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Strongly Uncontrollable Network Topologies
Cesar O. Aguilar

Abstract—In this article, we present a class of network
topologies under which the Laplacian consensus dynamics
exhibit undesirable controllability properties under a broad-
cast control signal. Specifically, the networks we character-
ize are uncontrollable for any subset of the nodes chosen
as control inputs and that emit a common control signal. We
provide a sufficient condition for a network to contain this
strong uncontrollability property and describe network per-
turbations that leave the uncontrollability property invariant.
As a by-product, we identify nontrivial network topologies
that require the control of approximately half the nodes in
the network as a necessary condition for controllability.

Index Terms—Controllability, consensus dynamics,
graph theory, Laplacian matrix, multiagent systems.

I. INTRODUCTION

CONTROLLABILITY of networked multiagent systems is
an ongoing topic of research in the control systems com-

munity due to the proliferation of technologies associated with
large-scale network models, see for instance [1]–[13] and refer-
ences therein. A primary goal of the ongoing research has been
to identify graph-theoretic structures that are possible obstruc-
tions to controlling a networked control system. To that end,
the lack of controllability has been primarily attributed to the
existence of so-called equitable partitions of the vertex set [2],
[3], [6], [8], [10]. We note that a special case of these equitable
partitions is the presence of structural symmetries in the associ-
ated network model [2]. Roughly speaking, the existence of an
equitable partition of the nodes of a network induce an invariant
subspace for the uncontrolled dynamics and, thus, if the control
nodes are chosen to preserve the invariant subspace, then un-
controllability ensues. A closely related line of research is the
so-called minimal controllability problem which is concerned
with the scenario of controlling a large-scale multiagent system
with the fewest possible number of control nodes [14]–[18].
Although it has been shown that solving minimal controllabil-
ity problems is computationally intractable for generic systems
(unless P = NP ), heuristic algorithms are known that produce
approximate solutions [14], [16]–[18]. On the other hand, in the
case of structured systems, the minimal controllability problem
can be solved in polynomial time [15], [19].
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TABLE I
s(n) IS THE NUMBER OF CONNECTED GRAPHS ON n VERTICES SUCH

THAT L = L(G) HAS DISTINCT EIGENVALUES AND (L, b) IS
UNCONTROLLABLE FOR every b ∈ {0, 1}n

In this article, we are motivated by the following question:
What structural properties present in a network result in un-
controllable dynamics for any choice of control nodes emit-
ting a common control signal? Specifically, we focus on net-
worked multiagent systems undergoing the Laplacian consensus
dynamics and describe network topologies that are uncontrol-
lable under a broadcast control for any choice of leader nodes.
Such networks were introduced in [9] and were called strongly
uncontrollable graphs. To be more precise about the issue at
hand, let G be a simple n-vertex graph with Laplacian matrix
L = L(G) = A(G) − D(G), where A(G) is the adjacency ma-
trix and D(G) is the diagonal degree matrix of G, and let b
be a binary vector. A trivial necessary condition for the pair
(L, b) to be controllable is that the eigenvalues of L are all
distinct [20, p. 95]. Aguilar and Gharesifard [9], however, pro-
vide examples of graphs for which L has distinct eigenvalues
but (L, b) is uncontrollable for every choice of binary vector b
and such graphs were called strongly uncontrollable graphs.1 A
similar definition of strong uncontrollability can be made us-
ing the adjacency matrix A(G), the signless Laplacian matrix
Q(G) = A(G) + D(G), or some other graph matrix relevant to
the network model in consideration. In the case of the Lapla-
cian matrix, we have performed an exhaustive numerical search
revealing that strongly uncontrollable graphs do not appear un-
til the number of nodes is n = 8, that is, no connected graph is
strongly uncontrollable for n ≤ 7 in the case of L. Our numeri-
cal search produced an enumeration of strongly uncontrollable
graphs for 8 ≤ n ≤ 12 and the results are shown in Table I. In-
terestingly, for the case of the adjacency matrix, our numerical
search revealed that no connected graph for n ≤ 10 is strongly
uncontrollable and, based on our results in this article, we con-
jecture that strongly uncontrollable graphs using A(G) do not
exist.

The main contribution of this article is the characterization
of a class of network topologies that result in a strongly uncon-
trollable multiagent system undergoing the Laplacian consensus
dynamics. The identification of these topologies could provide a

1In [9, Theor. 4.1], there is also a construction of a class of graphs such that
(L, b) is uncontrollable for every choice of binary vector b but such graphs
contain repeated eigenvalues.
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test bed to narrow the gap between known sufficient conditions
and necessary conditions for network controllability. As a by-
product of our results, we identify a class of nontrivial network
topologies that require the control of approximately half of the
nodes for any chance of controllability. The topologies we study
are of interest since they contain many “local symmetries” that
are similar to the symmetries found in large-scale real-world
complex networks [21]. The discovered network topologies
contain two main structural ingredients, namely, the presence
of many so-called twin nodes and certain equitable partitions.
Twin vertices induce so-called Faria eigenvectors [22] of the
Laplacian matrix L and, through the use of the classical Popov-
Belevitch-Hautus (PBH) test for controllability, result in the
uncontrollability of (L, b) for many choices of b but, in general,
are not enough for strong uncontrollability. The second main
ingredient is the presence of certain equitable partitions [23]
which, together with the presence of twin nodes, result in a
strongly uncontrollable graph. Graph vertex partitions are be-
coming a standard tool used to study control-theoretic properties
in multiagent systems, see, for instance, [2], [3], [6], [24], [25]
and references therein. Graph vertex partitions also take an im-
portant role in the study of synchrony and pattern formation in
coupled cell networks [26], [27]. In addition to our main result,
and motivated by the recent research activity with structural
controllability, we identify graph perturbations which preserve
the strong uncontrollability property.

This article is organized as follows. In Section II, we in-
troduce our notation, review the connection between equitable
partitions of a graph and controllability, and present some tech-
nical results. In Section III, we introduce twin graphs, which are
nontrivial network topologies requiring that approximately half
of the nodes be controlled. In Section IV, we present our main
result of the article, namely, a sufficient condition for a net-
worked multiagent system undergoing the Laplacian consensus
dynamics to be uncontrollable for any choice of leader nodes
under a broadcast control signal. In Section V, we identify three
vertex addition operations that leave the strong uncontrollability
property invariant. We end the article with a Conclusion.

II. PRELIMINARIES

In this section, we introduce our notation, review the notion
of equitable partitions and their role in network controllability,
and present some technical results.

A. Notation

The all ones vector in Rn is denoted by e = (1, 1, . . . , 1)
and the context will make it clear the value of n. For u ∈
{1, 2, . . . , n}, we denote by eu the unit standard basis vec-
tor in Rn with a nonzero entry at u. We say that a square
matrix M has a simple spectrum if every eigenvalue of M
has algebraic multiplicity one. The column/range space of M
will be denoted by range(M). We equip Rn with the stan-
dard Euclidean inner product 〈x, y〉 = xT y and denote by
Ω⊥ = {x ∈ Rn | 〈x, y〉 = 0, ∀ y ∈ Ω} the orthogonal comple-
ment of a set Ω ⊆ Rn . A subspace W ⊂ Rn is said to be M -
invariant if w ∈ W implies that Mw ∈ W . For each positive

integer n, we let {0, 1}n denote the set of binary vectors of
length n. Finally, we let N0 = {0, 1, 2, . . .}.

By a weighted digraph, we mean a triple G = (V,E, φ) where
V is the set of vertices, E ⊂ V × V is the set of directed edges
(or arcs), and φ : E → N0 is the weight function on the arcs
with the property that φ(u, v) �= 0 if and only if (u, v) ∈ E. We
do not have a need for loops in a graph and, thus, (u, u) /∈ E
for all u ∈ V . If (u, v) ∈ E if and only if (v, u) ∈ E and φ ≡ 1,
then we call G a simple graph and instead use the usual notation
G = (V,E). The context will make it clear as to whether G is a
simple graph or a weighted digraph.

Let G = (V,E, φ) be a weighted digraph. The neighborhood
of u ∈ V is the set N(u) = {v ∈ V | (u, v) ∈ E} and the de-
gree of u is deg(u) =

∑
v∈V φ(u, v). For a simple graph G,

deg(u) = |N(u)| for all u ∈ V , i.e., the number of vertices in
N(u). More generally, for a subset C ⊆ V , we define the degree
of u in C by

deg(u,C) :=
∑

v∈C

φ(u, v).

If G is a simple graph, then deg(u,C) = |N(u) ∩ C|. If we label
the vertices as V = {v1 , v2 , . . . , vn}, the adjacency matrix A =
A(G) of G has entries Ai,j = φ(vi, vj ). The degree matrix of G
is the diagonal matrix D = D(G) whose ith diagonal element
is deg(vi), and the Laplacian matrix of G is L(G) = D − A.

Finally, we recall that a linear single-input time-invariant
system ẋ = Ax + bu on Rn is controllable if and only if the
smallest A-invariant subspace containing b is all of Rn , that is,
span{b, Ab, . . . , An−1b} = Rn . A well-known characterization
of controllability is the PBH eigenvector test, which states that
(A, b) is controllable if and only if ξT b �= 0 for every eigenvec-
tor ξ of AT .

B. Almost Equitable Partitions

Let G be a weighted digraph with vertex set V =
{v1 , v2 , . . . , vn}. The characteristic vector of a subset C ⊂ V
is the binary vector ξ ∈ {0, 1}n such that ξi = 1 if and only if
vi ∈ C. Let π = {C1 , C2 , . . . , Ck} be a set partition of V , that
is, Ci ∩ Cj = ∅ if i �= j and

⋃k
i=1 Ci = V . The subsets Ci will

be called cells of π. The characteristic matrix of π is the n × k
matrix Pπ whose ith column is the characteristic vector of Ci ,
for i = 1, . . . , k. When no confusion arises, we denote Pπ sim-
ply by P . We say that π is an almost equitable partition (AEP)
of G if for every distinct ordered pair of cells (Ci, Cj ) it holds
that deg(u,Cj ) = deg(v, Cj ) for every u, v ∈ Ci . In this case,
we define deg(Ci, Cj ) := deg(u,Cj ) for some (and hence all)
u ∈ Ci . We note that, in general, deg(Ci, Cj ) �= deg(Cj , Ci).
If π is an AEP of G, the quotient graph Gπ of G with re-
spect to π is the weighted digraph with vertex set V (Gπ ) = π
and arcs (Ci, Cj ) ∈ E(Gπ ) if and only if deg(Ci, Cj ) �= 0 with
arc weight φ(Ci, Cj ) = deg(Ci, Cj ). We denote the adjacency
matrix of Gπ by Aπ = A(Gπ ) and its Laplacian matrix by
Lπ = L(Gπ ), and we note that Aπ and Lπ are generally non-
symmetric matrices. An AEP π = {C1 , . . . , Ck} of G is called
an equitable partition if in addition deg(u,Ci) = deg(v, Ci)
for all u, v ∈ Ci and all i = 1, . . . , k. Hence, the extra
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Fig. 1. Example of a graph G with an AEP π and the induced quotient
graph Gπ .

requirement imposed on an equitable partition is that vertices in
any given cell Ci have equal degree within Ci . To make this pa-
per as self-contained as possible, below we provide an example
of the previous notions.

Example II.1: Consider the simple graph G shown in
Fig. 1 with n = 11 vertices. Consider the vertex partition π =
{C1 , C2 , C3 , C4} where C1 = {v1 , v2 , v3 , v4}, C2 = {v5 , v6},
C3 = {v7 , v8 , v9 , v10}, and C4 = {v11}. The edges within each
cell are displayed as dashed lines. The reader is invited to
verify that for any pair of distinct cells (Ci, Cj ) it holds that
deg(v, Cj ) = deg(u,Cj ) for every u, v ∈ Ci . Notice that, for
instance, deg(v1 , C1) = 1 while deg(v3 , C1) = 2, and, thus, π
is an AEP of G but not an equitable partition. The characteristic
matrix P of π is the n × k = 11 × 4 matrix

PT =

⎡

⎢
⎢
⎢
⎣

1 1 1 1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎦

.

The quotient graph Gπ is also shown in Fig. 1 and the adjacency
and Laplacian matrix of Gπ are

Aπ =

⎡

⎢
⎢
⎢
⎣

0 1 0 0
2 0 2 1
0 1 0 1
0 2 4 0

⎤

⎥
⎥
⎥
⎦

, Lπ =

⎡

⎢
⎢
⎢
⎣

1 −1 0 0
−2 5 −2 −1
0 −1 2 −1
0 −2 −4 6

⎤

⎥
⎥
⎥
⎦

.

We note that Aπ and Lπ are nonsymmetric matrices. �
The relationship between AEPs and invariant subspaces of

the Laplacian matrix L is the following.
Theorem II.1 (see[23]): Let G be a weighted digraph and let

π = {C1 , C2 , . . . , Ck} be a partition of V (G) with characteris-
tic matrix P . Then, π is an AEP of G if and only if range(P )
is L-invariant. In this case, the Laplacian matrix of the quotient
graph Gπ is Lπ = (PT P )−1PT LP .

Remark II.1: We make the following important observa-
tions as a consequence of Theorem II.1, which explains the con-
nection between AEPs and obstructions to controllability. Let
G = (V,E) be a simple n-vertex graph, let π = {C1 , . . . , Ck}
be an AEP of G, and let P be the characteristic matrix of π. Since
the subspace range(P ) ⊂ Rn is L-invariant, there exists a basis
for range(P ) consisting of eigenvectors of L. Moreover, since
L is symmetric, then range(P )⊥ = ker(PT ) is also L-invariant
and, thus, ker(PT ) ⊂ Rn also has a basis of eigenvectors of L.

Now, by definition of P , x ∈ range(P ) if and only if the com-
ponents of x are constant on each cell of π, that is, ∀ vi, vj ∈ C� ,
we have xi = xj and this holds for all � = 1, . . . , k. Similarly,
x ∈ ker(PT ) if and only if the components of x sum to zero
on the cells of π, that is,

∑
vj ∈C�

xj = 0 for each � = 1, . . . , k.
Hence, if π is an AEP of G and L is a symmetric matrix, then
the eigenvectors of L can be divided into two classes: one class
is contained in range(P ) and are characterized by having a con-
stant value on each cell of π, and the second class is contained
in ker(PT ) and are characterized by summing to zero on each
cell of π. Hence, if b ∈ {0, 1}n is constant on the cells of π, that
is b = P b̄ for some b̄ ∈ {0, 1}k , then b is clearly orthogonal to
the eigenvectors of L contained in ker(PT ) and, therefore, by
the PBH test (L, b) is uncontrollable. We illustrate our remarks
with our running example.

Example II.2: Consider again the simple graph G shown
in Fig. 1, with AEP π = {C1 , C2 , C3 , C4} where C1 =
{v1 , v2 , v3 , v4}, C2 = {v5 , v6}, C3 = {v7 , v8 , v9 , v10}, and
C4 = {v11}. Hence, x ∈ range(Pπ ) if and only if x =
(α, α, α, α, β, β, γ, γ, γ, γ, δ) for some scalars α, β, γ, δ ∈ R.
Since rank(Pπ ) = k = 4, there are 4 linearly independent
eigenvectors of L of the form of x above. One such vec-
tor is of course the all ones vector e ∈ R11 in which case
α = β = γ = δ = 1. In general, since an eigenvector x of the
form above (with eigenvalue λ �= 0) is orthogonal to e, we must
have 4α + 2β + 4γ + δ = 0. On the other hand, ker(PT ) is
a seven-dimensional subspace of R11 and it can be verified
that ker(PT ) has a basis consisting of eigenvectors of L. Since
C4 = {v11} is a singleton cell, all eigenvectors of L in ker(PT )
have a zero in the last entry. It follows that if, for example,
b = (0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1) ∈ range(P ), then b is orthogo-
nal to every eigenvector of L in ker(PT ) and, thus, (L, b) is
uncontrollable by the PBH test.

There is a well-known relationship between the eigenval-
ues/eigenvectors of L and Lπ , namely that (y, λ) is an eigen-
vector/eigenvalue pair of Lπ if and only if (Py, λ) is an eigen-
vector/eigenvalue pair of L, where P is the characteristic matrix
of π [23]. Now, it is possible that the quotient graph Gπ itself
contains an AEP and in this case an AEP of Gπ induces an AEP
of G in the following way. Let π = {C1 , . . . , Ck} be a partition
of V and let ρ = {S1 , . . . , Sm} be a partition of π. We define
the ρ-merge of π as the partition πρ = {C1 , C2 , . . . , Cm} of V
where, for j = 1, 2, . . . ,m, we have

Cj =
⋃

Ci ∈Sj

Ci.

Roughly speaking, the ρ-merge of π is simply obtained
by “flattening out” each cell Sj of ρ. For example,
if π = {C1 , C2 , C3 , C4} = {{1, 2, 3}, {4, 5}, {6, 7}, {8}} and
ρ = {S1 , S2} = {{C1 , C4}, {C2 , C3}}, then the ρ-merge of π
is πρ = {{1, 2, 3, 8}, {4, 5, 6, 7}, }. Notice that the partition π
is finer than πρ , i.e., every cell in π is a subset of a cell of πρ .
Now, if π is an AEP of G and ρ is an AEP of Gπ , then it is
known that the ρ-merge of π is an AEP of G [10, Prop. 1].

If ρ is an AEP of Gπ , then, by Theorem II.1, range(Pρ)
is Lπ -invariant but it does not generally hold that the orthog-
onal complement range(Pρ)⊥ is Lπ -invariant since Lπ is not
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generally a symmetric matrix. Hence, the discussion in Re-
mark II.1 regarding the eigenvector structure of L does not
generally hold for Lπ , i.e., the eigenvectors of Lπ do not gener-
ally split into those that are constant on the cells of ρ and those
that sum to zero on the cells of ρ. There is, however, a case in
which the eigenvectors of Lπ do split into those in range(Pρ)
and range(Pρ)⊥, and this case is present in the network topolo-
gies that we characterize. With this in mind, we introduce the
following notion.

Definition II.1: Let π = {C1 , C2 , . . . , Ck} be a partition of
V . A partition ρ = {S1 , S2 , . . . , Sm} of π is said to be π-regular
if each cell Sj ∈ ρ consists of cells of π of the same cardinality.

In other words, if Sj = {Cj,1 , Cj,2 , . . . , Cj,mj
}, then ρ is

π-regular if |Cj,1 | = |Cj,2 | = · · · = |Cj,mj
|, and this holds

for all j = 1, 2, . . . , m. As an example, if V = {1, 2, . . . , 12}
and π = {C1 , C2 , . . . , C6} where C1 = {1, 2, 3}, C2 = {4, 5},
C3 = {6}, and C4 = {7, 8}, C5 = {9}, C6 = {10, 11, 12},
then ρ = {{C1 , C6}, {C2 , C4}, {C3 , C5}} is π-regular since
|C1 | = |C6 |, |C2 | = |C4 |, and |C3 | = |C5 |. The relationship be-
tween π-regularity of ρ and the Lπ -invariance of range(Pρ)⊥ is
then given in the following lemma whose proof can be found in
Appendix A.

Lemma II.1: Let G be a simple graph. Let π be an AEP of G
and let ρ be an AEP of the quotient graph Gπ . If ρ is π-regular,
then range(Pρ)⊥ = ker(PT

ρ ) is Lπ -invariant.
The upshot of Lemma II.1 is that even though Lπ may not be

a symmetric matrix, the discussion in Remark II.1 regarding the
splitting structure of the eigenvectors of L is also applicable to
Lπ provided ρ is a π-regular AEP of Gπ . Hence, if the conditions
of Lemma II.1 are satisfied, then the eigenvectors of Lπ can be
partitioned into two classes, those contained in range(Pρ) and
the others contained in ker(PT

ρ ).

III. TWIN GRAPHS

One of the main structural properties possessed by the
network topologies that we characterize is the existence of
many twin vertices. The vertices u, v ∈ V (G) are twins if
N(u)\{v} = N(v)\{u}. We note that it is possible for u to
be twins with multiple vertices, that is, that {u, v} and {u,w}
are twins with v �= w. In this case, either {u, v, w} are all mu-
tually adjacent or nonadjacent. The existence of twin vertices
induces an equitable partition as follows. Recall that a per-
mutation σ : V → V is an automorphism, or symmetry, of the
graph G = (V,E) if {u, v} ∈ E if and only if {σ(u), σ(v)} ∈ E
for all u, v ∈ V . We denote by Aut(G) the group of automor-
phisms of G. It is clear that if u and v are twin vertices, then
the permutation σ : V → V that transposes u and v and fixes
all other vertices is an automorphism of G. Moreover, if with-
out loss of generality u = v1 and v = v2 , then the partition
π = {{v1 , v2}, {v3}, {v4}, . . . , {vn}} is an equitable partition
of G. The following summarizes the relationship between twin
vertices and eigenvectors/eigenvalues of L (see [22, pg. 46] for
a proof).

Proposition III.1 (see[22]): Let G = (V,E) be a simple
graph with Laplacian matrix L, let u, v ∈ V , and let σ : V → V
be the permutataion that transposes u and v and fixes all other

vertices. Then, σ is an automorphism of G if and only if
x = eu − ev is an eigenvector of L. In this case, L has cor-
responding integer eigenvalue λ = deg(u) + Au,v .

An eigenvector of L of the form x = eu − ev is known as
a Faria eigenvector [22]. Clearly, a graph containing the Faria
eigenvector x = eu − ev will result in the uncontrollability of
(L, b) for all binary vectors b whose entries are equal on u and
v since then 〈x, b〉 = bu − bv = 0. Note that clearly x = eu −
ev ∈ ker(PT

π ) where π = {{u, v}, {v3}, {v4}, . . . , {vn}}.
We now obtain an upper bound on the number of twin vertices

in a graph whose Laplacian matrix has simple eigenvalues. To
that end, we first recall that the order of a permutation σ : V →
V is the smallest integer k such that σk := σ ◦ σ ◦ · · · ◦ σ = id,
where in the composition σ appears k-times.

Lemma III.1: Suppose that G is a simple graph on n vertices
and assume that L has simple spectrum. The following hold:

1) If {u, v} are twin vertices then deg(u)= deg(v) < n−1.
2) If n is even then the maximal number of twins is t =

n
2 − 1, and this bound is sharp.

3) If n is odd then the maximal number of twins is t = n−1
2 ,

and this bound is sharp.
Proof: To prove 1), suppose that deg(u) = deg(v) = n − 1

for a twin pair {u, v} ⊂ V . Then, by Proposition III.1, λ = n is
an eigenvalue of L with Faria eigenvector x = eu − ev . On the
other hand, it is straightforward to verify that x̃ = −e + neu is
also an eigenvector of L affording the eigenvalue λ = n. Thus,
λ = n has algebraic multiplicity at least 2, which contradicts the
assumption that L has simple spectrum. Hence, we must have
deg(u) = deg(v) < n − 1.

To prove 2), we first recall that if G has an automorphism of or-
der k ≥ 3, then L has a repeated eigenvalue [28, pg. 45]. Now, if
G has more than n

2 twin pairs of vertices, then by the pigeon-hole
principle, there are at least two sets of twin vertices of the form
{u, v} and {u,w} with v �= w. Then, the cyclic automorphism
σ(u) = v, σ(v) = w, and σ(w) = u (and all other vertices held
fixed) clearly has order three and consequently L does not have
a simple spectrum. Suppose now then that G has exactly n

2 twins
and that L has a simple spectrum. We claim that every eigenvalue
induced by a twin is even. To see this, if {u, v} are twins, then
deg(u) = 2qu + Au,v where qu is the number of twins u (and
hence v) is adjacent to. By Proposition III.1, the eigenvalue in-
duced by {u, v} is λ = deg(u) + Au,v = 2(qu + Au,v ), which
is even, and proves the claim. Since L has simple spectrum and
all the eigenvalues induced by the n

2 twins are even, it follows
that n is an eigenvalue of L. Thus, there exists a twin pair each
of which has degree n − 1, which contradicts part 1). Hence,
this proves that no simple graph with Laplacian simple eigen-
values has n

2 or more twin vertices. To prove that n
2 − 1 is a

sharp bound for the number of twins, it may be verified that the
graph on n = 8 vertices in Fig. 2 has simple Laplacian spectrum
and has k = n

2 − 1 = 3 twins given by {v1 , v2}, {v3 , v4}, and
{v5 , v6}.

The proof of 3) is similar to 2) and is omitted. In this case,
the bound t = n−1

2 is attained by the graph on n = 11 vertices
in Fig. 2 which has simple Laplacian spectrum and has k =
n−1

2 = 5 twins given by {v1 , v2}, {v3 , v4}, {v5 , v6}, {v7 , v8},
and {v9 , v10}. �
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Fig. 2. Sample of graphs with maximal twins and simple Laplacian
eigenvalues.

In view of Lemma III.1, we make the following definition.
Definition III.1: A simple graph G is said to be a twin graph

if L = L(G) has simple spectrum and G contains the maximal
number of twins t =

⌊
n−1

2

⌋
.

Let w(n) be the number of twin graphs on n vertices. We have
verified numerically that w(n) = 0 for n ≤ 6 and that w(7) =
12, w(8) = 36, w(9) = 42, and w(10) = 924. We conjecture
that twin graphs exists for all n ≥ 7.

If G is a twin graph with vertex set V = {v1 , v2 , . . . , vn},
and n is even, we assume that the t = n

2 − 1 twins
are C1 = {v1 , v2}, C2 = {v3 , v4}, . . . , Ct = {vn−3 , vn−2} and
that vn−1 and vn are the nontwin vertices. In this case,
we call π∗ = {C1 , C2 , . . . , Ct , {vn−1}, {vn}} the twin par-
tition of G. If n is odd, then we may assume that the
t = n−1

2 twins are C1 = {v1 , v2}, C2 = {v3 , v4}, . . . , Ct =
{vn−2 , vn−1}, and vn will denote the nontwin vertex. In this
case, π∗ = {C1 , C2 , . . . , Ct , {vn}} is the twin partition. In ei-
ther case, π∗ is an equitable partition of G.

We end this section with a discussion on the minimal con-
trollability problem for twin graphs [14]. Given a linear time-
invariant system ẋ = Mx on Rn , the minimal controllabil-
ity problem is to find a smallest subset I = {i1 , . . . , ip} ⊂
{1, 2, . . . , n} such that if B =

[
ei1 · · · eip

] ∈ Rn×p , then the
linear time-invariant control system ẋ = Mx + Bu is control-
lable. It was proved in [14] that finding such a smallest I within
a multiplicative factor of c log(n) is NP-hard for some absolute
constant c > 0, even when M is symmetric. It is known that
if the maximum geometric multiplicity of the eigenvalues of
M is q, then rank(B) ≥ q whenever (M,B) is a controllable
pair [20, pg. 95]. The existence of twin graphs shows that q is, in
general, a very poor lower bound for rank(B) = p. Indeed, if G
is a twin graph with twin cells C1 , C2 , . . . , Ct , then any subset
I chosen as input nodes such that I ∩ Ci = ∅ renders (L,B)
uncontrollable; this follows easily since the Faria eigenvector
associated to Ci is clearly orthogonal to every column of B. As
a consequence, we obtain the following.

Theorem III.1: Let G = (V,E) be a n-vertex twin graph
with Laplacian matrix L and let t =

⌊
n−1

2

⌋
denote the number

of twins in G. Let I = {i1 , . . . , ip} ⊂ {1, 2, . . . , n} and let B =[
ei1 · · · eip

] ∈ Rn×p . If (L,B) is controllable, then p ≥ t.
The punchline of Theorem III.1 is that, at least for consensus-

type dynamics, the generic case of simple eigenvalues in a graph
matrix does not eliminate the necessity of controlling a signifi-
cant fraction of the nodes to achieve network controllability.

IV. STRONGLY UNCONTROLLABLE GRAPHS

In this section, we present the main result of this article.
For completeness, we formally state the definition of a strongly
uncontrollable graph.

Definition IV.1: Let G be a simple connected graph and
suppose that L = L(G) has a simple spectrum. We say that G
is strongly uncontrollable if the pair (L, b) is uncontrollable for
every b ∈ {0, 1}n .

Strong uncontrollability can also be defined using the ad-
jacency or signless Laplacian matrix. However, the Laplacian
matrix has the key property that it has the all ones vector e
as an eigenvector with corresponding eigenvalue λ = 0 and,
therefore, (L, b) is uncontrollable if and only if (L, e − b) is un-
controllable (provided n ≥ 2). Also, as will be seen below, our
sufficient condition for strong uncontrollability relies heavily on
the orthogonality of eigenvectors of L with the eigenvector e.

Although a twin graph G has many Faria eigenvectors, it is
not necessarily a strongly uncontrollable graph. In fact, we have
verified that all twin graphs on n = 7 vertices are not strongly
uncontrollable and only 10 of the w(8) = 36 twin graphs on
n = 8 vertices are strongly uncontrollable. Below, we give a
sufficient condition for strong uncontrollability of twin graphs
in terms of AEPs of the quotient graph Gπ ∗ .

Theorem IV.1: Let G be a twin graph and suppose that
n = |V (G)| is even. Let π∗ = {C1 , C2 , . . . , Ct , {vn−1}, {vn}}
denote the twin partition of G. If the quotient graph Gπ ∗ has an
AEP of the form ρ = {S1 , S2 , . . . , Sm , {{vn−1}, {vn}}}, then
G is strongly uncontrollable.

Proof: By the PBH eigenvector controllability test, we must
show that each binary vector b ∈ {0, 1}n is orthogonal to some
eigenvector of L. If b is a binary vector such that bu = bv where
{u, v} = Ci for some i ∈ {1, 2, . . . , t}, then b is orthogonal to
the Faria eigenvector eu − ev , and, thus, a necessary condition
for controllability is that bu �= bv for all twin pairs {u, v}. To
prove the theorem, we will show the existence of two eigen-
vectors x and x̃ of L that are orthogonal to the binary vectors
that have exactly one nonzero entry on each twin cell of π∗. To
that end, let Pπ ∗ be the characteristic matrix of the twin parti-
tion π∗ and let ξi be the characteristic vector of the cell Ci for
i = 1, 2, . . . , t. Then, clearly

range(Pπ ∗) =

{

αen−1 + βen +
t∑

i=1

γiξi : α, β, γi ∈ R

}

.

Since {S1 , . . . , Sm} is a partition of the set {C1 , C2 , . . . , Ct},
we can write for each j ∈ {1, 2, . . . ,m} that Sj =
{Cj,1 , Cj,2 , . . . , Cj,|Sj |}, where Cj,i ∈ {C1 , C2 , . . . , Ct} for all
i ∈ {1, 2, . . . , |Sj |}. We may, therefore, write an arbitrary vector
in range(Pπ ∗) in the form

αen−1 + βen +
m∑

j=1

|Sj |∑

i=1

γj,i ξj,i

where ξj,i is the characteristic vector of the cell Cj,i ∈ Sj , and
α, β, γj,i ∈ R.

The partition ρ = {S1 , S2 , . . . , Sm , {{vn−1}, {vn}}} is π∗-
regular; indeed, each set Sj contains cells of π that have
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cardinality two (twin cells) and the set {{vn−1}, {vn}} clearly
consists of cells of π∗ of the same cardinality. Thus, by
Lemma II.1, there exists an eigenvector y of L(Gπ ∗) such that
PT

ρ y = 0. Therefore, the eigenvector x = Pπ ∗y of L can be
written in the form

x = α(en−1 − en ) +
m∑

j=1

|Sj |∑

i=1

γj,i ξj,i

where for each j ∈ {1, 2, . . . ,m} we have

|Sj |∑

i=1

γj,i = 0. (1)

We note that there exists at least one j ∈ {1, 2, . . . ,m} such that
|Sj | ≥ 2 (i.e., at least one set Sj is not a singleton cell); if not
then γj,i = 0 for all i, j and, therefore, x = α(en−1 − en ) which
implies that {vn−1 , vn} is a twin cell of G which contradicts the
maximality of t.

Since ρ is an AEP of Gπ ∗ , there exists an eigenvector ỹ �= e
of L(Gπ ∗) such that ỹ ∈ range(Pρ). Hence, the eigenvector
x̃ = Pπ ∗ ỹ of L takes the form

x̃ = β(en−1 + en ) +
m∑

j=1

μj

|Sj |∑

i=1

ξj,i

for μj ∈ R. Since x̃ is orthogonal to the all ones eigenvector of
L, and since each vector ξj,i is a sum of two distinct standard
basis vectors, we have

0 = 〈x̃, e〉 = 2β +
m∑

j=1

2|Sj |μj

which simplifies to

β +
m∑

j=1

|Sj |μj = 0. (2)

Now let b ∈ {0, 1}n . As already mentioned at the beginning
of the proof, we need only consider the case that b has exactly
one nonzero entry on each twin cell. Hence, 〈b, ξj,i〉 = 1 for all
i ∈ {1, . . . , |Sj |} and all j ∈ {1, . . . , m}. There are three cases
to consider. If bn−1 = bn = 1, then from (1), we have

〈x, b〉 = α − α +
m∑

j=1

|Sj |∑

i=1

γj,i = 0.

If bn−1 = bn = 0, then again from (1), we have

〈x, b〉 =
m∑

j=1

|Sj |∑

i=1

γj,i = 0.

Finally, if bn−1 �= bn , then from (2), we have

〈x̃, b〉 = β +
m∑

j=1

μj |Sj | = 0.

Thus, in any case, b is orthogonal to an eigenvector of L and,
thus, (L, b) is uncontrollable. Since G has simple eigenvalues,
by definition G is a strongly uncontrollable graph. �

The case of an odd number of vertices is similar.

Fig. 3. G and Gπ ∗ satisfying Theorem IV.2.

Theorem IV.2: Let G be a twin graph and suppose that
n = |V (G)| is odd. Let π∗ = {C1 , C2 , . . . , Ct , {vn}} denote
the twin partition of G. If Gπ ∗ has a nontrivial AEP of the form
ρ = {S1 , S2 , . . . , Sm , {{vn}}}, then G is strongly uncontrol-
lable.

We illustrate the previous results with an example.
Example IV.1: The twin graph G on n = 11 vertices

shown in Fig. 3 satisfies the assumptions of Theorem IV.2;
we also display the quotient graph Gπ ∗ where π∗ = V (Gπ ∗) =
{C1 , C2 , C3 , C4 , C5 , {v11}} is the twin partition of G. The Faria
eigenvector associated to the twin Ci is xi = e2i−1 − e2i for
i = 1, 2, . . . , 5. The adjacency matrix of Gπ ∗ is

Aπ ∗ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 2 0 0 0 0
2 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 2 1
0 0 0 2 0 0
0 2 2 2 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

One can verify by inspection that ρ = {{C1 , C5},
{C2 , C4}, {C3}, {v11}} is an AEP of Gπ ∗ . The ρ-merge
of π∗ is π∗

ρ = {{1, 2, 9, 10}, {3, 4, 7, 8}, {5, 6}, {11}} and the
quotient graph of Gπ ∗

ρ
has adjacency matrix

A(Gπ ∗
ρ
) =

⎡

⎢
⎢
⎣

0 2 0 0
2 0 0 1
0 0 0 1
0 4 2 0

⎤

⎥
⎥
⎦ .

Theorems IV.1 and IV.2 are not necessary for strong uncon-
trollability as will be seen in the next section where we con-
sider the stability of strong uncontrollability to vertex additions.
Through numerical investigations, however, we have found that
all strongly uncontrollable graphs up to n = 12 vertices have at
least three twin pairs. For the adjacency matrix, twin vertices
induce the eigenvalue λ = 0 or λ = −1 depending on whether
the twin vertices are adjacent or not adjacent. Thus, any graph
with three twin vertices has an adjacency matrix with at least one
repeated eigenvalue. This observation leads us to conjecture that
strongly uncontrollable graphs using the adjacency matrix A do
not exist. As for the signless Laplacian matrix Q = D + A, we
have not found any strongly uncontrollable graphs up to n = 10
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vertices. Although our numerical investigations are for very
small n, they suggest that strong uncontrollability is a property
that may only exist in consensus-type network dynamics.

V. UNCONTROLLABILITY UNDER PERTURBATIONS

In this section, we analyze the stability of the strong un-
controllability property to vertex additions. Our results rely
on the following well-known result concerning the Lapla-
cian eigenvalues under the graph join operation. Given two
simple graphs G1 = (V1 , E1) and G2 = (V2 , E2) such that
V1 ∩ V2 = ∅, the join of G1 and G2 is the graph G = G1 ∨ G2
with vertex set V (G) = V1 ∪ V2 and edge set E(G) = E1 ∪
E2 ∪ {{u, v} | u ∈ V1 , v ∈ V2}.

Theorem V.1 (see [22]): Let G1 and let G2 be simple graphs
on disjoint sets of n1 and n2 vertices, respectively. Let L1 be the
Laplacian matrix of G1 , with eigenvectors x1 , x2 , . . . , xn1 and
corresponding eigenvalues 0 = α1 ≤ α2 ≤ · · · ≤ αn1 . Let L2
be the Laplacian matrix of G2 , with eigenvectors y1 , y2 , . . . , yn2

and corresponding eigenvalues 0 = β1 ≤ β2 ≤ · · · ≤ βn2 . Let
L be the Laplacian matrix of the join graph G = G1 ∨ G2 . The
following hold:

1) For all i = 2, . . . , n1 ,
[
xT

i 0T
n2

]T
is an eigenvector of L

with eigenvalue n2 + αi .
2) For all j = 2, . . . , n2 ,

[
0T

n1
yT

j

]T
is an eigenvector of L

with eigenvalue n1 + βj .

3)
[
n2x

T
1 −n1y

T
1
]T

is an eigenvector of L with eigenvalue
n1 + n2 .

The following theorem describes how a strongly un-
controllable graph can be constructed from a lower-order
strongly uncontrollable graph while preserving its automor-
phism group. Henceforth, we denote by Sn the symmetric
group on {1, 2, . . . , n}, that is, the group of all permutations
on {1, 2, . . . , n}.

Theorem V.2: Let G be a strongly uncontrollable graph on
n vertices. Let G̃ be the graph on n + 1 vertices obtained from
G by adding a vertex and connecting it to all the vertices of G.
Then, G̃ is a strongly uncontrollable graph if and only if the
spectral radius of L is less than n. In this case, Aut(G) and
Aut(G̃) are equal when viewed as subgroups of the symmetric
group Sn+1 .

Proof: Let x1 , x2 , . . . , xn be the eigenvectors of L = L(G)
with corresponding eigenvalues 0 = λ1 < λ2 < · · · < λn . Ap-
plying Theorem V.1 to G and the graph with one vertex,
the set {e, [xT

2 0
]T

, . . . ,
[
xT

n 0
]T

,
[
eT −n

]T } consists of mu-

tually orthogonal eigenvectors of L̃ = L(G̃) with eigenval-
ues 0 = λ1 < λ2 + 1 < · · · < λn + 1 ≤ n + 1. If λn < n, then
n + 1 is a simple eigenvalue of L̃. Consequently, the eigenvalues
of L̃ are distinct.

Now, if b ∈ {0, 1}n+1 , then since G is strongly uncontrol-

lable, there exists an eigenvector xi �= x1 of L such that
[
xT

i 0
]T

is orthogonal to b. This proves that (L̃, b) is uncontrollable for
every b ∈ {0, 1}n+1 .

To prove the second claim, since the spectral radius of L is
less than n, no vertex of G has degree n − 1. Hence, the vertex
vn+1 that was added to G to form G̃ is the only vertex of G̃

Fig. 4. Strongly uncontrollable graph on n = 8 vertices and its induced
strongly uncontrollable graph on n = 9 vertices using Theorem V.2.

with degree n. It follows that any automorphism of G̃ must fix
vn+1 , and this proves that Aut(G) and Aut(G̃) are equal when
viewed as subgroups of Sn+1 .

To prove the converse statement, assume that G̃ is strongly un-
controllable. Then, by definition L̃ has simple spectrum. Then,
since n + 1 is an eigenvalue of L̃ it follows that λn < n. �

Theorem V.2 shows that if G is a twin graph on an even
number of vertices, then G̃ is not a twin graph, and, thus, show-
ing that the property of being a twin graph is not necessary for
strong uncontrollability.

Example V.1: Let s(n) be the number of strongly uncon-
trollable graphs on n vertices. We have numerically verified
that s(8) = 10 and s(9) = 12. All ten strongly uncontrollable
graphs for n = 8 have spectral radius less than n and are all twin
graphs. Hence, each strongly uncontrollable graph on n = 8 ver-
tices induces a strongly uncontrollable graph on n = 9 vertices
via Theorem V.2, none of which is a twin graph. One such pair
is displayed in Fig. 4. The other two uncontrollable graphs on
n = 9 vertices are twin graphs.

We now consider the case of adding two vertices. If τ :
{1, 2, . . . , n} → {1, 2, . . . , n} is a permutation such that τ(i) =
j and τ(j) = i (with i �= j) and fixes all other integers (i.e., τ is
a transposition), we denote τ by τ = (i j).

Theorem V.3: Let G be a strongly uncontrollable graph with
vertex set V = {v1 , v2 , . . . , vn}. Let G2 = ({vn+1 , vn+2}, ∅)
be the empty graph on two vertices and let G̃ = G ∨ G2 . Then,
G̃ is a strongly uncontrollable graph if and only if n − 2 and n
are not eigenvalues of L. In this case, Aut(G̃) is generated by
the union of a generating set of Aut(G) and the transposition
τ = (n + 1 n + 2).

Proof: Let x1 , x2 , . . . , xn be the eigenvectors of L = L(G)
with corresponding eigenvalues 0 = λ1 < λ2 < · · · < λn . The
Laplacian matrix of G̃ can be written as

L̃ =

⎡

⎢
⎢
⎢
⎣

(L + 2I) −e −e

−eT n 0

−eT 0 n

⎤

⎥
⎥
⎥
⎦

.

The vectors e,
[
xT

2 0
]T

, . . . ,
[
xT

n 0
]T

are eigenvectors of

L̃ with eigenvalues 0 = λ1 < λ2 + 2 < · · · < λn + 2, and
[
2eT −n −n

]T
is an eigenvector of L̃ with eigenvalue n + 2.

The Faria eigenvector
[
0T 1 −1

]T
of L̃ has corresponding
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eigenvalue n. Thus, if n − 2 and n are not eigenvalues of L,
then L̃ has simple spectrum. Since G is a strongly uncontrol-
lable graph, every binary vector in {0, 1}n+2 is orthogonal to

some eigenvector
[
xT

i 0 0
]T

of L̃. Thus, G̃ is also a strongly un-
controllable graph. As in Theorem V.2, the converse statement
is straightforward.

To prove the second statement, it is clear that every auto-
morphism of G can be extended to an automorphism of G̃ by
asking that it fix the vertices vn+1 and vn+2 . The transposition
τ = (n + 1 n + 2) is an automorphism of G̃ and there are no
other automorphisms of G̃ that do not fix vn+1 and vn+2 . �

Remark V.1: The procedure in Theorems V.2 and V.3 of
taking a strongly uncontrollable graph G and creating a new
strongly uncontrollable graph by joining it to an empty graph
with n2 vertices cannot be extended to the case n2 > 2. Indeed,
if n2 > 2 vertices are joined to G, then G̃ will contain an au-
tomorphism of order greater than two and, thus, G̃ would not
have distinct eigenvalues.

The following theorem can be seen as a complement of
Theorem V.2.

Theorem V.4: Let G be a strongly uncontrollable graph with
vertex set V = {v1 , v2 , . . . , vn} and suppose that deg(vn ) =
n − 1. Let G̃ be the graph on n + 1 vertices obtained from G
by adding a vertex and connecting it only to vn . Then, G̃ is a
strongly uncontrollable graph if and only if 1 is not an eigenvalue
of L. Moreover, Aut(G) and Aut(G̃) are equal when viewed as
subgroups of Sn+1 .

Proof: Let x1 , x2 , . . . , xn be eigenvectors of L = L(G)
with corresponding eigenvalues 0 = λ1 < λ2 < · · · < λn = n.
Since deg(vn ) = n − 1, we may take xn = −e + nen . By
orthogonality of eigenvectors of L, we have 0 = 〈xj , xn 〉 =
n〈xj , en 〉 for 2 ≤ j ≤ n − 1, that is, 〈xj , en 〉 = eT

n xj = 0.
Now, L̃ = L(G̃) takes the form

L̃ =

[
L + eneT

n −en

−eT
n 1

]

and, therefore, if we set x̃j =
[
xT

j 0
]T

, for 2 ≤ j ≤ n − 1, we
have

L̃x̃j =

[
Lxj + eneT

n xj

−eT
n xj

]

=
[
Lxj

0

]

= λj x̃j .

Hence, x̃j is an eigenvector of L̃ with eigenvalue λj , for 2 ≤ j ≤
n − 1. Now, x̃n+1 = L̃en =

[−1 −1 · · · − 1 n −1
]T ∈ Rn+1

is an eigenvector of L̃ with eigenvalue λn+1 = n + 1. Finally,
consider the vector x̃n =

[−1 −1 · · · −1 0 n − 1
]T ∈ Rn+1 .

A straightforward calculation shows that x̃n is an eigenvector
of L̃ with eigenvalue 1. Hence, if λj �= 1 for 2 ≤ j ≤ n − 1,
then L̃ has simple eigenvalues {0, 1, λ2 , λ3 , . . . , λn−1 , n + 1}.
The rest of the proof is similar to that of Theorem V.2 and
is omitted. �

VI. CONCLUSION

In this article, we have characterized network topologies un-
der which the Laplacian consensus dynamics are uncontrollable

for any subset of the nodes chosen as control inputs and that
emit a common control signal. In these network topologies, the
lack of controllability is not due to repeated eigenvalues of the
Laplacian matrix, but instead is characterized by the structural
properties of the network, namely, the existence of a maxi-
mal number of twin nodes and certain AEPs. We provided a
sufficient condition for a network to contain this strong uncon-
trollability property and described network perturbations that
leave the uncontrollability property invariant. We also related
our work with the minimal controllability problem and showed
how these network topologies require the control of essentially
half of the nodes for any chance of controllability.

APPENDIX A
PROOF OF LEMMA II.1

Before we give the proof of Lemma II.1, we need some
preliminary results. Let π = {C1 , C2 , . . . , Ck} be a partition
of V = {v1 , . . . , vn} and let K = diag(|C1 |, |C2 |, . . . , |Ck |) ∈
Rk×k . It is easy to see that K = PT

π Pπ . Let ρ =
{S1 , S2 , . . . , Sm} be a partition of π and let ξj ∈ {0, 1}k be
the characteristic vector of Sj . If ρ is π-regular (i.e., all cells in
Sj have the same cardinality), then clearly

Kξj = |Ci |ξj

for any (and hence all) Ci ∈ Sj . It follows then that KPρ =
PρK̃ where K̃ = diag(|C1,1 |, |C2,1 |, . . . , |Cm,1 |) where Cj,1 ∈
Sj for j = 1, 2, . . . , m. An identical argument shows that
K−1Pρ = PρK̃

−1 . We can now prove Lemma II.1.
Proof of Lemma II.1: Let π = {C1 , C2 , . . . , Ck} and let

K = PT
π Pπ = diag(|C1 |, |C2 |, . . . , |Ck |) as above. Then, from

Theorem II.1, we have that Lπ = K−1PT
π LPπ . Also, from

Theorem II.1 applied to the quotient graph Gπ and the parti-
tion ρ, we have that Lπ Pρ = PρLπρ

, where πρ is the ρ-merge
of π. Then

LT
π Pρ = (PT

π LT Pπ K−1)Pρ

= (PT
π LPπ )(K−1Pρ)

= (KLπ )(K−1Pρ)

= (KLπ )(PρK̃
−1)

= KPρLπρ
K̃−1

= Pρ(K̃Lπρ
K̃−1).

In other words, PT
ρ Lπ = (K̃Lπρ

K̃−1)T PT
ρ , and, thus,

if PT
ρ x = 0, then clearly PT

ρ Lπ x = 0, i.e., ker(PT
ρ ) is

Lπ -invariant. �
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