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Abstract. We examine three methods for solving the Hamilton Jacobi Bellman PDE
that arises in infinite horizon optimal control problems.

1 Introduction

The Hamilton Jacobi Bellman Partial Differential Equation (HIB PDE) characterizes
the solution of an optimal control problem. Consider the problem of finding a control
trajectory u(t), 0 <t < oo that minimizes the integral of a Lagrangian

—/Oool(x,u) dt

subject to the dynamic constraints
x=f(x,u), x(0) =x°

where x e R™!, e R™!,

If £, [ are smooth and the optimal cost is a smooth function 7(x°) of the initial
condition then the optimal control is given by an optimal feedback u(z) = k(x(¢))
and the HJB PDE is satisfied,

0= rnuin{%(x)f(x,u)+l(x,u)},
K(x) e arg;nin{g—:(x)f(x,u) +l(x,u)}.

If we further assume that the control Hamiltonian
H(A,x,u)=Af(x,u)+1(x,u)

is strictly convex in u for all A ¢ R"" and x e R"*! then the HIB PDE can be rewritten
as

0= 27 (0 (5, k() + (5 (a), m
0= 27 ()2 () + 21 (x k(). @
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The simplest example of this is the so called Linear Quadratic Regulator (LQR)
where the dynamics is linear and the Lagrangian is quadratic

1
f(x,u) = Fx+Gu, I(x,u) = 3 (x"Qx+2x"Su+u"Ru)

b

is nonnegative definite and R is positive definite. If F, G is stabilizable and Q%, Fis
detectable then the HIB PDE has a unique solution

where

1
m(x) = ExTPx, K(x) =Kx
where P is the unique nonnegative definite solution of the algebraic Riccati equation

FTP+PF+Q-(PG+S)R™ (PG+5)T =0 3)
and
K=-R'(PG+5)T. 4

Moreover all the eigenvalues of '+ GK are in the open left half plane so the closed
loop dynamics

x=(F+GK)x 5)
is exponentially stable.
We return to the nonlinear problem. Perhaps the principle reason for trying to solve
an optimal control problem is to find a feedback u = k(x) that makes the closed loop
system

&= f(x,k(x)) ©)

asymptotically stable. If the HIB PDE can be solved for (x), k(x) then the closed
loop system can be shown to be asymptotically stable in some region around the
origin by a Lyapunov argument,

& 7(x(0)) = T2 () F(300), Kx(0))) = (60, K(u(0))) <0

Given an approximate solution 7(x) to the HIB PDE we seek the largest punctured
sublevel set of (x) where 7(x) >0 and %—Z(x) f(x,x(x)) <0. Then we know that
this punctured sublevel set is in the basin of attraction of the origin for the closed
loop dynamics (6).

Suppose the Lagrangian and the dynamics have Taylor series expansions
f(x,u):Fx+Gu+f[2](x,u)+f[3](x,u)+..., @)
1
I(x,u) = 3 (x"Qx+u"Ru) +IB e ) + 14 (e u) + 8)

where [4] denotes polynomial vector fields homogeneous of degree d in x, u.
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Various methods have been proposed in the literature ([2] and references) to find
similar series expansions of the optimal cost and/or the stabilizing optimal feedback,

n(x) = %xTPx-t- Bl + 2l (x)+ ., 9)
K(x) = Kx+ kPN (x) + kBl (x) + ... (10)

We shall examine three of them, Al’brecht’s method [1], the state dependent Riccati
equation method [3, 4] and Garrard’s method [5—7]. We shall describe these methods
and see how well they do on a simple example.

This paper is dedicated to our esteemed colleague and good friend Uwe Helmke on
the occasion of his sixtieth birthday.

2 Al’brecht’s Method

Al’brecht’s method has been discussed and used in [9, 11, 13] and many other papers.
Al’brecht plugged the series expansions (7-10) into the HIB equations (1, 2) and
collected terms degree by degree. The lowest terms of the first HIB equation (1) are
of degree 2 and the lowest terms of the second HIB equation (2) are of degree 1.
They reduce to the algebraic Riccati equation (3) and the formula for the linear gain
(4). Therefore Al’brecht assumed that F, G, Q, R, S satisfied the assumptions of the
Linear Quadratic Regulator discussed above so that these equations have a unique
solution.

Having found P, K we turn to the degree 3 terms of (1) and the degree 2 terms of (2),

87r[3] 5 3
(x)(F+GK)x+xTPf[ ](x,Kx)+l[ (x,Kx), (11)

9f

0=

(x Kx)+ (K[z](x))TR. (12)

(x,Kx )+

The unknowns in these equations are 713(x) and x[?!(x) and the equations are
triangular, the second unknown does not appear in the first equation. To decide the
solvability of the first, we study the linear operator

73]
P (x)(F +GK)x

o) -

from cubic polynomials to cubic polynomials. Its eigenvalues are of the form A; +
Aj+Ax where A;, A;, A are eigenvalues of F + GK. A cubic resonance occurs when
such a sum equals zero. But all the eigenvalues of F' + GK are in the open left half
plane so there are no cubic resonances.

Hence there is a unique solution to the first equation for 7l%] (x) and then the second
equation yields

K-[Z] (x) — _R—l (875[3] T af[Z] al B

e (x)G+x'P P (x,Kx)+ (x Kx))
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Then we find 7l*] (x) from the degree 4 terms in (1)

[4] [3]
O ) (F+GK)x+ 2%
ox ox

+pr( Fx,Kx+ k2 (x)))m + 1 (x, Kx) + (1[31 (x, Kx+ 2] (x)))

0=

() ( (e, K+ 2] (x)))m
[4]

where (~)[d] denotes the degree d part of the expression in the parenthesis. This
equation is always solvable because the map

i (x)(F + GK)x

[41(4)
(%) B

from quartic polynomials to quartic polynomials has eigenvalues of the form A; + 4, +
Ax +A; where the A’s are eigenvalues of F + GK. Then the degree 3 part of (2) yields

[4] (3] [2]
B =k [ 252 16+ 27 (0 2L (k)
ox ox du
3] (21 5,131
+x"P of (x,Kx+ kP (x)) +8l (x,Kx)
u u

The higher degree terms are found in a similar fashion. The MATLAB based Non-
linear Systems Toolbox [8] that was written by one of authors contains a routine
“hjb.m" that implements Al’brecht method. It runs very fast when n, m, d are small
to medium. For example when n =6, m =3, d =3 the routine takes 0.076734 seconds
on a MacBook Pro with an 2.66 GHz Intel Core Duo processor. When d is increased
to 5 it takes 3.422941 seconds.

Al’brecht’s method generates a candidate Lyapunov function 7(x) for closed loop
dynamics

£= 706 K()
because
& 7x(0)) = T (x(0) 1 (1), K(x(0))
= —1(x(1), k(x(1))) + O(x(1))"*?
One seeks the largest sub level set {x: 7(x) < ¢} where for x #0
n(x) >0,

(13)
%(x)f(x, K(x)) <0.

In the second inequality the true f(x,u) should be used, not its Taylor expansion.
The second inequality can be relaxed using the LaSalle invariance principle.
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A modification of Al’brecht’s method can also be used to generate a candidate
Lyapunov function for an uncontrolled dynamics

i=f(@) =Far A+ @+
The first step is to solve for P a linear Lyapunov equation of the form
FP+PF+Q=0,

where Q is chosen to be positive definite. The candidate Lyapunov function is
1
n(x) = ExTPer Bl + 2l (x) + ..,

where 7 is the solution of the nonlinear Lyapunov equation

0= g—:(x)f(x) + %xTQx.

This equation is a degenerate HIB equation with no control and so it can also be
solved term by term. The method is due to Zubov [14] and is implemented by “zbv.m"
in the Nonlinear Systems Toolbox.

3 State Dependent Riccati Equation Method

The state dependent Riccati equation (SDRE) method can be used on problems of
the form

f(x,u) = F(x)x+G(x)u,
1(x,u) = % (x"Q(x)x+2x"S(x)u+u"R(x)u).

Many nonlinear optimal control problems can be written in this form. To do so the
only additional restrictions on (7, 8) are that the dynamics f(x,u) be linear in u and
the Lagrangian be quadratic in u. Usually there are many different ways to choose
F(x), G(x), Q(x), R(x), S(x) and little seems to be known about which choices are
better than others.

One assumes that the optimal cost and optimal feedback have similar nonunique
representations

7(x) - %xTP(x)x, K(x) = K(x)x.
Then the HIB equations become
0=x" (F"(x)P(x)+P(x)F(x)+0(x)

~(P(x)G(x) +S(x)R™" (x) (P(x)G(x) +S(x))") x
JdP;
+Z ;;] (x) (F(x)x+G(x)K(x)x) x;x;,
ij
0=x"(P(x)G(x)+S(x)) +x"K" (x)R(x)
dP;;
+y I (x)G(x)xx;.

ij
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In the SDRE method one ignores the last sum in each of these equations to obtain
0=x" (FT (X)P(x)+P(x)F(x)+Q(x)
~(P(x)G(x) +S(x))R™" (x) (P(x)G(x) +S(x)) ") x,
0=x"(P(x)G(x)+S(x)) +x" K" (x)R(x),

which reduce to the state dependent Riccati equation and a formula for the state
dependent gain

0=FT(x)P(x)+P(x)F(x)+Q(x)

= (P(x)G(x) +S(x))R™ (x) (P(x)G(x) +S(x)), (14)

K(x) = =R (x)(P(x)G(x) +S(x))T. (15)

To our knowledge the mathematical justification for omitting the last sums has never
been clearly explained. But the result is to replace a nonlinear partial differential
equation (HJB) with a nonlinear functional equation (SDRE). Whether this is a true
simplification is questionable. There have been several recommendations about how
to solve SDRE [3]. A symbolic software package such as Maple or Mathematica may
be able to solve simple systems with special structure. Another possibility is to solve
it online at a relatively high bit rate. Or perhaps it can be solved offline at a large

number of states and then gain scheduling is used in between. In [12] an equation
similar to the SDRE is solved by series expansion in a small parameter.

We shall show that it can also be solved by series expansion in the state vector.
Assume there are the following series expansions.

F(x)=FO 4 FU () + FRI )+

G(x) =G+ G (x) + G (x) +.

0(x) = 0"+ oMM (x) + o (x)+

R(x) =R+ RIV () + R (x) + (16)
S(x) = SO0+ ST () + 5120 () + .

P(x) = PO+ pU () + P () +

K(x) = K14 kU (x) + kT2 (x)+...,

where the superscript (4] denotes a matrix valued polynomial that is homogeneous of
degree d in x.

The first step is to expand R~! (x). It is not hard to verify that
R (x) =T e 70 () + T () +.
where
o= R,
T @) = -(RPD T RM (o (R
7121 () = (R RED (o) (R (R RL o) (R RUD () RE)

252



A. J. Krener et al. Festschrift in Honor of Uwe Helmke

If we plug these expansions into (14, 15) and collect the degree O terms we get
the familiar algebraic Riccati and gain equations for the linear quadratic part of the
problem

0= (F[O] )T plol plOl pl0] . pl0]_ (plO]Gl0] 4 g10] )T[O] (P91 Glol 4 gl0] )7 (7)
glol _ _7lo] (p[O]G[O] +S[O])T. (18)
Having solved these equations for P[O], K11 we collect the terms of degree 1 in (14,
15),
) 0= (FI 4+ GO KOy Tpll] (x) + P () (P11 4 GIOI k10T
+(F 1](X))T 01+ POFT () +Q[‘](x)

- (PG (x) + ST TLO1 (PO GIOT () 1 5TOTYT. (19)

(PLIGLOT () + SIOT 70T (pLOT LM () 4 STHIYT

- (PG (x) +S[0])T[1](x)(P[O]G[O] (x) +S[0])T
K (x) = =701 (pLIGLOY () plOI GLH 4 STOIYT_ 701 () (PO GLOT (x) + SIO1)T (20)
Notice that (19) is a linear Lyapunov equation in the unknown pll (x) If all the

eigenvalues of F (] 4 GIOIKIOT are in the open left half plane then this equation is
always solvable because the eigenvalues of

P (x) > (FIOT 4 GO KIONY T pU () + PL () (FLO) 4 GLOT 0T

are sums of pairs of eigenvalues of F (] + GO K1 and so none of them can be zero
if the linear quadratic part of the problem satisfies the standard LQR assumptions.
The higher degree terms are found in a similar fashion.
The SDRE method also yields a candidate Lyapunov function x" P(x)x for the closed
loop dynamics

x=(F(x)+G(x)K(x))x.

The Lyapunov derivative is
%XT(I)P(XU))X(I) =xT (1) (F(x(1)) + G(x(1))K (x())) " P(x(1))
+P(x(t)) (F(x(r)) + G(x(1))K (x(2)) ) x(1)
Z L (O (F(x(0)) + Gx(1))K (x(2)))x()xi(0)ae; (1),

ij

which reduces to
T (OPC)(0) =27 () (Qx(1)) + (P(x(1)Gx(0)) +S(x(1)-
R (x(1)) (P(x(1)G(x(1)) + S(x(1)))T ) x(1)
3 205 (1) (F(x(0) + O K (x(0)) ()01,

ij

So the quadratic part of the Lyapunov derivative is nonpositive but the higher terms
may be positive.
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4 Garrard’s Method

Garrard’s method is a simplification of Al’brecht’s method that was developed
when computing resources were more limited. Garrard considered a reduced set of
problems where

I(x,u) = %(XTQX-FMTRM), (21)
F(x,u) = Fx+Gu+ fl9(x), (22)

where d is either 2 or 3. His method does not yield an approximation to the optimal
cost but it does yield an approximation to the optimal feedback,

Kk (x) = Kx+ k[ (x).

As with all the series methods that we consider, Garrard assumed that F, G, Q, R
satisfied the assumptions of the Linear Quadratic Regulator discussed above. The
first step of the method is to find P, K as before.

Suppose d = 2, the next step is to solve (11). He rewrote this equation assuming (21,
22) as

0- (a 7 )(F+GK) + (f2 () P) 23

and ignored the fact tha is the gradient of a function. He treated it as an
arbitrary row vector Valued polynomlal homogeneous of degree 2. Then (23) has
multiple solutions. Since F' + GK is invertible one simple solution of (23) is

(3]
T ()=~ () P(FGK) 24

but this is usually not the gradient of a function because its mixed partials do not
commute
827'[[3] (927[[3]
+ )
8xi8xj (X) 8xj8xi (X)

Garrard set

K2l (x) = R~ (ag (x)G). (25)

When d =3 then 7131 (x) =0, k[?(x) = 0 and the relevant equation is

(‘9” () (F +GK) + (fP ()T P)
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is a gradient then one solution of (24) and
(25) s

ajaf] (1) =~/ P(F+GE),

() = R (aﬁ[4] )T.

As we mentioned above Garrard only used his method to solve problems with one
degree of nonlinearity in the dynamics but the method can be easily generalized to
problems with multiple degrees of nonlinearity provided they are in the SDRE form
(16).

‘97551 (x) by ignoring the fact that it is a gradient, cf. (24), and then
use it to define k(2] (x), cf. (25). We put x12}(x) in the form

k2 (x) = kM (0)x,

where K1!] (x) is an m x n matrix valued polynomial homogeneous of degree 1. Again
this can always be done, usually in many ways.

At the next level the relevant equation is

8[ ] (x)(FIO) 4 GlOI O]y
x

_(8ﬂ4

+8g)[c3] (x)( Fl(x)+ Gl (x))-#—(F[Z](x)x)TP[O])x.

is a gradient this has a solution

omt’ X) (‘9” (x)(F[l](x)+G () + 61 () K1)

+x"(F (x))TP[O]) (F+GK)™".

This can be continued to higher degrees but there is one significant disadvantage
of this method. The function 7(x) is never computed so we don’t have a potential
Lyapunov function to check the basin of attraction of the closed loop system. One
way around this is given the closed loop dynamics, use Zubov’s method to compute
a candidate Lyapunov function to determine the basin of attraction. But Zubov’s
method is a simplification of Al’brecht’s method so why not just use Al’brecht’s
method?

5 Example

We apply the three methods described above to a simple problem where we know the
exact solution. Consider the LQR problem of minimizing

1 oo
Efo 122+ dt
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subject to
21 =2,
20 = U.
The optimal cost and optimal feedback are
1. [V3 1
@) =57 [ I ﬁ]z’
u=- [1 \/§] z.

If we make the nonlinear change of coordinates

1= sinxl,

x
12:x2_§7

then the problem becomes nonlinear, minimize

2
1 0 x
*f sin2x1+ xg——l +u? dt
2Jo 3

subject to

. X
X1 = xz—? secxy,

X (26)
(o)
X2 = | X1X2 — ? secxy +u.
But we know the true solution,
V3 ., AN N:TREEAY
m(x) = TSIH X1+ xz—g smx1+7 XQ—? ,
3 27
P
K(x) = —sinx —\/g(xg— 31)
Notice that the change of coordinates is a nonsingular mapping from —% <x1 <

% —00<xp <00 to—-1<z) <1, —00<z3 <oo. The nonlinear system (26) is only
defined on the strip -5 <x; < §, —oo <x; < 0o even though (27) defines 7(x) and
K(x) on —oo <xj < 00, —00 < X3 < 0.

We applied the power series methods described above to this nonlinear problem. For
Al’brecht’s method and the SDRE method we computed 7(x) to degree 4 and k(x)
to degree 3. For the SDRE method

nt(x) =x"P(x)x.

256



A. J. Krener et al. Festschrift in Honor of Uwe Helmke

For Garrard’s method we first computed x(x) to degree 3 and then found 7(x) of
degree four by Zubov’s method. Here are the results.

Method Time (sec) | Norm 7 Error | Norm k Error
Al’brecht 0.0090 1.1771e-15 1.3476e- 15
SDRE 0.0136 0.4707 0.8951
Garrard 0.0154 7.4470e-16 1.8735

The times are essentially the same for the three methods. The 7 errors are the I,
norms of the differences between the vectors of coefficients of the computed 7’s
and the Taylor polynomial of degree 4 of the true 7. The k errors are the /; norms
of the differences between the vectors of coefficients of the computed k’s and the
Taylor polynomial of degree 3 of the true k. The Al’brecht method computes the
polynomials 7 and x essentially to machine precision. The SDRE method makes
substantial errors in both. Garrard’s method also makes a substantial error in the
computation of k but 7, computed by Zubov’s method, corrects this error to machine
precision. It is an open question whether this always happens.

Perhaps more important are the sizes of the basin of attraction of the closed loop
dynamics of the three methods. So we computed these basins as follows. We plugged
each third degree polynomial k(x) into the nonlinear dynamics (26) and computed
the largest sublevel set of the corresponding fourth degree polynomial 7(x) where
7(x) > 0 and the Lyapunov derivative of 7(x) is nonpositive. The results are shown
in the figures on the following pages. The Al’brecht and Garrard basins of attraction
appear identical perhaps because the corresponding 7’s are nearly equal while the
SDRE basin of attraction is considerably smaller. It is perhaps a surprise that all of
these basins are relatively small. After all, the LQR feedback globally stabilizes the
linear system. So we computed the basin of attraction for Al’brecht’s method where
the optimal cost is computed to degree 6 and the optimal feedback is computed to
degree 5. The computation took 0.210 seconds and the basin of attraction is shown
in Figure 4. Notice the different scale from the other figures.

6 Conclusion

We have discussed three power series methods for approximately solving the HIB
equation that arises in the infinite horizon optimal control problem. The computa-
tional burdens are roughly equivalent but only Al’becht’s method can be mathemati-
cally justified. Therefore we recommend it.

We have seen in an example even when the Taylor polynomials of the optimal cost
and optimal feedback are computed to machine precision, the closed loop dynamics
may fail to have a large basin of attraction. This is because of the truncation of the
higher order terms. One can increase the degree of the Taylor approximations but
this does not always lead to a larger basin of attraction. Therefore we are developing
patchy methods to remedy this [10].
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Figure 1: Al’brecht Basin of Attraction with d = 3, the region shown is -1 <xp < 1
on the vertical axis and —1 < x; < 1 on the horizontal axis.

T

Figure 2: SDRE Basin of Attraction with d = 3, the region shown is -1 <x; <1 on
the vertical axis and —1 < x; < 1 on the horizontal axis.
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Figure 3: Garrard Basin of Attraction with d = 3, the region shown is -1 <x, <1 on
the vertical axis and —1 < x; < 1 on the horizontal axis.

Figure 4: Al’brecht Basin of Attraction with d = 5, the region shown is -2 <x, <2
on the vertical axis and —2 < x| <2 on the horizontal axis.
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