., sub-
spaces, to the variational cone V, A.

Let ¢ be a vector field on M that vanishes at xy. Then, by Proposition 4.13,
¢ induces a linear map B.: T,,M — T, M. Explicitly, for v,, € T,;M, B¢(vy,) =
(X, (](xg), where X is any vector field extending v, .

Let A be an affine system and set

Z’SL‘O‘A - {C € F:L‘o(‘A) | C(ZL’O) - Oxo}'
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We identify Z,,A with the corresponding subset of End(T,,M), which we still denote
by Z,,A. For a subspace W C T, M, let (Z,,A; W) denote the smallest subspace
containing W and that is invariant under the linear maps in Z,,A. It is not hard to

show that
<Zx0./q; W) = span {B@BCQ s BCr (wmo) | Wy € W, CZ < Z’xo-Aa re Zzo} . (52)

Theorem 5.14 Let A be a smooth affine system in A and let xo € M. For any
subspace W C V, A, it holds that (Z,,A; W) C V, A.

Proof: To prove the theorem, it is enough to show that, if w,, € W and ¢ € Z,,A,
then B¢(wy,) € Vi, A.

Let w,, € W and let ¢ € Z,,A. By Lemma 5.2, we can assume that there exist
an integer k > 1 and (§,,7;) € V& such that Vg ., = (—1)"w,, for i = 1,2. Let
T;(s) = T;((k!/(2k)")/*s?), for i = 1,2. Then, by Lemma 5.2, ord,, (&;, T;) = 2k and
Ve, ao = (—1)"wy,, for i = 1,2. Now, since ((xg) = 0, and Vg, z, = —Vg, z,, We

have ord,, (&, * ¢ * &,, Ty * s % To) > 2k + 1. By definition and then expanding,

eSs o (71 (s), 5, Ta(s)) = 5, (T1(s)) + eSh, 1 (5) + €52 (Ta(5))

2k+1 ~1 2k+1 j~12
Ty (s
+ 2 : €Il<] ( )_|_ § : ijhf 1’0) [(1)
11| +5=2 L |3 |+5=2 J
[I1],7>1 |I2],5>1

2k+1 ~I \ale 2k+1 I gl
T (8)TH2 (s . T8/t
Y (el )T SN (gl ) ) TR (5
L1! , 1:]42°
[I1]+|I2|=2 |1 |+5+[12]=3
[I1],|I2|>1 [I1], 4, [T2|>1

Using the fact that ((zo) = 0,, and letting h;, for each j € {1,...,2k}, be the smooth
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function z — h;(z) = (¢ f)(z) — ({7 f)(z0), we can rewrite (5.3) as

2k+1 .y
*Ck - - X - - , s’ (s
BT (3, (5), 5, 0(s) = ST (R (s). Tals) £ Y (EPC ) () )
11| 4+5=2 J
I11],5>1
2k+1 ~I jrle
: T, ST
Y (E@OE N ) Ty
- B 1:]: 142
[T1|4+j+[12|=3
|Il|7j7‘12|21

2k .
&) (= [\ = s &) (=
= et (T1(5), Tals) + D TEGi-(T1(5)
j=1 7"

2k+1 I el
T,y

§ I g ¢l

+ ' ( 11C 22f)(.f1}'0) Il'j'[2' . (54)
[ 11| +5+]|12|=3
[11], 5, [12[>1

Now, ordg, (&, * &, T1 * Ta) > k + 1 because Vg r, + Ve, = Way — Way = Ogy,s
and, therefore, ord,,(§; * £y, T1 * T2) > 2(k + 1) = 2k + 2. Hence, the derivatives of
egiffﬂf(%l(s), To(s)) of orders 1,...,2k + 1 all vanish at s = 0. By Lemma 4.4, the

term (5.4) can be written as

2k

Z Sj:f22(8) 651(Hj,12) )(:['1(8)), (55>

Nl kD=
. J- L2
J+12[=2

where H,, is the smooth function x — Hjp,(z) = Z9¢Y f(x) — Z7€52 f(x0). By
Lemma 4.5, the derivatives of (5.5) up to order 2k + 1 vanish at s = 0. Hence

Ve sty rsnis 15 determined by the (2k + 1)st derivative of the R-valued function
57
s g(s) = Z — fi(s),
where, for each j € {1,...,2k},
hj -
fi(s) = Gt (1(9)):

Now since ord,, (&, T1) = 2k, if j € {2,...,2k}, then the (2k + 1 — j)th derivative of
f; at s = 0 vanishes and, therefore, the (2k + 1)st derivative of s — s f;(s) vanishes

at s = 0. Thus the (2k + 1)st derivative of g at s = 0 is equal to the (2k + 1)st
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derivative of s — sfi(s) at s = 0. The 2kth derivative of f; at s = 0 is precisely
Wy (Cf —Cf(0)) = Be(wy,)(f), and therefore, the (2k+1)st derivative of s — sfi(s)
is (2k 4+ 1)((was,)(f). Therefore, (2k + 1)B¢(wy,) € VoA and since V, A is a cone,

Be(wy,) € VyyA. This completes the proof. [

In the case that A is regular at zy and A,, C W, computing (Z,,A; W) is greatly

simplified in the following sense.

Theorem 5.15 Suppose that A is reqular at xo and let A be an affine system in
A, If W C VA is a subspace containing Ay, then (Z,, A; W) = (Be; W) for any
¢ e Z,,A.

Proof: Fix ¢ € Z,,A and let (; € Z,,A be arbitrary. Then Y; = (; —( is a L(A)-vector

field and, moreover, Y;(zg) = 0,,. Therefore, for w,, € T, M,
B, (way) = Be(way) + By (way),
and, therefore, by Proposition 3.4,
B, (way) — Be(way) € Agy-

fé=C0+Y,€2Z,A, then

Be, Bey (way) = (Be)*(way) + Be(By; (way ) + Bya (Be(wa,) + By, (way)),
and, therefore, by Proposition 3.4,

B, Bg (W) = (Be)*(way) — Be(By, (way)) € Agy-

By induction, if (; = +Y; € Z,,A for i € {1,...,k}, then

Bg, -+~ Bgy (way) = (Be)* (way) = (Be)* ™ (bag1) =+ = Be(bagi-1) € Auy,

where by, 0 € A, for £ € {1,...,k —1}. Hence, if W is a subspace containing A,,,

for w,, € W and any collection (y,...,(x € ZzA, it holds that B, - - Be, (wy,) €
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(Be; W). By (5.2), this proves that (Z,,A; W) C (Bg; W) if W contains A,. The
reverse inclusion holds regardless of whether A,, C W or not. This completes the

proof. [ |
Proposition 5.13 and Theorem 5.14 imply the following.

Theorem 5.16 Let A be an affine system that is proper at xqy. If
(ZgA; Aro) + span{ DY) (z)} = T,,M

then A is STLC from x.

Example 5.17 On M = R"”, let A be the linear control system & = Ax + Bu, where
A e R B e R"™" and u lies in the unit cube in R™. By Proposition 5.11,
V), A = img(B). The set Z,,A contains the vector field z — Az, i.e., the drift vector
field. Hence, by Theorem 5.14, the smallest subspace containing img(B) and invariant
under the linear vector field z — Az is a subspace of variations. In other words, the
image of the classical Kalman controllability matrix [B AB --- A""1B] is a subspace

of variations.
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Chapter 6

Driftless and homogeneous systems

In this chapter, we give two applications of the methods developed in this thesis for
two important classes of systems: driftless and homogeneous systems. For driftless
systems, we show that the LARC at x is sufficient for PSTLC from zy. This result is
well-known, of course, dating to the work of Chow and Rashevski [14, 36]. We then
consider homogeneous systems which are central to proving the well-known sufficient
conditions of Sussmann [45] and Bianchini-Stefani [8]; see Hermes [21] for an excellent
survey. We give a necessary and sufficient condition, in terms of the variational cone,
for local controllability for homogeneous systems. Moreover, for these systems, we
are able to give a positive answer to an open problem in control theory regarding

whether local controllability can be determined in a finite number of differentiations.

6.1 Driftless Systems

When the affine distribution A is a distribution, affine systems become what are

commonly called driftless systems. Here is the definition.

Definition 6.1 Let D be a smooth distribution. A driftless system in D is a multi-

valued vector field D : M = TM such that span D(z) = D, for each x € M.
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We begin by showing that all variations can be neutralized for a distribution.

Proposition 6.2 Let D be a smooth distribution and let o € M. For each positive

integer k, VgljoD is a subspace.

Proof: By Proposition 5.1, VfOD is a convex cone, so to prove that it is a subspace
we need only prove that it is closed under multiplication by —1. Let (£, ) € V5, let

€= (-¢&,...,—&), and let T = (t?,...,t'). We note that, for each i € {1,...,p},

—&; is a D-vector field, and thus (é ,T) € . It is clear that

(I)Sc(s) O(I)E(s) (o) = o

for all s in a neighbourhood of zero. Thus, for all / > 0 and any smooth function f

vanishing at xg, it holds that s — ef*é)f('t(s), T(s)) = 0. Hence, by Lemma 4.4,

eff (1(s)) = e (x(s)) = mi &9 (x(s), 7(s)). (6.1)
By Lemma 4.5, the derivatives of m,(f*g)f (t,T) at s = 0 of orders 1,...,k vanish

because ord,,(&,T) = k. Therefore, differentiating (6.1) and evaluating at s = 0

through orders 1, ..., k, we obtain that ord,,(§, T) = k and Vg ; = —Vg .. This proves

that —Vg € V5 D. -

The next proposition states that, in the regular case, the variational cones of

convex driftless systems agree with those of the distribution.

Proposition 6.3 Let D be a smooth distribution that is reqular at xo and let D be
a smooth driftless system in D. If D is proper at xq then VZfOD = V:foco(D) for each
k > 1. Consequently, V,,D = V,,co(D).

Proof: Let (&,7t) € V&, where € = (£,...,&,) and T € ET,. There exists A > 0 such
that \{;(zo) € intp, (co(D(zg))) for all j € {1,...,p}. By Lemma 3.24, there exists

a neighbourhood € of x such that, for all 7 € {1,...,p} and all z € Q) it holds that

7



Aj(x) € co(D(x)), ie., the ;s are co(D)-vector fields. Define &, = (A&, ..., AEp)
and T)(s) = $7(s). Then (€,,7T)) € Veo(n) and, by Theorem 4.1, for any smooth

function f,

k

1 (m(5) = SN DL = 3 (e ) T = o (x(o)).
|7]=0 |1]=0

Therefore, Ve r = Vg, x, € VE co(D). This proves that VED C V¥ co(D), and, there-

fore, V,,D C V,,co(D). The reverse inclusion is obvious. ]
Combining Proposition 6.3 and Corollary 3.31 we obtain the following.

Theorem 6.4 Let D be a smooth distribution that is regular at xo. If V,,D = T, ;M
then D is PSTLC from xy.

Proof: Let D be a convex driftless system that is proper, smooth, and satisfies the
LARC at z,. By Proposition 6.3, V,, D = V,,D = T,,M, which implies that D is
STLC from zy by Theorem 5.5. Since D was arbitrary and by Corollary 3.31, the

proof is complete. n

In the rest of this section, we will construct an explicit type of variation for a
driftless system that will lead to the result that, for driftless systems, the LARC at
xg is sufficient for PSTLC from z. The construction is motivated by [27, Theorem
3.16] but we will use our methods to prove the result. For vector fields &, & and

s € R sufficiently small, define the (local) diffeomorphism
[@62’ (I)&] — P 0P 2Pl o P2,

In our notation, if & = (&, &1, =&, —&1) and (s) = (s, s, 8, ), then (I)i(s) = [P%2, B%1].

It is clear that [®%2, 51|71 = [®% @8], If & is another vector field, put

[@53’ [q)fz’ q)fl]] — [(I)ﬁz’ @51]—1 o, [q)fz’ q)fl] o Pés .
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In our notation, this corresponds to & = (&3, &2, &1, —&2, —&1, =3, &1, &2, —&1, —&2, —&3)

and T(s) = (s,s,...,5) € R'%. We can iterate this process to define higher-order

commutators of local diffeomorphisms of the form

[QEP’ [ T [(I)gz’ (I)EIH o ] (6'2)

for vector fields &;,...,&,. An elementary induction shows that, for each p > 2, the

commutator (6.2) corresponds to a family of a, = 3 - 27 — 2 vectors fields.

Lemma 6.5 Let p > 2 be an integer and let &, ..., &, be smooth vector fields on M.

Then, for any x € M, it holds that, for ¢ € {1,...,p— 1},

[@% [, [@%2,®%]] - -](z) = 0,

and
dp

ds? [(I)gpv [ o 7[(1)527(1)51“ o ](SL’) :p![gpv [ o 7[527&1]] o ](SL’)

s=0

Proof: The proof is by induction on p. Let p = 2. From Corollary 4.2, the first order
term in the Taylor expansion of [®%!, ®%](x) is (& (x) + &1 () — & (x) — &1 (x))s, which
is identically zero for all x € M. Again, by Corollary 4.2, the second order term in
the Taylor expansion of [®%!, ®%](z) is (we are suppressing evaluation at )
533_2, + 6657 — &5 — &Gt + 5%;_2, — §1687 — 157 + 522;_2, +&&1s” + 5%;_2,7
which simplifies to &&15% — £1&8% = [£9,&]s?. This proves the case p = 2. Assume
it for p > 2. Let &1, &, ..., &,+1 be smooth vector fields and let £ be the a,-tuple of
vector fields and let T € ET,, be defined as t(s) = (s, s,...,s) € R?, so that @f(s) =
(@5, [+, [, ®%]]---]. Let &€ denote the family obtained by reversing the order of

the sequence & and multiplying each element by —1. Let = &1 % & % (—&p11) ¥ &
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and let

p+1
Sé

Gl =3 > ((Gn)€ -6V €)@y (6.3)

=1 i+j+|I|+|J|=¢

By Corollary 4.2, ¢, is the Taylor expansion of order p 4 1 of the curve
S [(I)ngv [ R [(1)527 (I)gl]] o ](SL’),

so that, at s = 0, they have the same derivatives up to order p+1. From the induction
hypothesis, it follows that Zm:a %fl is identically zero for each a € {1,...,p — 1}

and that also

Do =16 68

[I|=p

Moreover, by the proof of Lemma 6.2, the same is true for the family €. Hence, the
only coefficients in the polynomial (6.3) that are potentially non-zero are when either
|I| = p or |J| = p. Hence there are two cases to consider: (i) |I| = p (or |J| = p)
and i = j =0, or (ii) |[/| = p (or |J| =p) and i = 1 or j = 1. In the first case, if
|I| = p (so that |J| = 1), these coefficients will vanish identically by the induction
hypothesis, and the case |J| = p and |I| = 1 is identical. In the second case, the four
coefficients that remain are when [/| =pandi =1, |[I| =pand j =1, |J| = p and

i =1, and |J| = p and j = 1. Therefore,

I 1
) = [Ga X5 ) @+ (2 86 | s

[Il=p |I|=p
¢’ ¢
+ Z(fpﬂ)j ()Pt + Z(_gpﬂ)j ()5
[J|=p ’ [J|=p )

¢’ ¢’
= §p+IZF (2)s"* + Z ]'( Epi1) | (2)s"

i=p [l=p
= [&pi1s [ [+ 5 €0, &) -+ ] ()P

and the proof is complete. [ |
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Lemma 6.5 gives us a formula for iterative Lie brackets in terms of monomials. To
state the formula, we introduce some notation. Given a finite list of indeterminates
x = (v1,...,7x), let & = (—x,...,—x1). Given another indeterminate y, define

py(x) = (y,x,—y,x). For example, given w1, z, 3,

pwg(pmz(xl)) = (I37 prz(x1>7 —XI3, pwg(x1>> == (.Z'g,LUQ,LUl, —X2, —X1,T3,T1, T2, —T1, _LUQ).

With this notation and Lemma 6.5, the following formula is immediate.

Corollary 6.6 Let &y, ..., &, be vector fields and define the family of vector fields via

€= 0, (g, (- (Per(€1)) - +). Then

& [, [+ [E0,60) -] = g%

[I|=p

The following is an immediate consequence of Lemma 6.5.

Proposition 6.7 Let D be a smooth distribution and let p € Zso. Then, for any
family & = (&,....&,) of D-vector fields and xo € M, it holds that

[gp’ [ ) [€2>€1H o ](370) € VQICJOD-

For completeness, we state the following.

Theorem 6.8 Let D be a smooth distribution and suppose that T, (D) satisfies the
LARC at xzy. ThenV,,D = T, ;M. Consequently, if D is reqular at xo then it is PSTLC

from xq.

Proof: It is well-known that Lie(I, (D)) is spanned by elements of the form

[€ps [+ (€2, 6] - - ](20),
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where &,...,¢, € I,;(D) and p € Zs, see for example [35, Proposition 3.8]. Hence,
if T;,(D) satisfies the LARC at zy, by Proposition 6.7 there is some k such that

VfOD = T,,M and thus V,,D = T, ,M. The second statement is Theorem 6.4. |

6.2 Homogeneous systems

Homogeneous systems have received much attention in the literature with regards
to controllability and also stabilizability, see [21] for a survey. One of the basic
problems is concerned with constructing homogeneous approximations that preserve
the property of interest, for example, STLC or stabilizability. Our aim in this section
is to show that, for homogeneous systems, one can characterize the local controllability
property with the variational cone.

To define homogeneous systems, we need the notion of a dilation. A one-parameter

family of dilations on R™ is a map A: R.q — L(R™;R") of the form

for positive integers ki, ..., k,. We write Ay for the linear map A(s).
Given a control-affine system ¥ = (R", { Xy, X1,..., X,n,},U), a controlled trajec-
tory on [0, T] of ¥ is a pair (y,u), where u: [0,7] — R™ is an integrable map such

that u(t) € U and y: [0, 7] — R™ is the absolutely continuous curve satisfying

m

Y(t) = Xo(y(t)) + > u(t) Xa(v(1)).

a=1

The set of all controlled trajectories on [0,7] of ¥ is denoted by Trajy, (7). Given
(v,u) € Trajs(T) and s > 0, we define (y™, u'™) € Trajy(sT) by setting u™(t) =

u(t/s), for all t € [0,sT]. Similarly, given (y,u) € Trajy(7T") and ¢ > 0, we define

(ver, usr) € Trajg(T) by setting u(t) = eu(t), for all t € [0,T].
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Definition 6.9 Let ¥ = (R", { Xy, X1,..., X;n},U) be a control-affine system.
(i) We say that X is time-homogeneous with respect to the one-parameter family
of dilations A™ if, for every (y,u) € Trajy(T) inducing (y™, ut™), it holds that
v (st) = A™(y(t)), for all ¢ € [0,T].
(ii) We say that 3 is control-homogeneous with respect to the one-parameter family
of dilations A™ if, for every (y,u) € Trajy(7") inducing (v, ug"), it holds that

€

YE(t) = AT (y(t)), for all ¢ € [0,T].

Time-homogeneous systems have, naturally, homogeneous reachable sets.

Lemma 6.10 Let > be a control-affine system and suppose that Y s time-

homogeneous with respect to the dilation A™. Then, for each T > 0,

R (0, sT) = A (R (0, T)).

Consequently,

:RE(ZL’(), S ST) = Agm(RE(Io, S T))

Proof: Let (y,u) € Trajy(T') and let (v u'™) € Trajs,(sT) be the induced controlled
trajectory. By definition of time-homogeneity, A™(y(T')) = x4(sT) € Ry (xg, sT), so
that A™(Rx(x,T)) C Rs(zo,sT). To prove the reverse inclusion, let (xy,us) €
Trajy.(sT). Define u: [0,T7] — R™ by u(t) = us(st) and let (y,u) € Trajy(T") be
the resulting controlled trajectory. Then, by definition, (z,us) = (Y™, u'™), and,

therefore, by time-homogeneity, xs(st) = y™(st) = A™(y(t)) for t € [0,T]. Hence,
zs(sT) = A™(y(T)) € A"™(Rx(x0,T')). This proves the reverse inclusion. [ |

The proof of the following is similar to the proof of the previous lemma but we

include it for completeness.

Lemma 6.11 Let ¥ = (R, X,U) be a control-affine system and suppose that ¥

is control-homogeneous with respect to the dilation X*. For ¢ > 0, let U, =
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{eu| we U} and let . = (R", X, U.). Then, for each T > 0,

RZE (1’0, T) = Agr(Rz(Io, T))

Consequently,

:st(x(]v < T) = Agr(fRz(I‘O, < T))

Proof: Let (v,u) € Trajy(7T") and let (v, ug") € Trajy, (7)) be the induced controlled
trajectory. By definition of control-homogeneity, AZ(y(T')) = y&(T) € Ry (x,T)
so that AY(Rx(zo,T)) C Ry, (x0,T). To prove the reverse inclusion, let (z.,u.) €

Trajs,_(T). Define u: [0,7] — R™ by u(t) = u(t) and let (y,u) € Trajy(T) be the

Cr

), and, therefore,

resulting controlled trajectory. Then by definition, (z., u.) = (v, u
by control-homogeneity, z.(t) = v (t) = AZ(y(t)). Hence, z.(T) = A (y(T)) €

AY(Rx(x9,T)). This proves the reverse inclusion. |

Definition 6.12 Let X be a control-affine system on R"™. We say that X is controllable

from xq if Ry (z9) = R™.

For a control-affine system 3, we will use the more compact notation V¥ ¥ for V¥ As..

We are now ready to state the main result of this section.

Theorem 6.13 Let X be a control-affine system on R™ that is time-homogeneous
for some dilation A™(z) = (shal,... ska™) and let 79 = 0 € R™. Let k =
lem(ky, ko, ..., kn). Suppose that X satisfies the LARC at xo. The following are
equivalent:

(i) ¥ is STLC from xo;

(it) VEIS +VEy + .. + V55 = R" and hence VE Y = R™;

(i1i) ¥ is controllable from xg.

Proof: We first prove that (i) implies (ii). Suppose that 3 is STLC from z, and

let T > 0. Let {e1,...,e,} be the standard basis in R™ and let e; € {e1,...,e,}

84



be arbitrary. By hypothesis and by a theorem of Grasse [17, Corollary 4.15], there
exists a piecewise-constant control u: [0, 7] — R™ for ¥, where T < T, and a positive
constant ¢ > 0 such that the corresponding trajectory y: [0,7] — R" satisfies y(T") =
ce;. In other words, there exists a family of vector fields £ = (&,...,&,) C L, (2),

times t1,...,t, > 0 satisfying ¢; +---+1t, =T, such that
(T) = cey = B -+ o ()
Y Ce; Ly 4, \Zo)-
Consider the curve v: [0,1] — R" given by

V(s) = B 0 -r 0D (1)

tps

Then, by construction of v, for s € (0,1], it holds that v(s) = y™(sT), where
(v uf™) € Trajs(sT) is induced by (y,u) € Trajg(7T). By time-homogeneity and
the fact that v(0) = o, it follows that v(s) = ce;s" for all s € [0, 1]. By construction
of v and the definition of Vng, it is clear that e; € Vng. An identical procedure
shows that also —e; € Vfgz. This proves that V¥ + VE23 4 ... + Vi3 = R". By
Lemma 5.2, it follows that V¥ ¥ = R"™.

Now we prove that (ii) implies (iii). If (ii) holds then, by Theorem 5.5, (i) holds.
Let 2 € R™ and 7" > 0 be arbitrary. For A > 0 sufficiently large, AY),(2") €
int Ry (o, < T). Let T' < T and let (v, u) € Trajg(T") be such that y(T') = AT), (z*).
Let (y™, uf™) € Trajy(sT) be the induced trajectory. Then, by time-homogeneity,
Yo(sT) = AP (A, (z7)) = AP, (7). Hence, setting s = A, we obtain that z* is
reachable from z( in time A7 using the control uy. This proves that z* € Rg(x).

The proof that (iii) implies (i) can be done by first proving that (iii) implies (ii)
in the exact same way as was shown that (i) implies (ii). Then we use the fact that

(ii) implies (i), by Theorem 5.5. |

Let us illustrate the procedure in the proof of Theorem 6.13 with an example.
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Example 6.14 The following system was considered by Stefani [40]. The state man-
ifold is M = R3, x5 = (0,0,0), and the affine distribution is

Az = Xo(z) +span{Xy(z)},

where

Xy = :171% + (:)51)3:)32i and X; = i

Consider the control-affine system ¥ = (R", {Xo, X1}, [—1,1]). It is straightfor-
ward to show that ¥ is control-homogeneous with respect to the dilation A% (x) =

(ex!,ex?, '), and that it is time-homogeneous with respect to the dilation A™ (z) =

(sz!, s%2?%, s%3). For u € U let £, = X, + uX;. Using Proposition 5.13, one com-

putes that \7502 = span {%, %}. According to Theorem 6.13, to produce varia-
tions in the :t% directions, we need to look at variations of order six. Following
the proof of Theorem 6.13, let T(s) = (ays, ass,ass) and let & = (&, Euy, Eus ), With

a1u1 + asus + asus = 0. Then one computes that

d? 9
13|, P8 (T(s) = (mar(ar + 202 + as) + w205(0 + a3)) 5

a1(a1+2az2+a3z)uy
az(az+a3)

and so we set uy = — , so that ord(&¢,T) > 3. Then one computes

that the derivatives of ®¢ (T(s)) of orders 3,4, and 5 vanish at s = 0, and that

6 .
15 _Ofbio(T(S)) is equal to

30u4a‘11(a1 + ag)(al - ag)(al + as + ag)(alag + 2@1&3 + CLQCL3) 0
(as + as)? ox3’

By inspection, the above expression can be made negative and positive for all choices
of u for appropriate values of a1, as, as > 0. Hence, VfOE = span {% }, and, therefore,
by Corollary 3.26, the affine distribution spanned by { Xy, X7} is PSTLC from the

origin xg.
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In the proof of Theorem 6.13, linear end-times were used. This can potentially
result in an over estimate for an integer k for which VfOE = R", i.e., the bound

lem(ky, ..., k) is not sharp, as the following example shows.

Example 6.15 The following system was considered by Kawski [25]. The control-
affine system is given as ¥ = (R*, { Xy, X1}, U) where

R Ry N e S O
X()—l’ +6(l’)ax3+(l’l’)ax4, Xl—

and U C R is convex and proper. One can easily check that X is time-homogeneous
with respect to the dilation A™(z) = (sa!, s%2? s'23 s"2?). Hence, from Theo-
rem 6.13, ¥ is STLC from zo = 0 if and only if V2¥% = R*. Using the procedure
of Theorem 6.13, it is not too difficult to produce variations of orders 1,2, 4, and 7,
in both positive and negative directions, so that V283 = R*. However, here we will

show that actually VEOE = R* by using end-times that are not linear to produce the

i—a#; directions as eighth order variations. For u € U let £, = Xo + uX;.
. . e 9 - ) o
(i) Using Proposition 5.13, one computes that V2 = span {W’ W}'

(ii) According to Theorem 6.13, to produce ﬂ:% as variations, we must look at
variations of order 4. Let T(s) = (a1$, ass,ags) and € = (&,,, &u,, us) be such

that ajuy + asus + agug = 0. Then ord, (&, T) > 2 and

d? P
a2 szoq)go (t(s)) = (CL%U1 + a1 (2ag + az)uy + az(as + a3)U2)@.
Setiting up = _az(azl-‘rag) (a%m + a1(2ay + az)uy) results in ord,, (&, T) > 4 and
d_4 ¢ (1(s)) = _aif(al + ag)(a; — az)(ay + az + az)u? 9
dstlomo ™ (a2 + s 5

We can then easily choose aq, as, and as to produce the variations ia%g.
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(iii) Now we produce variations in the directions j:a%‘l' Producing a variation in the

9

direction 577 is straightforward but we will treat both cases simultaneously. To

this end, let
, 52
TZ(S) = a;S + bi—,
2
for i = 1,2,3, let t(s) = (t'(s),T%(5),T3(5)), let € = (Euys Euns Eus), let T(s) =
(T3(s),72(s), T'(s)), and let £ = (Cuss Eugs Euy)- I aquy + agug + asuz = 0 then

ord,,(&,T) > 2 and

d? bs(ayuy + agug)\ O
¢ B 3(a1uq 2U2
@ g a0 (T(S)) = <blu1 + b2u2 — 0 922
0
+ (a%ul + aq (2@2 + ag)ul + CLQ(CLQ + a3)u2) %
If we set by = alulaﬁ(bl“l + byus), then we obtain that
d2

(6.4)

0
®f, (t(s)) = [(afur + a1(2as + az)ur + as(as + az)us] 02

ds?ls=0 ™

It is not hard to choose uy, ug, a1, as to make the tangent vector in (6.4) equal to
zero, so that we can continue to produce a higher-order variation. But instead of
this, we augment to (&, T) the reverse pair (é, T) so that we can keep the variables

uy, U, ai, az free and simultaneously cancel the tangent vector in (6.4). In fact,

one computes that, if we continue to use

a
a1u1 + asus + asug = 0 and bg = 73(611“ + bgUg),
ajul + agUs

then ordy,, (€ * €, T* ) > 7 and

7 _
d_ &x€
ds7ls=o *°

(T 7T)(5)) = Qalur, uz)5—

where Q,: R? — R is a homogeneous polynomial of degree 4 whose coefficients
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are homogeneous polynomials in @ = (ay, as,a3) of degree 7. It is difficult to
determine if the homogeneous polynomial (), can be made to be indefinite by
an appropriate choice of the parameter a, i.e., have both negative and positive
values in its image. Instead, we investigate whether it is possible to choose a
so that there exists a non-trivial subspace of R? on which ), vanishes. To this
end, set, for example, a; = 1,ay = 1/10,a3 = 5, and uy = Auy, where A € R is

to be determined. Then, one computes that
Qa(ul, )\ul) = [Co —+ Cl>\ + CQ>\2 —+ C3>\3 —+ C4>\4] u;l,

where ¢y, . . ., ¢4 are positive rational numbers. Using a computer algebra system,
one can check that the polynomial c(\) = ¢y + c1 A + oA + ¢33 + ¢4 A? has two
real roots and they can be computed explicitly. Up to four digits they are
given as \; = —15.7499 ... and \y = —13.4544 .... Hence, setting a; = 1,0y =
1/10,a3 = 5, the subspaces S; = {(u1,us) € R* | ug = A\ju}, j = 1,2, are
killed by Q.. Hence, setting uy = Aju; yields that ord,, (& * £, x T) > 8 and
one computes that, for these choices of parameters,

dS g*é ~ 4 a
(T xT)(s)) = (—riby + T2b2)u1@,

ds8ls=0 *°

where 71,75 > 0 are constants. By inspection, one can then easily choose b; and
by to produce variations in the ﬂ:a%4 directions for any choice of u;. Moreover,
since us and ug are directly proportional to u;, by choosing wu; sufficient small,

we can force uy, us, uz € U.

Therefore, by Corollary 3.26, the affine distribution spanned by {X, X;} is PSTLC

from the origin x.

Now we turn to the question of determining PSTLC for homogeneous systems.
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Theorem 6.16 Let X = (R", {Xo, X1,..., X}, [—1,1]™) be a control-affine system
that is both time- and control-homogeneous for some dilations A™ and A, respec-
tively. Assume that X1, ..., X,, are linearly independent at xo = 0 and that X satisfies
the LARC at xqy. Let A be the affine distribution generated by { Xo, X1, ..., Xm}. Then
A is PSTLC from xo if and only if V'S = R", where k = lem(ky, ..., k,) and the

integers ky, ..., k, are those associated with the dilation A™.

Proof: If A is PSTLC from z( then ¥ is STLC from zy. Therefore, by Theorem 6.13,
VEY =R"

Now suppose that VfOE = R" and let U be an arbitrary proper and con-
vex control set. By Theorem 5.5, ¥ is STLC from z,. For ¢ > 0 let
Y. = (R" {Xo, Xy,...,Xn},eU). By control-homogeneity, Y. is also STLC from
xg. For e sufficiently small, [—¢,¢]/™ C U. Hence, the control-affine system
(R™ {Xo, X1,..., X}, U) is also STLC from zy. By Corollary 3.26, A is PSTLC

from xg. [

6.2.1 A class of high-order systems

In this section, we will consider the affine distribution A on R” generated by the frame

{¢, X1,..., X}, where

0 0 0
_ Fl 4 F2 e a F?‘77
C axm—i-l al.m+2 al.m-l—r
where the F7: R™ — R are homogeneous polynomials of order k, for j = 1,...,r,
and X, = a%a for a =1,2,...,m. In this section, xq € R" will denote the origin, and

n=m-+r.

Proposition 6.17 Let A be the affine distribution on R"™ generated by

{¢, Xq,..., X} Suppose  that {(,Xy,..., X} satisfies the LARC at

90



Zp. Then A is PSTLC from xy if and only if Vﬁle = R", where
Y =R"{(, X1,..., Xn}, [-1,1]™).

Proof: Write a point in R™*" as (z,y). Let u: [0, 7] — R™ be a control for the system
Y and let t — (x(t),y(t)) the corresponding trajectory. Let ((z<,y<"), u") denote the

induced controlled trajectory. Then

ﬁwwzAlmmmwafuwwﬁm=slmume=wm@

and therefore 2 (sT) = sz(T). Let F = (F',..., F"). Then,

0 = [ Fas@)aw= [ Footw/ae = [ Fat/s) i

t/s
_ s /0 Fla(o)) do = 51yt /s).

Thus, y<*(sT') = s**1y(T). Thus, ¥ is time-homogeneous with respect to the dilation
AW (x,y) = (sx, s**1y). In like manner, one can show that ¥ is control-homogeneous
with respect to the dilation A% ((z,y)) = (ex,"y). The result now follows by Theo-
rem 6.16. L

If € is a vector field of order k at xy and

dim(M)

a'fgﬂ 9
Z Z Ol .TL’(] d.CL’ LU())@@(I())

is the associated vector-valued symmetric k-multilinear map on T,,M, we define
Q’g: T,,M — T, ,M by

Q’g(vxo) = Bf(vxo, ey Usg)-

Note that when £ is odd, img(Q’E) is closed under multiplication by —1. Indeed,

—Q?(vxo) = —Bg(%o, ey V) = Bf(—vxo, ey Uy ) = Q'g(—vxo).
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Proposition 6.18 Let A be the affine distribution on R"™ generated by
{¢(, X1,..., X}, Suppose that {¢, Xy,..., X} satisfies the LARC at xy. Let
Wa, = span { QF(Ay,) } and suppose that Ay, + Wy, = R". Then the following hold:
(1) if k is odd then A is PSTLC from wy;
(i) if k is even and Oy, € intyy, (co(QF(As,))) then A is PSTLC from .

Proof: Put ¥ = (R",{¢, X1,...,Xn},U = [—1,1]™). According to Proposition 6.17,
it is enough to prove that ijlZ =R" Let &4 = (+Y and & = ¢ — Y, where
Y =u'X, for u= (u',...,u™) € U. Let & = (&,&) and let T(s) = (s,s). Then, by

Theorem 4.1, for any smooth function f,

k+1 k4+1-¢

eili(t(s) =) > (&8 g,, (6.5)

(=0 5=0

Since & (zg) + &(xg) = 04, it follows that ord,,(&,T) > 2. In fact, since ¢ is of
order k at xp and Y is a constant vector field, by Lemma 4.12 we actually have that
ord,, (&, T) > k + 1. Therefore, (6.5) simplies to

(e = 3 (k ‘ 1) (efes™ s ><$°><z:++ D

£=0

Now, as differential operators,

61 ZC ngg ZY €_0>1a-"7k7

glehri-t _
HE RN t=k+1

and, therefore, by Lemma 4.12 and the fact that Y (zq) = u

p

Bf(u,...,u,—u,...,—u), (=0,1,...,k,
fet1—0 B H,_/E/_/
51 ( ) = /—times (k—£)—times
\Bf(u,...,u), (=k+1,




Therefore,

egﬂ(r(s)) = (Z <k _g 1) (1) + 1) Bf(u,u, ... u) (ks+ ik

Now

and, therefore,

ef1(T(5)) = 2Q5 (u) (6.6)

(k+ 1)1
Using the fact that ij '3 is a cone and by properness of U, we have Q'g (Az,) C

Vitly, and, therefore, the convexity of Vit'S implies that co(Qf(A4,)) C VitHE.
If k is odd then co(Qf(A4,)) is closed under multiplication by —1, and, there-
fore, co(Qf(As,)) = Way. If k is even and 0,, € intyw, (co(Qf(As,))) then again
co(QF(Agy)) = Way. Now Ay = VI X C VEFE, and therefore R" = Ay, + W, C
VIS, Hence, in ecither case of k, we have that VEH'Y = R", and the result now

follows by Proposition 6.17. |

6.2.2 Determining STLC in a finite number of differentia-

tions

In [26] (see also [1]), the following problem was posed.

Open problem: If the smooth control-affine system X =
(M, {Xo, X1,...,Xn},U) is STLC from zy, does there exist an integer k such
that every smooth control-affine system ¥ = (M, {Yy, Y3,...,Y,,},U) is also STLC
from x if the Taylor expansions at xy of the vector fields of the two systems agree
up to order k7

Theorem 6.13 gives a positive answer to this question for the special case of time-

homogeneous systems.
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Theorem 6.19 Suppose that %~ = (R" {Xo, X1,..., X}, U) is time-
homogeneous with respect to the dilation AM™(x) = (sMal,... ska™) and let
k = max{ky,...,k,} — 1. If X STLC from xy = 0, then every control-affine system
¥ = (R A{Yo, Y1, ..., Y}, U) with j5 Y, = j5 X,, for all a € {0,1,...,m}, is also
STLC from xy.

Proof: If ¥ is STLC from wy, by Theorem 6.13, V15 + V25 4 ... + V5 = R™.
By definition, VfOE depends only on the (¢ — 1)-jets of X, X1,..., X, at zo. Hence,
if ¥ = (R",{Yp,Y1,...,Y,},U) is a control-affine system such that j% vV, = j& X,
then Vi?S = Vi for all j € {1,...,n}. Hence, VIS + VRS . 4 VS = R,

Consequently, by Theorem 5.5, ¥ is STLC from . |
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Chapter 7

Conclusions and future work

7.1 Conclusions

In this thesis, we have developed a feedback invariant theory of local controllability
for affine distributions. The main geometric notion we have studied is what we call
proper small-time local controllability and the main tool used to study this notion is
a set of high-order tangent vectors. To better understand these high-order tangent
vectors, some computational tools were developed on appropriate jet spaces of the
tangent bundle. Using these tools we were able to characterize proper small-time

local controllability for driftless and homogeneous systems.

7.2 Future work

The following list of questions and problems are natural avenues of future research

from this point.

1. In Chapter 3 it was shown that, for a regular affine distribution, there is no
loss of generality by considering convex control-affine systems for the study of

PSTLC. A natural question is whether this is still true in the singular case.
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. It would be fruitful to better understand the algebraic properties of the linear
map c?x’f) described in Chapter 4. Having established a solid understanding of
this map, it should be possible to obtain new interesting sufficient conditions for
local controllability. The connection between the coefficients of the Taylor series
of a composition of flows and labeled rooted trees, established in Section 4.3,

might be useful for this task.

. Using the tools developed in this thesis, give a sufficient condition for VJ:O.A to

be a subspace. In other words, when are all variations of order £ neutralizable?

. For homogeneous systems, it was shown that the variational cone completely
characterizes local controllability. It would be natural to explore what new

necessary conditions can be obtained in the general case.

. In Section 6.2.1, a special class of homogeneous systems was considered and
we were able to give a geometric sufficient condition for the variational cone to
be the whole tangent space. This was done by considering a specific type of
concatenation that resulted in the high-order vector-valued form appearing as
the variation. A natural generalization of this result would be to do the same

for general homogeneous systems.

. In [24] it was shown that, for the control-affine system Y =

(R*, {Xo, X1}, [—€, €]) given by

if the set of controls is restricted to piecewise constant controls with at most
N jumps, then, if 7 > 0 and € > 0 satisfy N7T7/2¢3/4 < 1, then 2*(T) > 0 if
2'(T) = 0. However, Kawski proved that 3 was indeed STLC from the origin

xo = 0 by using variations that were parameterized by a discrete parameter
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related to the number of switchings in a specific type of variation. The number
of switchings grew as the final time tended to zero. Roughly speaking, one can
say that Kawski’s example satisfies the following behaviour: If the control set
is bounded then one needs high frequency to control the system in small-time.
One natural question is: If the control set is unbounded, can Kawski’s example
be controlled using finite jumps in small-time? The tools developed in this
thesis can be used to give a positive answer to this question. To show this, for
u € Rlet &, = Xo+uX;. For X, it is easy to produce variations in the directions

a a a a a . . . . .
tor, * 500, 503, and 575, so that —57 is the only missing direction for local

controllability. For s > 0, let £(s) = (&u(s)» E—u(s) E—u(s): §u(s)) Where u(s) = fs(f)
and the function f is to be determined. Let T(s) = (s, s, s,s). We can compute
directly, by either integrating the differential equation or using the Taylor series

tools developed in Chapter 4, that

80 (x(s)) = (@52l p e,

C3534

for constants ¢y, co, c3 > 0, and where e, denotes the 4th standard basis vector

in R*. Let
f(s) = as + \s?,

C2

for A € R. Then direct substitution and simplification yields

by 6 by 33)\6
B0 (e (s)) = At

Hence, we get a smooth curve in the reachable of ¥ from xy approaching the

origin and in the —e, direction provided that A > 0, i.e.,

(I)ggc(()s)('f(s)) € Ry (zg,4s) N {:L’ cR"| 2* < 0} .
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The resulting parameterized control u(s) is given by

u(s) = f(s)  as+Aes® o+ Aeps® (71)
s Co87 N cos8 ’

which goes to infinity as s — 0. Using a more general notion of variation
than the one used in this thesis, see for example [25], this shows that, if one
replaces the control set U = [—¢€,¢] with U = R, then ¥ is STLC from x
using piecewise constant controls with a finite number of switchings. In view of
Kawski’s example, a natural line of future research would be to build a theory,
in the same spirit as was done in this thesis, to deal with this fast-switching

phenomenon.
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