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notes by
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1. Power Method Review

Let G denote the Google matrix. The practical implementation of the PageRank algorithm

is best handled with the Power Method which, starting with an initial vector x0, requires us

to perform the iteration

x1 = Gx0

x2 = Gx1

x3 = Gx2

... =
...

xN = GxN−1

where N is sufficiently large (usually 50 ≤ N ≤ 100) so that xN is a good approximation to

the PageRank eigenvector x∗:

xN ≈ x∗

We therefore need to perform many matrix-vector multiplications which can be a time con-

suming operation when G is a large matrix because every entry of G is non-zero. A direct

approach to compute Gx would require n2 multiplications if G is a n × n matrix. Stor-

ing G is also problematic because we would need 8n2 bytes of memory to store G; if say

n = 3, 000, 000 then 8n2 bytes = 72000 GB = 72 TB . Instead, we will see how G can be

decomposed into matrices that are easy to store and/or easy to compute with.

2. Notation

We will use notation that is consistent with Matlab. For example, for any matrix A, the ith

column of A is denoted by A(:, i), and the jth row of A will be denoted by A(j, :). By J we

denote the all 1’s matrix of appropriate size. For example, the J matrix of size 4× 4 is

J =











1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1










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By e we denote the all 1’s vector of appropriate size. For example, in R
4 the e vector is

e = (1, 1, 1, 1). It is not hard to see that

J = e · eT

where as usual eT denotes the transpose of the vector e. For example, in R
4:

e · eT =







1
1
1
1







[
1 1 1 1

]
=











1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1











= J

We will also use some Matlab notation to denote operations on vectors. For example, if

x = (x1, x2, . . . , xn) then sum(x) =
∑n

i=1 xi is the sum of the entries of x. Notice that

sum(x) = eTx =

n∑

i=1

xi

In Matlab, if A is a matrix then

sum(A, 1) = sum of the columns of A

sum(A, 2) = sum of the rows of A

3. Creating the Hyperlink Matrix

To create G we need to create the hyperlink matrix H which in turn requires the creation of

the adjacency matrix A of the network. Consider the directed network shown in Figure 1.

1

3
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2

Figure 1: A tiny network
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The adjacency matrix for this directed graph is

A =



















0 1 0 0 0 0

0 0 1 1 0 0

0 1 0 0 1 0

0 1 1 0 1 0

0 0 0 1 0 0

0 0 1 0 0 0



















.

In the adjacency matrix, each column corresponds to the out-going links for the correspond-

ing vertex. For example, vertex i = 2 links to vertices {1, 3, 4} and thus column i = 2 of A

has 1’s in positions {1, 3, 4} and 0’s elsewhere. The rows of A correspond to the in-links for

the corresponding vertex. For example, the non-zero entries of row j = 3 are {2, 5} because

vertex j = 3 has in-links from vertices {2, 5}.

To create the hyperlink matrix H, each non-zero column of A is normalized so that its

sum is equal to 1. For example, if column A(:, i) is non-zero, we compute di = sum(A(:, i))

and then the ith column of H is

H(:, i) =
1

di
A(:, i).

For the tiny network above, the hyperlink matrix is

H =



















0 1
3

0 0 0 0

0 0 1
3

1
2

0 0

0 1
3

0 0 1
2

0

0 1
3

1
3

0 1
2

0

0 0 0 1
2

0 0

0 0 1
3

0 0 0



















Here is Matlab code to compute H once A is known:

H = zeros(n, n); % allocate memory for H

d = sum(A, 1); % sums the columns of A, d is a row vector

for i = 1:n

if d(i) > 0
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H(:, i) = 1/d(i) * A(:, i);

end

end

Because the columns of A are the out-going links of the corresponding vertex, the vector d

stores the out-going degrees of each vertex. If i is a dangling node (has no out-going links)

then d(i) = 0.

4. Creating the Google Matrix

Recall that the Google matrix was defined to be

G = αH+ (1− α) 1
n
J (1)

where α = 0.85. The matrix H is obtained by replacing each zero column of H with the

vector 1
n
e. This modification of H fixes the dangling node problem (recall that a dangling

node corresponds to a zero column of H). It is straightforward to compute H using a for

loop but we do not actually want to compute or store H. Instead we want to decompose H

in the form

H = H+X

where X has two types of columns: if vertex i is a dangling node then X(:, i) = 1
n
e and, if

i is not a dangling node then X(:, i) = 0. To see how X can be computed, first define the

dangling node vector a as:

a(i) =







1, if i is a dangling node

0, otherwise.

Hence, a identifies which nodes are dangling nodes. In Matlab, we can compute a as:

a = (d == 0);

For example, if d = (3, 8, 0, 4, 11, 0, 9, 0) ∈ R
8 then Matlab would return the vector

a = [0, 0, 1, 0, 0, 1, 0, 1];

because the nodes {3, 6, 8} are the dangling nodes. Then

X = 1
n
e · aT

and therefore

H = H+ 1
n
e · aT (2)
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For example, for the hyperlink matrix H of the tiny network above,

H =


















1
6

1
3

0 0 0 1
6

1
6

0 1
3

1
2

0 1
6

1
6

1
3

0 0 1
2

1
6

1
6

1
3

1
3

0 1
2

1
6

1
6

0 0 1
2

0 1
6

1
6

0 1
3

0 0 1
6


















=


















0 1
3

0 0 0 0

0 0 1
3

1
2

0 0

0 1
3

0 0 1
2

0

0 1
3

1
3

0 1
2

0

0 0 0 1
2

0 0

0 0 1
3

0 0 0


















︸ ︷︷ ︸

H

+


















1
6

0 0 0 0 1
6

1
6

0 0 0 0 1
6

1
6

0 0 0 0 1
6

1
6

0 0 0 0 1
6

1
6

0 0 0 0 1
6

1
6

0 0 0 0 1
6


















︸ ︷︷ ︸

1
n
e·aT

From the definition (1) of the Google matrix, equation (2), and the fact that J = e · eT

we have that

G = αH+ (1− α) 1
n
J

= α(H+ 1
n
e · aT ) + (1− α) 1

n
e · eT

= αH+ α

n
e · aT + (1− α) 1

n
e · eT

= αH+ e ·
(
α

n
aT + (1− α) 1

n
eT

)

Then,

Gx = αHx +
(
α
n
aTx + (1− α) 1

n
eTx

)
e

Therefore, to compute Gx all we need to compute is the vector Hx, and the two scalar

quantities aTx and eTx, and then add the terms using the above formula for Gx.

5. Iteration Loop in Power Method

If you have taken a course in numerical analysis, you will have noticed that the Power

Method is simply just fixed-point iteration. To decide on how many iteration steps to

perform, successive approximations xk+1 and xk are compared by computing the norm of

their differences:

norm(xk+1 − xk) = ‖xk+1 − xk‖

If ‖xk+1 − xk‖ < ε where ε > 0 is some chosen small quantity (for example ε = 1 × 10−8),

then xk+1 ≈ xk and thus xk+1 will be a good approximation to the PageRank vector x∗.
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Thus, when the condition

‖xk+1 − xk‖ < ε

is satisfied, we should exit the Power Method iteration and return the vector xk+1. Below

we present pseudocode implementing the Power Method.

Algorithm: Power method to compute PageRank vector

input: H, a, ε > 0, Nmax

output: Approximate PageRank vector

1: xold = 1
n
e

2: for k = 1, 2, . . . , Nmax

3: β = α
n
aTxold +

(1−α)
n

eTxold

4: xnew = αH · xold + βe

5: if ‖xnew − xold‖ < ε

6: break

7: else

8: xold = xnew

9: end

10: end

6. The Data

6.1. 2016 College Football Bowl Subdivision

The 2016 College Football Bowl Subdivision regular and post-reason results are stored in the

text file 2016-fbs-games.txt. In this text file, each line represents a game, and the format

of each line is

teamA, scoreA, location, teamB, scoreB

where location is either vs or at. For example, the line

Alabama,34,vs,Kentucky,6
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means that Alabama played at home versus Kentucky and Alabama scored 34 points and

Kentucky scored 6, whereas the line

Arizona,24,at,UCLA,45

means that Arizona played at UCLA and Arizona scored 24 and UCLA scored 45. The

Matlab code to read the entire contents of this file is

fid = fopen(‘2016-fbs-games.txt‘,‘r‘);

C = textscan(fid, ‘%s %d %s %s %d‘,‘Delimiter‘, ‘ , ‘);

fclose(fid);

The variable C is a cell array in Matlab containing 5 sub-cells:

C = { C{1}, C{2}, C{3}, C{4}, C{5} }

A cell in Matlab is a list whose elements are not necessarily of the same type. The cells of

C are:

Cell Description of contents
C{1} a cell containing all the teamA names
C{2} a vector containing all the scoreA points
C{3} a cell containing the locations (either vs or at)
C{4} a cell containing all the teamB names
C{5} a vector containing all the scoreB points

Table 1: Description of the cells in C

Thus, the data of line 200 of the text file can be accessed using

C{1}{200}, C{2}(200), C{3}{200}, C{4}{200}, C{5}(200)

Notice that we used parenthesis to access the data of C{2} and C{5} because they are vectors,

while for the cells C{1}, C{3}, C{4}, we used braces { } to access the data.

A complete list of all the team names are stored in the comma separated file 2016-fbs-teams.txt

and can be loaded with the command

teams = textscan(fid,’%s’,’Delimiter’,’,’);

This creates the cell teams and the name of the ith team is accessed by typing teams{1}{i}
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6.2. The 2007 Wikipedia Site

The adjacency matrix A of the 2007 Wikipedia website is stored in the file

wikipedia-adjacency-matrix-2007.mat

To load this file in Matlab, you type

load(’wikipedia-adjacency-matrix-2007.mat’);

In Matlab, if you type

>> whos

you will see a list of variables, one of which should be A. You will see that A is of size

n = 3357835, needs 673 MB of storage, and that it has the attribute sparse. The matrix

A is stored as a sparse matrix because it contains mostly zeros. In the sparse format,

only the locations and the corresponding values of the non-zero entries of A are stored. For

example, suppose that

A =



















0 a1,2 0 0 0 0

0 0 0 a2,4 0 0

0 0 0 0 0 0

0 a4,2 a4,3 0 a4,5 0

0 0 0 a5,4 0 0

0 0 0 0 0 0



















Then in sparse format, A is stored as the list

(1, 2) a1,2
(4, 2) a4,2
(4, 3) a4,3
(2, 4) a2,4
(5, 4) a5,4
(4, 5) a4,5

To create the matrix A above in Matlab as a sparse matrix we type

A = sparse([1,4,4,2,5,4],[2,2,3,4,4,5],[a12, a42, a43, a24, a54, a45],6,6);

Notice that the first argument to sparse correspond to the rows, the second argument

corresponds to the columns, the third is the list of the actual numerical values at the row-

column locations specified by the first and second arguments, and the last two arguments

specify the size of the matrix, in this case 6× 6. The general call to define an n×m sparse

matrix in Matlab is

sparse(row_indices, column_indices, values, n, m);
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7. Useful Matlab Functions

Below is a list of Matlab functions that you may find useful.

• [bool, i] = ismember(x, C) : if x is a member of C then bool = True and i is the

location (or index) of x in C. For example, suppose that C is the cell

C = {’Duke’, ’Notre Dame’, ’Alabama’, ’USC’}.

Then

[bool, i] = ismember(’Alabama’, C)

returns bool = True and i = 3.

• [xsorted, J] = sort(x, ’descend’): sorts the entries of the vector x in descending order

and saves the sorted vector in xsorted and saves the sorted indices in the variable J. As

example, suppose that

x = (1.3, 0.3, 5.6, 8.9, 2.3)

Then xsorted = (8.9, 5.6, 2.3, 1.3, 0.3) and J = (4, 3, 5, 1, 2). If all you want is the index

vector J then you can type [∼, J]

• find(d == 0): returns the indices where the vector d is zero

• find(d ∼= 0): returns the indices where the vector d is non-zero

• ones(n,1): creates the all 1’s vector of size n, that is, e =ones(n, 1)

• numel(y): returns the number of entries in y regardless of whether y is a row or column

vector, also works if y is a cell

• size(A, 1): returns the row dimension of A

• size(A, 2): returns the column dimension of A
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