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Graph Controllability Classes for the Laplacian
Leader-Follower Dynamics

Cesar O. Aguilar and Bahman Gharesifard

Abstract—In this paper, we consider the problem of obtain-
ing graph-theoretic characterizations of controllability for the
Laplacian-based leader-follower dynamics. Our developments rely
on the notion of graph controllability classes, namely, the classes
of essentially controllable, completely uncontrollable, and condi-
tionally controllable graphs. In addition to the topology of the
underlying graph, the controllability classes rely on the specifi-
cation of the control vectors; our particular focus is on the set
of binary control vectors. The choice of binary control vectors
is naturally adapted to the Laplacian dynamics, as it captures
the case when the controller is unable to distinguish between the
followers and, moreover, controllability properties are invariant
under binary complements. We prove that the class of essentially
controllable graphs is a strict subset of the class of asymmetric
graphs and provide numerical results that suggests that the ratio
of essentially controllable graphs to asymmetric graphs increases
as the number of vertices increases. Although graph symmetries
play an important role in graph-theoretic characterizations of con-
trollability, we provide an explicit class of asymmetric graphs that
are completely uncontrollable, namely the class of block graphs of
Steiner triple systems. We prove that for graphs on four and five
vertices, a repeated Laplacian eigenvalue is a necessary condition
for complete uncontrollability but, however, show through explicit
examples that for eight and nine vertices, a repeated eigenvalue
is not necessary for complete uncontrollability. For the case of
conditional controllability, we give an easily checkable necessary
condition that identifies a class of binary control vectors that result
in a two-dimensional controllable subspace. Several constructive
examples demonstrate our results.

Index Terms—Multi-agent systems, network controllability,
graph theory, complex networks, linear systems.

I. INTRODUCTION

MANY science and engineering systems consist of a
collection of smaller subsystems, or agents, that are

interconnected over an information exchange network to ac-
complish a system-level task. Examples of such systems in-
clude distributed energy resources, oscillator synchronization,
distributed robotic networks [2]–[4], and also cascades of in-
formation and opinions in social networks [5]. Due to the large
number of applications where these so-called networked multi-
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agent systems appear, in recent years there has been a surge
of activity within the control theory community to understand
how the network structure of a multi-agent system affects the
fundamental properties of controllability and stabilizability.
Within this effort, a framework that has emerged is the so-
called leader–follower control dynamics wherein a subset of
the agents are selected as leaders for the purpose of changing
the natural dynamics of the network to solve a particular
control problem. The remaining agents, called the followers,
are indirectly controlled by the leaders via the connectivity of
the network. A particular system within this framework that has
received considerable attention is the Laplacian leader–follower
control system and its study has resulted in an extensive liter-
ature on its controllability properties [1], [6]–[11]. Although
much progress has been made, most of the existing results
focus on specific classes of Laplacian networks for which
explicit formulas are known for the spectral decomposition of
the system matrix.

A. Literature Review

The controllability of leader–follower network dynamics was
first considered in [6], where a characterization of controlla-
bility using spectral analysis of the system matrix was given.
Using a graph-theoretic approach, in [7] it was shown that
for a single leader agent, symmetries present in the network
that preserve the leader’s neighbors results in uncontrollability.
Moreover, in the case of multiple leaders, a necessary condition
for controllability was given using equitable graph partitions.
In [8], it is shown that connectivity of the network is necessary
for controllability and two uncontrollable network topologies
are characterized. In [9], various sufficient and necessary con-
ditions for controllability are given for a network tree topology.
In [10], sufficient and necessary conditions for controllability
(and observability) of multi-input Laplacian dynamics for path
and cycle network topologies are given in terms of modular
arithmetic relations. In [11], a comprehensive study was un-
dertaken of the controllability (and observability) properties of
grid graphs. In particular, necessary and sufficient conditions
are given that characterize the set of nodes that result in
controllability.

The controllability problem for graphs has received interest
outside the control community. In [12] and [13], the adjacency
matrix is used instead of the Laplacian matrix to study the
graph controllability problem. Explicitly, a “controllable graph”
in [12], [13] is a graph whose adjacency matrix has distinct
eigenvalues and no eigenvector of the adjacency matrix is or-
thogonal to the all ones vector. Hence, the work in [12] and [13]
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investigates controllability when all of the nodes are chosen
as leaders and the system matrix is given by the adjacency
matrix. A similar approach is taken in [14], but now one is
allowed to control possibly only a subset of the nodes. We note
that when the system matrix is the Laplacian instead of the
adjacency matrix, all graphs of order n ≥ 2 are uncontrollable
according to the definition of “controllable graphs” given in
[12]–[14]. This follows from the well-known fact that the all
ones vector is an eigenvector of the Laplacian matrix, and
therefore orthogonal to the other eigenvectors.

The line of research in [6]–[9] takes the point of view that
the states of the leaders act as inputs to the follower agents and
the dynamics of the leaders are ignored. As a result, the con-
trollability analysis is undertaken on a reduced-order system.
On the other hand, the line of research in [10], [11], [15] and
[16] takes the point of view that the leaders continue to follow
the Laplacian-based dynamics and the external controls on the
leaders influence the entire network through the interaction of
the leaders with the followers. It is, however, an easy exercise
to show that the former approach is a special case of the latter
(see Remark 3.1). In this paper, our approach is more closely
aligned with [10], [11], [15], and [16].

B. Statement of Contributions

The contributions of this paper are the following. To bet-
ter understand the role of topological graph obstructions to
controllability for Laplacian-based leader–follower systems,
we introduce graph controllability classes, namely, essentially
controllable graphs, completely uncontrollable graphs, and con-
ditionally controllable graphs. These definitions rely on the
specification of the control vectors and we focus primarily on
the case of binary control vectors. We show that with this choice
of control vectors, controllability is invariant under binary
complements for Laplacian-based leader–follower dynamics.

As our first result on graph controllability classes, we prove
that none of the essentially controllable graphs contain a non-
identity graph automorphism, i.e., all such graphs are asym-
metric. As a by-product, the so-called minimal controllability
problems [17] are solvable for this class. We also provide
numerical results that suggest that the ratio of essentially
controllable graphs to asymmetric graphs tends to one as the
number of vertices increases.

We then provide an explicit class of graphs, namely the
block graphs of Steiner triple systems, that are asymmetric
yet completely uncontrollable. Although symmetry plays an
important role in graph-theoretic characterizations of control-
lability [7], this result and the fact that asymmetry is typical
in finite graphs [18], suggests that the current focus in the
literature on characterizing graph uncontrollability by identi-
fying graph symmetries targets a narrow non-generic scenario.
We then prove that for connected graphs with four or five
vertices, a repeated eigenvalue is a necessary condition for
complete uncontrollability but show through explicit examples
that for n ≥ 8 this condition is in general not necessary. As
a by-product of our results, we give a sufficient condition for
complete uncontrollability in terms of the eigenvectors of the

Laplacian matrix and construct a class of nonregular completely
uncontrollable graphs.

We then provide a sufficient condition for conditional con-
trollability. Specifically, we identify a class of binary vectors,
that we call homogeneous, that result in a two-dimensional
controllable subspace. As an example, we show that the
3-regular asymmetric Frucht graph on 12 vertices possess these
homogeneous binary control vectors. Finally, we end the paper
with numerical results enumerating the distinct controllability
classes for graphs from order n = 2 to n = 9. Throughout the
paper, several examples demonstrate the results.

C. Organization

The remainder of this paper is organized as follows. In
Section II, we establish some notation and present neces-
sary definitions from graph theory along with a result on the
linear controllability for diagonalizable system matrices. In
Section III, after establishing some preliminary results, we dis-
cuss the motivation of this paper as it relates to the existing liter-
ature on graph symmetries and uncontrollability of networked
systems, and then introduce our graph controllability classes.
Section IV contain our main results. Finally, in Section V, we
make concluding remarks and discuss ideas for future work.

II. PRELIMINARIES

The set of natural numbers is denoted by N and we set
N0 = {0} ∪ N. Matrices will be denoted using upper case bold
letters such as A,F,L, and vectors using lowercase bold letters
such as x,b,u. The transpose of A is denoted by AT . The
cardinality of a finite set S is denoted by |S|. If S ⊂ R then
the complement of S in R is denoted by R \ S. The standard
basis vectors in R

n are denoted by e1, e2, . . . , en. Finally, given
u,v ∈ R

n, we write that u ⊥ v if u and v are orthogonal in
the standard inner product of Rn, i.e., vTu = uTv = 0. More
generally, if W ⊂ R

n, we write u ⊥ W if u ⊥ w for each
w ∈ W .

A. Graph Theory

Our notation from graph theory is standard and follows the
notation in [19] and [20]. By a graph we mean a pair G =
(V, E) consisting of a finite vertex set V and an edge set E ⊆
[V]2 := {{v, w}|v, w ∈ V}. We consider only simple graphs,
i.e., unweighted, undirected, with no loops or multiple edges.
The order of the graph G is the cardinality of its vertex set V .
The neighbors of v ∈ V is the set Nv := {w ∈ V|{v, w} ∈ E}
and the degree of v is dv := |Nv|. A path in G of length k is a
subgraph of G consisting of vertices {v0, v1, . . . , vk} ⊂ V and
edges {{v0, v1}, {v1, v2}, . . . , {vk−1, vk}} ⊂ E , where all the
vi are distinct. For such a path, v0 and vk are called the ter-
minal vertices. Given vertices u, v ∈ V , we define the distance
dG(u, v) between u and v as the length of a shortest path whose
terminal vertices are u and v. A graph G is connected if there is
a path between any pair of vertices.

Henceforth, when not explicitly stated, we fix an ordering
on the vertex set V and thus, without loss of generality, we
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take V = {1, . . . , n}, where n is the order of G. The adjacency
matrix of G is the n× n matrix A defined as Aij = 1 if
{i, j} ∈ E and Aij = 0 otherwise, where Aij denotes the entry
of A in the ith row and jth column. We note that if r = dG(i, j),
with i �= j, then (Ak)ij = 0 for all 0 ≤ k < r and (Ar)ij �= 0.

We denote by D the degree matrix of G, i.e., the diagonal
matrix whose ith diagonal entry is di. The Laplacian matrix of
G is given by

L = D−A.

The Laplacian matrix L is symmetric and positive semidefinite,
and thus the eigenvalues of L can be ordered λ1 ≤ λ2 ≤ · · · ≤
λn. The ones vector 1n := [1 1 · · · 1]T is an eigenvector of
L with eigenvalue λ1 = 0, and if G is connected then λ1 = 0
is a simple eigenvalue of L. We assume throughout that G is
connected so that 0 < λ2. For our purposes, by the eigenvalues
(eigenvectors) of a graph G we mean the eigenvalues (eigenvec-
tors) of its Laplacian matrix L.

A mapping ϕ : V → V is an automorphism of G if it is
a bijection and {i, j} ∈ E implies that {ϕ(i), ϕ(j)} ∈ E . The
order of an automorphism ϕ is the smallest positive integer
k such that the k-fold composition of ϕ with itself is the
identity automorphism. An automorphism ϕ of G induces a
linear transformation on R

n, denoted by Pϕ or just P when
ϕ is understood, whose matrix representation in the standard
basis is a permutation matrix, i.e., as a linear mapping ϕ acts
as a permutation on the standard basis {e1, . . . , en} of Rn. It
is well-known that ϕ is an automorphism of G if and only if
PA = AP. Moreover, an automorphism P preserves degree of
vertices, and therefore di = dϕ(i) for every i ∈ {1, 2, . . . , n},
i.e., PD = DP. It follows that an automorphism P of G also
satisfies PL = LP.

A graph is called k-regular if all its vertices have degree k ∈
N. A k-regular graph G = (V, E) is called strongly regular if
there exists λ, μ ∈ N such that:

i) |Nv ∩Nu| = λ, for every v ∈ V and every u ∈ Nv;
ii) |Nv ∩Nu| = μ, for every v ∈ V and every u �∈ Nv .
It is known that strongly regular graphs have exactly three

Laplacian eigenvalues [21]. A strongly regular graph will be
denoted by SRG(n, k, λ, μ).

B. Diagonalizability and Linear Controllability

Given a matrix F ∈ R
n×n and vector b ∈ R

n, we denote
by 〈F;b〉 the smallest F-invariant subspace containing b.
It is well-known that 〈F;b〉 = span{Fkb|k ∈ N0}, and that
if dim〈F;b〉 = k + 1 then {b,Fb, . . . ,Fkb} is a basis for
〈F;b〉. The pair (F,b) is called controllable if dim〈F;b〉 = n.
The following result characterizes the controllability of single-
input linear systems (F,b) when F is diagonalizable.

Proposition 1 (Controllability and Eigenvalue Multiplicity):
Let F ∈ R

n×n be diagonalizable.
i) For any open set B ⊂ R

n, the pair (F,b) is uncontrollable
for every b ∈ B if and only if F has a repeated eigenvalue.

ii) Suppose that F has distinct eigenvalues and let U be
a matrix whose columns are linearly independent eigen-
vectors of F. If b ∈ R

n then the dimension of 〈F;b〉

is equal to the number of nonzero components of v =
U−1b. In particular, (F,b) is controllable if and only if
no component of v is zero.

The proof of i) follows from the properties of the determinant
and for the proof of ii) see for instance [6].

III. PROBLEM STATEMENT AND GRAPH

CONTROLLABILITY CLASSES

Let G = (V, E) be a graph with vertex set V = {1, 2, . . . , n}.
The Laplacian dynamics on G is the linear system

ẋ(t) = −Lx(t)

where x ∈ R
n, t ∈ R, and L is the Laplacian matrix of G.

Suppose that a nonempty subset of the vertices Ṽ ⊂ V are
actuated by a single control u : [0,∞) → R and consider the
resulting single-input linear control system. Explicitly, let b =
[b1 b2 · · · bn]

T ∈ {0, 1}n be the binary vector such that Ṽ =
Vb := {i ∈ V|bi = 1}, and consider the single-input linear con-
trol system

ẋ(t) = −Lx(t) + bu(t). (1)

The vertices Vb are seen as control or leader nodes and influ-
ence the remaining follower nodes V \ Vb through the control
signal u(·) and the connectivity of the network. A motivation
for the set of binary control vectors is that it captures the
scenario of when an external agent connected to the nodes
Vb is unable to distinguish between its followers. Hence, all
the followers receive the same control input from the leader.
The reason for choosing the Laplacian dynamics (1) is that
it serves as a benchmark problem for studying distributed
control systems. The problem is also of independent theoretical
interest because it reveals useful information about the set of
eigenvectors of the Laplacian matrix of a graph [14].

From a controls design perspective, it would of course be
desirable to select the leader nodes so that the pair (L,b)
is controllable. First, note that choosing b = 1n results in a
controllable pair (L,b) if and only if n = 1 since L1n = 0n.
More generally, a direct application of Proposition 2.1 (ii) for
the Laplacian dynamics yields the following result.

Corollary 3.1 [6] (Necessary and Sufficient Condition for
Controllability of Laplacian Dynamics): Consider the con-
trolled Laplacian dynamics (1) with b ∈ R

n and assume that L
has no repeated eigenvalues. Then the pair (L,b) is controllable
if and only if b is not orthogonal to any eigenvector of L.

Although Corollary 3.1 provides a general necessary and
sufficient condition for controllability in terms of the graph
Laplacian eigenvectors, the problem that we consider is in
obtaining controllability conditions in terms of the topological
structure of the graph. Graph-theoretic characterizations of
controllability for leader–follower multi-agent systems was first
considered in [7] in terms of the automorphism group of a
graph. Following [7], we say that b ∈ {0, 1}n is leader sym-
metric if there exists a nontrivial automorphism ϕ : V → V of G
that leaves the leader nodes Vb invariant, i.e., Pϕ(b) = b. It is
straightforward to verity that the definition of leader symmetry
given in [7] is equivalent to the one given here. The following
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Fig. 1. (a) The example of [7], (b) an asymmetric graph on n = 6 vertices
having 14 binary vectors b resulting in uncontrollable Laplacian dynamics, and
(c) a graph for which any binary vector b results in uncontrollability.

result of [7] links leader symmetry and uncontrollability (a
short alternative proof is given in the Appendix).

Proposition 3.1 (Leader Symmetry and Uncontrollability):
Consider the controlled Laplacian dynamics (1) with b ∈
{0, 1}n. If b is leader symmetric then (L,b) is uncontrollable.

As shown in [7, Prop. 5.9], leader symmetry is not a nec-
essary condition for uncontrollability. Fig. 1(a) displays the
graph on n = 6 vertices that is used in [7] to show this fact.
Unfortunately, this example is not illuminating in the quest
for obtaining graph-theoretic characterizations of controllabil-
ity because the leader nodes are chosen so that b = 1n, i.e.,
every node is actuated. As remarked above, unless n = 1,
this choice results in uncontrollability regardless of the graph
topology. Interestingly, the only control vectors b resulting in
uncontrollability for the graph in Fig. 1(a) are the trivial ones,
i.e., b = 0n or b = 1n. In view of the fact that asymmetry
is typical in finite graphs [18], it is natural then to ask what
graph-theoretic obstructions to controllability exist other than
symmetry. For example, consider the asymmetric graph on n =
6 vertices displayed in Fig. 1(b). Of the 2n − 2 = 62 nontrivial
choices of b, there are 14 that result in uncontrollability, namely

b1 = [1 1 1 0 0 0]T , b2 = [0 0 0 1 1 1]T

b3 = [1 1 0 1 0 0]T , b4 = [0 0 1 0 1 1]T

b5 = [0 1 1 1 0 0]T , b6 = [1 0 0 0 1 1]T

b7 = [0 1 0 0 1 0]T , b8 = [1 0 1 1 0 1]T

b9 = [1 0 1 0 1 0]T , b10 = [0 1 0 1 0 1]T

b11 = [1 0 0 1 1 0]T , b12 = [0 1 1 0 0 1]T

b13 = [0 0 1 1 1 0]T , b14 = [1 1 0 0 0 1]T . (2)

The control vectors b7 and b8 result in a two-dimensional
controllable subspace, while the other control vectors all result
in a five-dimensional controllable subspace. On the other hand,
for the graph on n = 6 vertices displayed in Fig. 1(c), any
choice of b ∈ {0, 1}n results in uncontrollability. Clearly, the
graph displayed in Fig. 1(c) has a nontrivial symmetry but
symmetry plays no role in the lack of controllability for every
control vector b ∈ {0, 1}n. In fact, as we will show, there
exist asymmetric graphs such that no matter the choice of
b ∈ {0, 1}n the pair (L,b) is uncontrollable.

Our previous discussion naturally leads to the definition of
the following three graph controllability classes.

Definition 3.1 (Graph Controllability Classes): Let G be a
connected graph with Laplacian matrix L and let B ⊂ R

n be a
nonempty set. Then G is called

i) essentially controllable on B if (L,b) is controllable for
every b ∈ B \ ker(L);

ii) completely uncontrollable on B if (L,b) is uncontrollable
for every b ∈ B;

iii) conditionally controllable on B, if it is neither essentially
controllable nor completely uncontrollable on B.

In this paper, we are mainly concerned with controllabil-
ity classes on the control set B = {0, 1}n. Hence, when not
explicitly stated, we simply call a graph G essentially con-
trollable (conditionally controllable, or completely uncontrol-
lable) if G is essentially controllable (conditionally controllable,
or completely controllable) on {0, 1}n. Hence, according to
Definition 3.1, the graph in Fig. 1(a) is essentially controllable,
the graph in Fig. 1(b) is conditionally controllable, and the
graph in Fig. 1(c) is completely uncontrollable.

Remark 3.1: Let us describe the approach taken in [7] and
how it relates to ours. We note that our approach is also adopted
in [10] and [11]. In [7], one begins with a Laplacian-based dy-
namics ẋ = −Lx, selects a leader node, say i ∈ {1, 2, . . . , n},
and considers the reduced system of followers actuated by node
i. Explicitly, let Lf ∈ R

(n−1)×(n−1) be the matrix obtained by
deleting the ith row and ith column of L, and let bf ∈ R

n−1 be
the column vector obtained by removing the ith entry of the ith
column of L. The reduced system of followers considered in [7]
is ż = −Lfz− bfu. The system (Lf ,bf ) is controllable if and
only if (L, ei) is controllable. Indeed, the dynamic extension

ż = − Lfz− bfξ

ξ̇ = v

is controllable if and only if (Lf ,bf ) is controllable. Letting
v = −bT

f z− diξ + u, we see that the dynamic extension is
feedback equivalent to (L, ei). Hence, in relation to the prob-
lem we consider in this paper, the approach in [7] is concerned
with the controllability of (L,b) in the restricted case that b ∈
{e1, e2, . . . , en} ⊂ {0, 1}n. We note that the graph in Fig. 1(b)
is such that (L, ei) is controllable for every ei ∈ {e1, . . . , en},
yet as shown in the example, fails to be controllable for some
b ∈ {0, 1}n.

IV. GRAPH-THEORETIC CHARACTERIZATIONS OF

CONTROLLABILITY CLASSES

Before we state our main results, we provide a useful
property of controllability under binary control vectors. The
astute reader may have noticed that the control vectors (2) that
result in uncontrollability for the graph in Fig. 1(b) come in
complementary pairs. To be more precise, given b ∈ {0, 1}n
we let

b = 1n − b

be the complement of b. As a further piece of notation, for
b ∈ {0, 1}n we let ‖V‖1 =

∑n
i=1 bi be the number of nonzero

elements of b. With this notation we have the following result.
Proposition 4.1 (Controllability and Binary Complements):

Let n ≥ 2 and consider the controlled Laplacian dynamics
(1) with b ∈ {0, 1}n. Then the pair (L,b) is controllable if
and only if the pair (L,b) is controllable. Specifically, if b �∈
{1n,0n} then dim〈L;b〉 = dim〈L;b〉.
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Proof: If L has repeated eigenvalues, then (L, c) is un-
controllable for every c ∈ R

n, and the claim follows trivially.
Hence, assume that L has distinct eigenvalues. Let U be an
orthogonal matrix consisting of unit norm eigenvectors of L and
let the first column of U be the eigenvector u1 = (1/

√
n)1n.

Let b ∈ {0, 1}n \ {1n,0n}, let v = UTb = [v1 · · · vn]T , and
let v = UTb = [v̄1 · · · v̄n]T . Then

v =
n√
n
e1 − v. (3)

From (3) we see that v̄i = −vi for all i = 2, . . . , n. Now,
v1 = uT

1 b = ‖b‖1/
√
n and thus v1 �= 0 because b �= 0n. On

the other hand, v̄1 = (n− ‖b‖1)/
√
n and thus v̄1 �= 0 because

b �= 1n. This proves that v and v have the same number
of nonzero components provided b �∈ {1n,0n}. Therefore, by
Proposition 2.1(ii), we have that dim〈L;b〉 = dim〈L;b〉. �

For computational purposes, it is worth mentioning the fol-
lowing immediate consequence of the previous result.

Corollary 4.1: If n ≥ 2 then the cardinality of the set of
{b ∈ {0, 1}n|(L,b) is uncontrollable} is always even.

A. Essentially Controllable Graphs

In this section, we give a necessary condition for essential
controllability. The condition depends on the following auxil-
iary result.

Lemma 4.1 (Order of Non-Identity Automorphisms [19]): If
all of the eigenvalues of L are simple then every non-identity
automorphism of G has order two.

Proof: The proof of the claim when L is replaced by
the adjacency matrix A is given in [19, Th. 15.4]. However,
the proof for the case of L is identical because if P is an
automorphism of G then P commutes with both the adjacency
matrix A and the degree matrix D, and therefore P also
commutes with L. �

Using the previous result, the following necessary condition
for essential controllability is straightforward.

Proposition 4.2 (Essentially Controllable Graphs are Asym-
metric): Let n ≥ 3. An essentially controllable graph on
{0, 1}n is asymmetric.

Proof: Let G be an essentially controllable graph on
{0, 1}n. Then necessarily L must have distinct eigenvalues and
therefore, by Lemma 4.1, every non-identity automorphism of
G has order two. Assume by contradiction that G has a non-
trivial automorphism group and let P be a permutation matrix
representing a non-identity automorphism of G. Then there
exists two distinct standard basis vectors ei and ej such that
Pei = ej and Pej = ei. Put b = ei + ej . We note that since
n ≥ 3 we have that b �= 1n. Now, b is clearly invariant under
P, i.e., Pb = b. Thus, b is leader symmetric and therefore, by
Proposition 3.1, (L,b) is uncontrollable, a contradiction. This
completes the proof. �

According to Proposition 4.2, and since any asymmetric
graph has at least six vertices [18], any essentially controllable
graph has also at least six vertices. The condition given in
Proposition 4.2 is, however, clearly only necessary; the graph of
Fig. 1(b) is an example of an asymmetric graph with six nodes
that is not essentially controllable.

Fig. 2. All essentially controllable graphs on six vertices.

Fig. 3. Essentially controllable graphs of order (a) n = 8, and (b) n = 11.

Example 4.1: Exactly four of the eight asymmetric graphs
on six vertices are essentially controllable; these graphs are
shown in Fig. 2.

In Fig. 3, we display two essentially controllable graphs hav-
ing orders n = 8 and n = 11. •

The class of essentially controllable graphs are interesting
for various reasons. First, this class is important from a design
perspective because, except for the trivial control vectors 0n

and 1n, controllability is independent of the subset of nodes
that receive the control inputs. This is useful when this is
unknown a priori, e.g., when the control inputs are broadcasted.
Another important fact about essentially controllable graphs is
that the so-called minimal controllability problem is solvable
[17] for these graphs. Following [17], let B ⊂ R

n and consider
the dynamics (1) for fixed b ∈ B. We say that (1) is minimally
controllable if b has the fewest number of nonzero entries
among all vectors b̃ ∈ B such that (L, b̃) is controllable. It is
shown in [17] that it is in general intractable to even approxi-
mate the number of zeros in the vector b that leads to minimal
controllability. Nevertheless, given that the class of essentially
controllable graphs are controllable using any nontrivial vector
in {0, 1}n, the minimal controllability problem is solvable for
(1) on all essentially controllable graphs, and the sparsest b ∈
{0, 1}n has (n− 1) nonzero entries.

We are not aware of any algorithm producing essentially
controllable graphs. Given that these graphs constitute a strict
subset of asymmetric graphs, and that it is NP-hard to verify if
a graph has nontrivial automorphisms [22], it is unclear if the
problem of generating essentially controllable graphs of order
n is computationally feasible. Another interesting problem is to
investigate how the number of essentially controllable graphs
grows, within the class of asymmetric graphs, with the number
of vertices (see Table I).

B. Completely Uncontrollable Graphs

In this section, we study the class of completely uncon-
trollable graphs. Our first result shows that complete uncon-
trollability is not a consequence of graph symmetries. To the
best of our knowledge, this important fact is overlooked in
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TABLE I
ENUMERATION OF CONTROLLABILITY CLASSES FOR SMALL GRAPHS

the literature on network controllability primarily because most
existing results seek graph-theoretic characterizations of uncon-
trollability via graph symmetries. To state our first result, we
need to introduce a subclass of strongly regular graphs called
the block graphs of Steiner systems [23]. We begin with the
following definition.

Definition 4.1 (Steiner Systems): Given three integers 2 ≤
t < k < ν, a Steiner system of order ν is a pair of finite sets
(X ,B) where |X | = ν and B is collection of k-element subsets
of X called blocks such that every t-element subset of X is
contained in one and only one block. A Steiner system will be
denoted by SS(t, k, ν).

Definition 4.2 (Steiner Triple Systems): A Steiner triple sys-
tem is a (2, 3, ν)-Steiner system, that is, the set of blocks B
consist of triples of X and every pair of points in X is contained
in exactly one of the triples. A Steiner triple system of order ν
will be denoted by STS(ν).

Example 4.2: The sets X = {1, 2, . . . , 7} and

B = {{1, 2, 4}, {2, 3, 5}, {3, 4, 6}, {4, 5, 7}, {5, 6, 1},
{6, 7, 2}, {7, 1, 3}}

constitute a STS(7). This Steiner triple is called the Fano plane
and is the unique Steiner triple system of order ν = 7. •

Example 4.3: The sets X = {1, 2, . . . , 9} and

B = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}, {1, 4, 7}, {2, 5, 8}, {3, 6, 9}
{1, 5, 9}, {2, 6, 7}, {3, 4, 8}, {1, 6, 8}, {2, 4, 9}, {3, 5, 7}}

constitute a STS(9) and it is the unique Steiner triple system of
order ν = 9. •

The number of blocks in a SS(t, k, ν) is |B| =
(
ν
t

)
/
(
k
t

)
,

and in particular, a Steiner triple system of order ν contains
ν(ν − 1)/6 blocks. As shown in [24], a Steiner triple system
of order ν > 1 exists if and only if ν = 1 or (mod 6). We say
that two Steiner systems (X1,B1) and (X2,B2) are isomorphic
if there exists a bijection Ψ : X1 → X2 such that σ ∈ B1 if
and only if Ψ(σ) ∈ B2. An automorphism of a Steiner system
(X ,B) is an isomorphism from (X ,B) onto itself. A Steiner
system is called asymmetric if it admits only the identity
automorphism. It is shown in [25] that the number N(ν)
of pairwise non-isomorphic Steiner triple systems of order ν

satisfies N(ν) ≥ (e−5ν)
ν2/12, and in particular, Steiner triple

systems of arbitrarily large order ν = 1 or 3 (mod 6) exist.
The block graph of a Steiner system (X ,B) is the graph GSS

with the blocks as vertices, that is, V = B = {σ1, σ2, . . . , σ|B|},
and the edge set consists of pairs of blocks {σi, σj} having a

Fig. 4. (a) The block graph of STS(9), and (b) the block graph of an
asymmetric Steiner triple system of order ν = 15, and as a strongly regular
graph has parameters (n, k, λ, μ) = (35, 18, 9, 9).

nonempty intersection, i.e., σi ∩ σj �= ∅. The block graph of a
Steiner triple system STS(ν) is strongly regular with parame-
ters (n, k, λ, μ) = (ν(ν − 1)/6, 3(ν − 3)/2, (ν + 3)/2, 9).

Example 4.4: The block graph of STS(7) is the complete
graph on seven vertices. The block graph of STS(9) is shown
in Fig. 4(a), and as a strongly regular graph, it has parameters
(n, k, λ, μ) = (12, 9, 6, 9).

Finally, it is a straightforward exercise to show that Ψ :
X → X is an automorphism of (X ,B) if and only if the
corresponding mapping Ψ : B → B is a graph automorphism of
GSS. With these constructions, we can now state the following
result.

Theorem 4.1 (A Class of Completely Uncontrollable Asym-
metric Graphs): For any K ∈ N there exists a connected
and asymmetric graph of order n ≥ K that is completely
uncontrollable.

Proof: It is proved in [26, Th. 1] that Steiner triple systems
are almost always asymmetric. Explicitly, let N(ν) be the
number of STSs of order ν and let A(ν) be the number of
asymmetric STSs of order ν. Then for ν = 1 or v (mod 6)
sufficiently large it holds that

N(ν)−A(ν)

N(ν)
< ν−ν2(1/16+o(1)).

In other words, the probability that a random Steiner triple
system of order ν is asymmetric exceeds 1− ν−ν2(1/16+o(1)).
By [25], we may assume that ν is sufficiently large such
that n := |B| = ν(ν − 1)/6 ≥ K. Since the block graph of a
Steiner triple system is strongly regular, its Laplacian matrix
has only three distinct eigenvalues. The claim now follows by
Proposition 2.1(ii). �

It is known [27] that asymmetric Steiner triple systems of
order ν exist beginning with ν = 15. In fact, for ν = 15, there
are 36 asymmetric Steiner triple systems [28], one of which has
blocks

B = {{1, 2, 15}, {1, 3, 8}, {1, 4, 5}, {1, 6, 13}, {1, 7, 11},
{1, 9, 14}, {1, 10, 12}, {2, 3, 9}, {2, 4, 6}, {2, 5, 10},
{2, 7, 13}, {2, 8, 12}, {2, 11, 14}, {3, 4, 15}, {3, 5, 11},
{3, 6, 10}, {3, 7, 12}, {3, 13, 14}, {4, 7, 10}, {4, 8, 9},
{4, 11, 13}, {4, 12, 14},{5, 6, 12},{5, 7, 14},{5, 8, 13},
{5, 9, 15}, {6, 7, 9}, {6, 8, 11}, {6, 14, 15}, {7, 8, 15},
{8, 10, 14}, {9, 10, 13}, {9, 11, 12}, {10, 11, 15},
{12, 13, 15}}

and its block graph is shown in Fig. 4(b).
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Fig. 5. (a) and (b) show two completely uncontrollable graphs with n = 8
vertices and (c) shows a completely uncontrollable graphs with n = 9 vertices,
all with distinct eigenvalues.

Remark 4.1: It is conjectured that almost all strongly regular
graphs are asymmetric [29], and therefore all such asymmetric
graphs would be completely uncontrollable. A proof of the
aforementioned conjecture would provide a class of graphs
larger than the block graphs of Steiner triple systems that are
asymmetric and completely uncontrollable. •

As shown in Theorem 4.1, uncontrollability of the block
graph of a Steiner triple system is due to the Laplacian matrix
having a repeated eigenvalue. It is natural then to ask if this
condition is necessary for complete uncontrollability for a
Laplacian-based leader–follower system. To shed light into this
problem, we recall from Proposition 2.1(i) that if F ∈ R

n×n

is diagonalizable then for any open subset B ⊂ R
n the pair

(F,b) is uncontrollable for every b ∈ B if and only if F has a
repeated eigenvalue. When B is replaced by a discrete set, such
as B = {0, 1}n, the condition of a repeated eigenvalue is no
longer necessary for complete uncontrollability. For example,
the symmetric matrix

F =

⎡
⎢⎣

2 0 −1 −1
0 2 −1 −1
−1 −1 5 −3
−1 −1 −3 5

⎤
⎥⎦

has distinct eigenvalues λ1 = 0, λ2 = 2, λ3 = 4, λ4 = 8, and
it is readily verified that (F,b) is uncontrollable for every
b ∈ {0, 1}4. Of course, F is not the Laplacian matrix of any
(undirected) connected graph. We have, however, verified nu-
merically that for n ∈ {2, 3, . . . , 7}, a repeated eigenvalue is
necessary and sufficient for complete uncontrollability of the
Laplacian dynamics. In fact, for n = 4 and n = 5 we have the
following, whose proof can be found in the Appendix.

Proposition 4.3 (Completely Uncontrollable Graphs With
Four and Five Vertices): All connected and completely un-
controllable graphs on {0, 1}4 and {0, 1}5 have a repeated
eigenvalue.

However, for n = 8 we have found ten graphs that are
completely uncontrollable and have distinct eigenvalues and,
for n = 9 we have found twelve such graphs. In Fig. 5 we
display two such graphs on n = 8 vertices and one for n = 9
vertices.

Needless to say, the class of completely uncontrollable
graphs with distinct eigenvalues form a very special class of
graphs and have the potential to shed light on new necessary
conditions for controllability and will be pursued in a future
paper. For now, we focus on obtaining conditions that imply
the existence of a repeated eigenvalue and consequently com-

plete uncontrollability. To that end, we introduce the following
definition.

Definition 4.3: Let B ⊂ R
n and let γ = {u1, . . . ,uk} ⊂ R

n

be linearly independent. We say that γ is a B-annihilator or
that it annihilates B if for each b ∈ B there exists uj ∈ γ that
is orthogonal to b, that is, uT

j b = 0.
The proof of Proposition 4.3 identifies a set of three vectors

that alone are {0, 1}n-annihilators.
Lemma 4.2 (A set of {0, 1}n-Annihilator Vectors): Let n ≥ 4

be a positive integer and let v1,v2,v3 ∈ R
n be defined by

v1 = [ 1 −1 0 0 0 · · · 0 ]T ,

v2 = [ 0 0 1 −1 0 · · · 0 ]T ,

v3 = [ 1 1 −1 −1 0 · · · 0 ]T . (4)

Then {v1,v2,v3} is a {0, 1}n-annihilator.
Proof: Any vector b ∈ {0, 1}n having a zero in compo-

nents 1 through 4 is clearly orthogonal to v1 (and v2, and v3).
Therefore, we need only consider the binary vectors having
possibly nonzero entries in components 1, 2, 3, and/or 4. There
are

∑4
k=1

(
4
k

)
= 15 possible cases:

i) if b = e1 or b = e2 then bTv2 = 0;
ii) if b = e3 or b = e4 then bTv1 = 0;

iii) if b(1) = b(2) = 1 then bTv1 = 0;
iv) if b(1) = b(3) = 1 then bTv3 = 0;
v) if b(1) = b(4) = 1 then bTv3 = 0;

vi) if b(2) = b(3) = 1 then bTv3 = 0;
vii) if b(2) = b(4) = 1 then bTv3 = 0;

viii) if b(3) = b(4) = 1 then bTv2 = 0;
ix) if b(1) = b(2) = b(3) = 1 then bTv1 = 0;
x) if b(1) = b(2) = b(4) = 1 then bTv1 = 0;

xi) if b(1) = b(3) = b(4) = 1 then bTv2 = 0;
xii) if b(2) = b(3) = b(4) = 1 then bTv2 = 0;

xiii) if b(1) = b(2) = b(3) = b(4) = 1 then bTv3 = 0.

This ends the proof. �
Next, we show that any graph containing the vectors

{v1,v2,v3} in (4) as eigenvectors will have a repeated
eigenvalue.

Theorem 4.2 ({0, 1}n-Annihilator Graphs and Repeated
Eigenvalues): Let G be a connected graph on n ≥ 4 vertices.
If v1,v2,v3 given by (4) are eigenvectors of G then G has a
repeated eigenvalue. Consequently, G is completely uncontrol-
lable on R

n.
Proof: Let v1,v2,v3 be eigenvectors of L and assume

that L has distinct eigenvalues. Let {u1,u2, . . . ,un} be a
set of orthonormal eigenvectors of L and, without loss of
generality, let

u1 =
1√
n
1n, u2 =

1√
2
v1, u3 =

1√
2
v2, u4 =

1

2
v3.

Put U = [u1 u2 u3 u4 · · · un] and let Λ = diag(λ1, . . . , λn)
be the corresponding diagonal matrix of eigenvalues of L,
where λ1 = 0 and λ2, . . . , λn are in no particular order. Now,
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Fig. 6. (a) A {0, 1}n-annihilator graph with six vertices, and (b) its extension
to a {0, 1}n-annihilator graph of any size.

since L = UΛUT , a straightforward calculation shows that the
upper left 4 × 3 submatrix of L is

L4×3 =

⎡
⎢⎣

1
2 λ2 +

1
4 λ4 − 1

2 λ2 +
1
4 λ4 − 1

4 λ4

− 1
2 λ2+

1
4 λ4

1
2 λ2 +

1
4 λ4 − 1

4 λ4

− 1
4 λ4 − 1

4 λ4
1
2 λ3 +

1
4 λ4

− 1
4 λ4 − 1

4 λ4 − 1
2 λ3+

1
4 λ4

⎤
⎥⎦ .

Since λ4 > 0, and the off diagonal entries of L are either 0
or −1, we obtain from the (1,3) entry of L that λ4 = 4. Then,
from the (1,2) entry of L, either λ2 = 2 or λ2 = 4. In the latter
case, L has a repeated eigenvalue, which is a contradiction,
and therefore λ2 = 2. Similarly, from the (4,3) entry of L, the
only possible cases are λ3 = 2 or λ3 = 4. In either case, L
has a repeated eigenvalue, which leads to a contradiction. This
completes the proof. �

In Theorem 4.1, we showed the existence of (asymmetric)
completely uncontrollable graphs which happened to be regular
graphs. To end this section, we use Lemma 4.2 to construct a
class of nonregular completely uncontrollable graphs.

Theorem 4.3 (Large Uncontrollable Graphs): For each n ≥
6, the set of graphs of order n that are not regular and are
completely uncontrollable is nonempty.

Proof: We prove the result by a direct construction. For
n = 6, consider the graph in Fig. 6(a). The Laplacian matrix
for this graph is

L6 =

⎡
⎢⎢⎢⎢⎢⎣

1 −1 0 0 0 0
−1 5 −1 −1 −1 −1
0 −1 3 −1 −1 0
0 −1 −1 3 0 −1
0 −1 −1 0 3 −1
0 −1 0 −1 −1 3

⎤
⎥⎥⎥⎥⎥⎦

and a set of linearly independent eigenvectors of L are

u1 =
1√
6
1T
6 ,

u2 =
1√
30

[ 5 −1 −1 −1 −1 −1 ]T ,

u3 =
1√
2
[ 0 0 −1 0 0 1 ]T

u4 =
1√
2
[ 0 0 0 1 −1 0 ]T ,

u5 =
1

2
[ 0 0 1 −1 −1 1 ]T ,

u6 =
1√
20

[−4 0 1 1 1 1 ]T .

After a permutation of the indices, we can apply Lemma 4.2
and conclude that the set {u3,u4,u5} is a {0, 1}6-annihilator.
Now let n ≥ 6 and extend the graph in Fig. 6(a) to the graph
G shown in Fig. 6(b), where Gn−6 is any connected graph on
n− 6 vertices. By construction, the Laplacian of G can be
decomposed as

L =

[
L6 E
ET Ln−6

]
where Ln−6 denotes the Laplacian of the graph Gn−6 and E ∈
R

6×(n−6) is the matrix

E = [−e1 0n · · · 0n ].

From the above decomposition of L, and noting that the first
entries of u3,u4,u5 are zero, it is not hard to see that u3, u4

and u5 can be lifted to eigenvectors of L. Indeed, we have that

L

[
uj

0n−6

]
=

[
L6uj

0n−6

]
= λj

[
uj

0n−6

]
.

It is clear that the lifted eigenvectors
[

uj

0n−6

]
∈ R

n, for j ∈
{3, 4, 5}, form a set of {0, 1}n annihilators. This ends the
proof. �

C. Conditionally Controllable Graphs

In this section, we consider conditionally controllable
graphs. The goal for this class would be to classify, in graph-
theoretic terms, the set of control vectors b ∈ {0, 1}n such
that dim〈L;b〉 = k, for each k ∈ {0, 1, 2, 3, . . . , n}. In other
words, letting

Ck = {b ∈ {0, 1}n | dim〈L;b〉 = k}

for k ∈ {0, 1, 2, . . . , n}, so that {0, 1}n = C0 ∪ C1 ∪ C2 ∪ · · · ∪
Cn and Ci ∩ Cj = ∅ whenever i �= j, we would like to develop
graph-theoretic conditions that fully characterizes Ck. To this
end, the main result in this section is the identification of
elements in C2. It is feasible that a similar technique can be used
to identify subsets of other Ck’s. We begin with the following
definition.

Definition 4.4 (Homogeneous Control Vectors): Let G =
(V, E) be a graph and let α, β ∈ N. We say that b ∈ {0, 1}n is
a (α, β)-homogeneous control vector for G if, for each i ∈ Vb,
we have that α = |Ni ∩ V \ Vb| and, for each j ∈ V \ Vb, we
have that β = |Nj ∩ Vb|. In other words, each leader node i is
adjacent to α followers and each follower node j is adjacent to
β leaders.

Theorem 4.4 (Rank Two Control Vectors): Let G be a graph
and consider the controlled Laplacian dynamics (1), where
b ∈ {0, 1}n \ {0n,1n}. If b is a (α, β)-homogeneous control
vector for G then b ∈ C2. In fact

L2b = (α+ β)Lb

and therefore Lb is an eigenvector of L with eigenvalue (α+
β). Consequently, dim〈L;b〉 = 2. Conversely, if dim〈L;b〉 =
2 then Lb is an eigenvector of L.
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Fig. 7. Leader configuration b = e2 + e5 (left) and its binary complement b̄
(right). For b, each control node (red) is adjacent to two follower nodes (blue)
and each follower node is adjacent to one control node.

Proof: Consider the discrete linear system

x(k + 1) = Lx(k)

with initial condition x(0) = b ∈ {0, 1}n. Let x(k) =
[x1(k), · · · , xn(k)]T denote the state vector at time
k ∈ N0. If i ∈ Vb then xi(0) = 1 and therefore xi(1) =∑

�∈Ni
(xi(0)− x�(0)) = α. If j ∈ V \ Vb then xj(0) = 0

and therefore xj(1) =
∑

�∈Nj
(xj(0)− x�(0)) = −β. In other

words

Lb = x(1) = αb+ β(b− 1n) = (α+ β)b− β1n.

Then

L2b = x(2) = Lx(1) = (α+ β)Lb− βL1n = (α+ β)Lb

and this proves the first claim.
Now, if dim〈L;b〉 = 2 then L2b = c0b+ c1Lb for some

c0, c1 ∈ R. Using the fact that L2b is orthogonal to 1n we
immediately deduce that c0 = 0. Hence, L2b = c1Lb, i.e., Lb
is an eigenvector of L. This ends the proof. �

The following corollary is immediate.
Corollary 4.2: Let G be a connected graph on n-vertices

and suppose that n ≥ 3. If G has a (α, β)-homogeneous control
vector then G is not essentially controllable.

We give two examples that illustrate the previous result.
Example 4.5: Consider the asymmetric graph shown in

Fig. 7. There are 2 binary vectors b that result in dim〈L,b〉 =
2, namely b = e2 + e5 and its binary complement b. For the
choice b, each control node (red nodes) is adjacent to α = 2
follower nodes (blue nodes) and each follower node is adjacent
to β = 1 control node. It can be verified that L2b = (α+
β)Lb = 3Lb. •

Example 4.6 (Frucht Graph): As another example, consider
the Frucht graph, shown in Fig. 8, which is an asymmetric
3-regular graph on n = 12 vertices. There are four binary
vectors b that result in the controllable subspace of (L,b)
having dimension two, namely, b1 = e1 + e5 + e7 + e12,
b2 = e3 + e7 + e10, and their binary complements b1 and
b2, respectively. The cases b1 and b1 are shown in Fig. 8 and
the cases b2 and b2 are shown in Fig. 9. For b1, each control
node (red nodes) is adjacent to α = 2 follower nodes (blue
nodes) and each follower node is adjacent to β = 1 control
node. It can be verified that L2b1 = (α+ β)Lb1 = 3Lb1.
For b2, each control node is adjacent to α = 3 follower
nodes and each follower node is adjacent to β = 1
control node. One can verify that L2b2 = (α+ β)Lb2 =
4Lb2. •

Fig. 8. Leader configuration b1 = e1 + e5 + e7 + e12 (left) and its binary
complement b̄1 (right). For b1, each leader node (red) is connected to two
follower nodes (blue) and each follower is connected to one leader node, and
vice-versa for the complement b̄1.

Fig. 9. Leader configuration b2 = e3 + e7 + e10 (left) and its binary com-
plement b̄2 (right). For b2, each leader node (red) is connected to three
follower nodes (blue) and each follower is connected to one leader nodes, and
vice-versa for the complement b̄2.

To end this section, we provide a lower-bound for dim〈L,b〉.
The result depends on the following whose proof is found in the
Appendix, see also [15].

Lemma 4.3 (Powers of the Laplacian Matrix): Let G =
(V, E) be a connected graph with vertex set V = {1, 2, . . . , n},
and let r ∈ N. Then for i, j ∈ V such that r ≤ dG(i, j) we have
that (Lk)ij = 0, for all 0 ≤ k < r, and

(Lr)ij = (−1)r(Ar)ij .

To state our lower bound, we need a further piece of nota-
tion. Given a follower node j ∈ V \ Vb, we denote by rj the
minimum distance of j to the set of control nodes, that is

rj = min
i∈Vb

dG(i, j).

We define the control radius of b by

rb = max
j∈V\Vb

rj .

The following result appears in [16] for the single-leader case
and in [15] for the multiple-leader case. To keep this paper self-
contained, we include its short proof.

Theorem 4.5 (A Lower-Bound on the Rank of the Control-
lability Matrix): Let G = (V, E) be a connected graph and
consider the Laplacian dynamics (1), where b ∈ {0, 1}n \
{1n,0n}. Then

dim〈L;b〉 ≥ rb + 1 (5)

where rb is the control radius of b.
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Proof: For a follower node j ∈ V \ Vb let Kj := {i ∈
Vb|dG(i, j) = rj}. From Lemma 4.3, and linearity, it follows
that (Lkb)j = 0 for all 0 ≤ k < rj and

(Lrjb)j = (−1)rj
∑
i∈Kj

(Arj )ij .

It is well-known that (Ak)ij is the number of walks from i to
j of length k [19, p. 11]. Hence, by definition of rj , we have
(Arj )ij > 0 for all i ∈ Kj . This implies that (Lrjb)j �= 0. It
follows that {b,Lb, . . . ,Lrjb} is a linearly independent set of
vectors. The claim follows by taking rj = rb. �

Using Theorem 4.3, we obtain an alternative proof of the
following known fact about the controllability of a path graph.

Corollary 4.3 (Controllability of Path Graphs [6]): The path
graph Pn is controllable when the leader node is chosen as one
of the terminal nodes.

Proof: Consider the path graph G=Pn={{1, 2,. . . ,n},
{{1, 2}, {2, 3}, . . . , {n− 1, n}}. If b = en then the con-
trol radius is rb = dG(1, n) = n− 1, and therefore by
Theorem 4.5 we must have that dim〈L;b〉 = n, i.e., (L,b) is
controllable. �

D. Enumeration of Controllability Classes for Small Graphs

In this section, we provide numerical results on the cardinal-
ity of the controllability classes. In Table I, we enumerate the
graph controllability classes for small connected graphs from
order n = 2 through n = 9. In the table, gn is the number of
connected graphs, an is the number of asymmetric connected
graphs, en is the number of essentially controllable graphs, un

is the number of completely uncontrollable graphs, and cn is
the number of conditionally controllable graphs, where n is the
order of the graph.

Values of the sequences gn and an can be found in [30]. We
used Maple’s Graph Theory package to generate the adjacency
matrices of all connected graphs on 2 ≤ n ≤ 9 vertices. The
data in Table I suggests that the ratio en/an is monotonically
increasing as n increases. It is an interesting problem to investi-
gate if almost all asymmetric graphs are essentially controllable
on {0, 1}n as n → ∞.

V. CONCLUSION AND FUTURE WORK

We have considered the controllability problem for the
Laplacian-based leader–follower dynamics. We introduced the
class of essentially controllable, completely uncontrollable, and
conditionally controllable graphs. We proved that the set of
essentially controllable graphs is strict subset of the set of asym-
metric graphs and classified all essentially controllable graphs
on six vertices. We provided a class of asymmetric completely
uncontrollable graphs, namely the block graphs of Steiner triple
systems. We proved that for connected graphs with four or
five vertices, having a repeated eigenvalue fully characterizes
complete uncontrollability. We gave a sufficient condition for
complete uncontrollability in terms of the eigenvectors of the
Laplacian matrix, which also leads to repeated eigenvalues. We
have also shown the existence of completely uncontrollable

graphs with distinct eigenvalues for graphs with eight vertices
and higher. Finally, we identified a class of homogeneous binary
control vectors that result in a two-dimensional controllable
subspace.

There are several natural open problems we plan to investi-
gate further. The characterization of the graphs that are com-
pletely uncontrollable and have distinct eigenvalues is a very
interesting problem. From a design perspective, the class of
essentially controllable graphs are robust to the choice of input
vertices; hence, finding sufficient conditions for an asymmetric
graph to be essentially controllable and investigating if the class
of essentially controllable graphs asymptotically approaches
the class of asymmetric graphs are of great importance. Investi-
gating the existence of a polynomial-time algorithm for gener-
ating essentially controllable graphs, exploring scenarios with
multiple leaders, and extending the proposed classifications to
other, possibly nonlinear, networked control systems are other
areas of future work.

APPENDIX

A. Proof of Proposition 3.1

Here, we provide an alternative proof of Proposition 3.1. The
proof is an easy consequence of the following result.

Lemma A.1: If P is an automorphism of G and Pv = v for
some v ∈ R

n then PLv = Lv. In other words, the subspace of
fixed elements of P is invariant under the Laplacian matrix L.

Proof: If P is an automorphism of G then P commutes
with both the adjacency matrix A and the degree matrix D,
and therefore it also commutes with the Laplacian matrix L.
Therefore, PLv = LPv = Lv. �

We now prove Proposition 3.1.
Proof of Proposition 3.1: If b is leader symmetric then there

exists an automorphism P such that Pb = b. Applying Lemma
A.1 recursively we have that PLkb = Lkb for any k ∈ N0.
Thus, the subspace 〈L;b〉 lies in the eigenspace of P associated
to the eigenvalue λ = 1. Because P is not the identity matrix it
follows that 〈L;b〉 is a strict subspace of Rn. �

B. Proof of Proposition 4.3

Case n = 4: Let L be the Laplacian matrix of a connected
graph that is completely uncontrollable on {0, 1}4. Suppose by
contradiction that L has distinct eigenvalues 0 = λ1, λ2, λ3, λ4.
Then any basis of R

4 of eigenvectors of L is uniquely de-
termined up to scalar multiples. Let {u1,u2,u3,u4} be basis
of R

4 consisting of mutually orthogonal eigenvectors of L.
Then by Proposition 2.1(ii), the basis {u1,u2,u3,u4} anni-
hilates {0, 1}4. Without loss of generality (w.l.o.g.), let u1 =
[1, 1, 1, 1]T . Then {u2,u3,u4} annihilates the standard basis
vectors {e1, e2, e3, e4} ⊂ {0, 1}4. Therefore, by the pigeon
hole principle, one of the vectors in {u2,u3,u4}, say u2,
must contain two zero entries. Then, since u2 ⊥ u1, we have
(possibly after permuting coordinates) that u2 = [1,−1, 0, 0]T .
Without loss of generality, we may now assume that u3 ⊥ e1,
and since u3 ⊥ {u1,u2}, it follows that u3 is of the form u3 =
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[0, 0, 1,−1]T . Finally, since u4 ⊥ {u1,u2,u3}, then u4 =
[1, 1,−1,−1]T . Now put

U =
[ 1

‖u1‖u1
1

‖u2‖u2
1

‖u3‖u3
1

‖u4‖u4

]
.

Then, since L = Udiag([0, λ2, λ3, λ4])U
T , we obtain that

L =

[
X1 X2

XT
2 X3

]
where

X1 =

[
λ3 +

1
4 λ4 − 1

2 λ3 +
1
4 λ4

− 1
2 λ3 +

1
4 λ4

1
2 λ3 +

1
4 λ4

]

X2 = − λ4

4

[
1 1
1 1

]

X3 =

[
1
2 λ2 +

1
4 λ4 − 1

2 λ2 +
1
4 λ4

− 1
2 λ2 +

1
4 λ4

1
2 λ2 +

1
4 λ4

]
.

Since λ4 > 0, and the off diagonal entries of L are either 0
or −1, we obtain from the (1,3) entry of L that λ4 = 4. Then,
from the (1,2) entry of L, either λ3 = 2 or λ3 = 4. In the latter
case, L has a repeated eigenvalue, which is a contradiction,
and therefore λ3 = 2. Then, from the (3,4) entry of L, the
only possible cases are λ2 = 2 or λ2 = 4. In either case, L
has a repeated eigenvalue, which leads to a contradiction. This
completes the proof for n = 4. �

Case n = 5: Let L be the Laplacian matrix of a con-
nected graph that is completely uncontrollable on {0, 1}5.
Suppose by contradiction that L has distinct eigenvalues 0 =
λ1, λ2, λ3, λ4, λ5. Then, by Proposition 2.1(ii), there exists
an orthogonal set {u1,u2,u3,u4,u5} of eigenvectors of L
that annihilates {0, 1}5. Without loss of generality, let u1 =
[1 1 1 1 1]T . Then {u2,u3,u4,u5} annihilates the set S2 =
{b ∈ {0, 1}5 | ‖b‖1 = 2}, i.e., the set of elements in {0, 1}5
containing two nonzero entries. Now |S2| =

(
5
2

)
= 10, and

therefore by the pigeon hole principle, there is at least one
vector in {u2,u3,u4,u5}, say u2, that is orthogonal to at
least three vectors in S2. Hence, let b1,b2,b3 ∈ S2 be distinct
vectors such that u2 ⊥ {b1,b2,b3}. There are three cases to
consider.

Case 1. Suppose that the number of distinct indices where
b1,b2,b3 are nonzero is three. Say b1 is nonzero at the pair
of indices (i, j), b2 is nonzero at the pair of indices (j, k), and
thus b3 is nonzero at the pair of indices (i, k). Then from u2 ⊥
{b1,b2,b3} we obtain⎡

⎣ 1 1 0
0 1 1
1 0 1

⎤
⎦
⎡
⎣ u2(i)
u2(j)
u2(k)

⎤
⎦ =

⎡
⎣ 0
0
0

⎤
⎦

whose unique solution is u2(i) = u2(j) = u2(k) = 0. There-
fore, since u2 ⊥ u1 we have (possibly after permuting indices)
that u2 = [1 − 1 0 0 0]. Now, u2 is orthogonal to b1 =
[0 0 1 1 0]T , b2 = [0 0 1 0 1]T , b3 = [0 0 0 1 1]T , and also
b4 = [1 1 0 0 0]T . This leaves the following six vectors in S2

that are annihilated by {u3,u4,u5}:

b5 = [1 0 1 0 0]T , b6 = [1 0 0 1 0]T , b7 = [1 0 0 0 1]T

b8 = [0 1 1 0 0]T , b9 = [0 1 0 1 0]T , b10 = [0 1 0 0 1]T .

Now, we may assume that u3 ⊥ e1, and since also u3 ⊥
{u1,u2}, then u3 must be of the form u3 = [0 0 c1 c2 c3]

T

where c1 + c2 + c3 = 0. Now, by the pigeon hole principle, u3

is orthogonal to at least two vectors in {b5, . . . ,b10}. We claim
that in fact u3 is orthogonal to exactly two of them. Indeed, sup-
pose that u3 ⊥ b5. Then clearly c1 = 0 and thus c2 = −c3 �= 0.
Now, in this case we also have that u3 ⊥ b8. If u3 ⊥ b6 or
u3 ⊥ b7 then clearly c2 = c3 = 0, which is a contradiction
since u3 �= 0. Similarly, if u3 ⊥ b9 or u3 ⊥ b10 then again
c2 = c3 = 0, which is a contradiction. Thus, if u3 ⊥ b5 then
u3 ⊥ b8, and u3 is not orthogonal to {b6,b7,b8,b9,b10}.
Similar arguments show that if u3 ⊥ b6 then u3 ⊥ b9, and u3

is not orthogonal to any vector in {b6,b7,b8,b10}, and that
if u3 ⊥ b7 then u3 ⊥ b10, and u3 is not orthogonal to any
vector in {b5,b6,b8,b9}. Hence, after a possible permutation
of the indices, we have that u3 = [0, 0, 0, 1,−1]T , and therefore
u3 ⊥ {b5,b8}. Now, since u4 ⊥ {u1,u2,u3}, it follows that
u4 takes the form u4 = (a, a,−2(a+ b), b, b) for a, b �= 0.
Now, u4 is orthogonal to one of b6,b7,b9,b10. It is readily
verified that in any case this implies that a = −b. Therefore,
we have that u4 = [1 1 0 − 1 − 1]T , and this implies that
u5 = [1 1 − 4 1 1]T . Now put

U =
[ 1

‖u1‖u1
1

‖u2‖u2
1

‖u3‖u3
1

‖u4‖u4
1

‖u5‖u5
]

and compute L = Udiag([0, λ2, λ3, λ4, λ5])U
T . The first col-

umn of L is

L1 =

⎡
⎢⎢⎢⎣

1
2 λ2 +

1
4 λ4 +

1
20 λ5

− 1
2 λ2 +

1
4 λ4 +

1
20 λ5

− 1
5 λ5

− 1
4 λ4 +

1
20 λ5

− 1
4 λ4 +

1
20 , λ5

⎤
⎥⎥⎥⎦ .

From the third component of L1, we see that because 0 < λ5

and the off diagonal entries of L are either 0 or −1, we must
have λ5 = 5. The updated L is

L =

[
X1 X2

XT
2 X3

]

where

X1 =

⎡
⎣ 1

2 λ2 +
1
4 λ4 +

1
4 − 1

2 λ2 +
1
4 λ4 +

1
4 −1

− 1
2 λ2 +

1
4 λ4 +

1
4

1
2 λ2 +

1
4 λ4 +

1
4 −1

−1 −1 4

⎤
⎦

X2 =
1

4
(1− λ4)

[
1 1
1 1

]

X3 =

[
1
2 λ3 +

1
4 λ4 +

1
4 − 1

2 λ3 +
1
4 λ4 +

1
4

− 1
2 λ3 +

1
4 λ4 +

1
4

1
2 λ3 +

1
4 λ4 +

1
4

]
.

Consider the (1, 5) entry of L, namely −(1/4)λ4 + (1/4). The
only possible cases are that λ4 = 5 or λ4 = 1. In the case
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λ4 = 5 we have a repeated eigenvalue, which is a contradiction.
Therefore, λ4 = 1, and the updated Laplacian matrix is

L =

[
X1 X2

XT
2 X3

]
where

X1 =

⎡
⎣ 1

2 λ2 +
1
2 − 1

2 λ2 +
1
2 −1

− 1
2 λ2 +

1
2

1
2 λ2 +

1
2 −1

−1 −1 4

⎤
⎦

X2 =02×2

X3 =

[
1
2 λ3 +

1
2 − 1

2 λ3 +
1
2

− 1
2 λ3 +

1
2

1
2 λ3 +

1
2

]
.

Now consider the (4, 5) entry of L, namely −(1/2)λ3 + (1/2).
The only possible cases are λ3 = 1 or λ3 = 3. In the former
case we have a repeated eigenvalue, which is a contradiction,
and therefore λ3 = 3. The updated Laplacian is

L =

⎡
⎢⎢⎢⎣

1
2 λ2 +

1
2 − 1

2 λ2 +
1
2 −1 0 0

− 1
2 λ2 +

1
2

1
2 λ2 +

1
2 −1 0 0

−1 −1 4 −1 −1
0 0 −1 2 −1
0 0 −1 −1 2

⎤
⎥⎥⎥⎦ .

Finally, consider the (1, 2) entry of L, namely −(1/2)λ2 +
(1/2). The only two possible cases are λ2 = 1 or λ2 = 3. In the
former case, we have the repeated eigenvalue λ2 = λ4 = 1 and
in the latter case we have the repeated eigenvalue λ2 = λ3 = 3.
In either case, we obtain a contradiction. This completes the
proof of Case 1.

Case 2. Suppose that the number of distinct indices where
b1,b2,b3 are nonzero is 4, say at (i, j), (k, 
), (i, k), re-
spectively. Then from u2 ⊥ {b1,b2,b3} we obtain the linear
system

⎡
⎣ 1 1 0 0
0 0 1 1
1 0 1 0

⎤
⎦
⎡
⎢⎣
u2(i)
u2(j)
u2(k)
u2(
)

⎤
⎥⎦ =

⎡
⎢⎣
0
0
0
0

⎤
⎥⎦

whose solution up to a scalar is u2(i) = u2(
) = 1 and
u2(j) = u2(k) = −1. Since u2 ⊥ u1, then after a possible
permutation of the indices, we have that u2 = [1 1 − 1 −
1 0]T . Now, u2 is orthogonal to b1 = [1 0 1 0 0]T , b2 =
[1 0 0 1 0]T , b3 = [0 1 1 0 0]T , and b4 = [0 1 0 1 0]T , and
this leaves six vectors {b5, . . . ,b10} in S2 that are annihilated
by {u3,u4,u5}. Now, we may assume that u3 ⊥ e3, and since
u3 ⊥ {u1,u2}, it is straight forward to show that u3 takes the
form u3 = [a, b, 0, a+ b,−2(a+ b)]T , where a, b �= 0. Now,
by the pigeon hole principle, u3 is orthogonal to at least two
vectors in {b5, . . . ,b10}. Similar arguments as in Case 1. show
that in fact u3 is orthogonal to four vectors in {b5, . . . ,b10}
and that u3 = [−1 1 0 0 0]T . Now, we may assume that u4 ⊥
e1, and since also u4 ⊥ {u1,u2,u3}, this implies that u4 =
[0 0 − 1 1 0]T . This then fixes u5 = [−1,−1,−1,−1, 4]T . The
proof that L has a repeated eigenvalue is similar as in Case 1.

Case 3. Suppose that the number of distinct indices where
b1,b2,b3 are nonzero is 5, say at (i, j), (k, 
), (m, k), re-

spectively. Then from u2 ⊥ {b1,b2,b3} we obtain the linear
system

⎡
⎣ 1 1 0 0 0
0 0 1 1 0
0 0 1 0 1

⎤
⎦
⎡
⎢⎢⎢⎣

u2(i)
u2(j)
u2(k)
u2(
)
u2(m)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
0
0
0
0
0

⎤
⎥⎥⎥⎦

whose solution space is 2-dimensional and spanned by the
vectors v1 = [−1 1 0 0 0]T and v2 = [0 0 − 1 1 1]T . Since the
entries of u2 sum up to one, we have that u2 = [−1 1 0 0 0]T .
The rest of the proof is then identical as in Case 1.

This completes the proof of n = 5. �

C. Proof of Proposition 4.3

The proof is by induction on r ∈ N. Let i, j ∈ V and suppose
that 1 ≤ dG(i, j). Then necessarily i �= j and thus (L0)ij = 0
and (L)ij = (D)ij − (A)ij = −(A)ij . This proves the claim
for r = 1. Suppose by induction that the claim holds for r ≥ 1.
Fix vertices i, j with r + 1 ≤ dG(i, j). Clearly, r ≤ dG(i, j) and
therefore, by the induction hypothesis, (Lk)ij = 0 if 0 ≤ k <
r, and in particular, (Lr−1)ij = 0. Let Ni denote the neighbors
of i. Then, for any k ≥ 1 we have

(Lk)ij = eTi L
kej = eTi DLk−1ej − eTi ALk−1ej

= die
T
i (L

k−1)ej −
∑
�∈Ni

eT� L
k−1ej

= di(L
k−1)ij −

∑
�∈Ni

(Lk−1)�j .

Now, for each 
 ∈ Ni it is clear that r ≤ dG(
, j). Hence, we
can apply the induction hypothesis for each 
 ∈ Ni, and in par-
ticular, (Lr−1)�j = 0 and (Lr)�j = (−1)r(Ar)�j . Therefore,

(Lr)ij = di(L
r−1)ij −

∑
�∈Ni

(Lr−1)�j = 0

and consequently

(Lr+1)ij = di(L
r)ij −

∑
�∈Ni

(Lr)�j = −
∑
�∈Ni

(Lr)�j .

Hence

(Lr+1)ij = −
∑
�∈Ni

(−1)r(Ar)�j =(−1)r+1
∑
�∈Ni

eT� A
rej

=(−1)r+1
(
eTi A

)
Arej

=(−1)r+1eTi (A
r+1)ej

=(−1)r+1(Ar+1)ij .

This ends the proof. �
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graphs,” Bull. Acad. Serbe Sci. Arts. Classe Sci. Math. Natur. Sci. Math.,
vol. 140, no. 36, pp. 81–88, 2011.
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