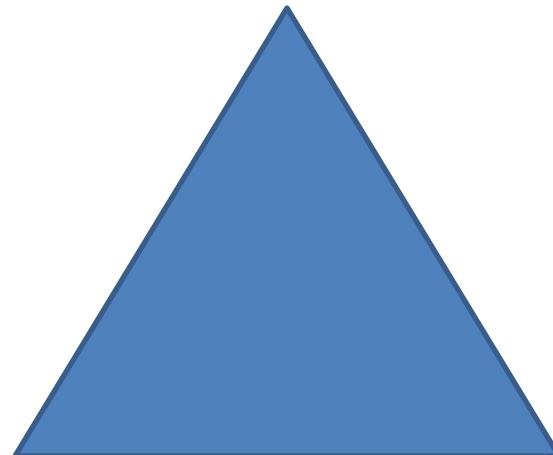
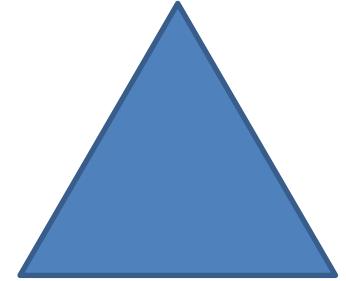


Introduction to Groups

Symmetries of an Equilateral Triangle



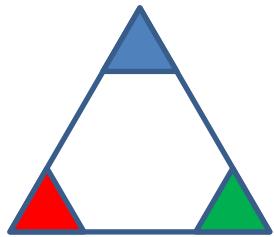
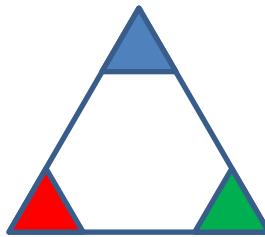
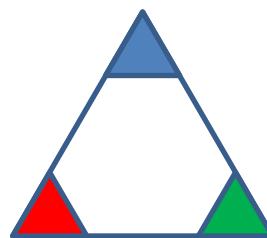
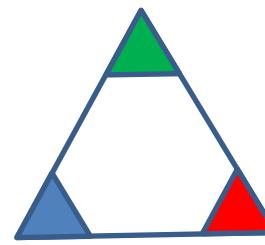
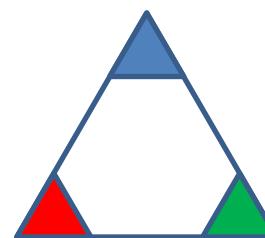
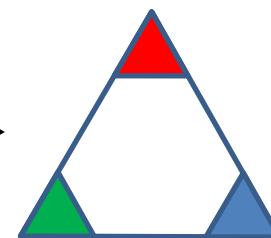
Rotational Symmetry



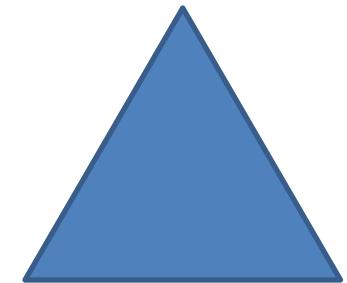
- Let R_θ be a counterclockwise rotation of θ degrees.
- What are the possible symmetry rotations of an equilateral triangle?

R_0 , R_{120} , and R_{240}

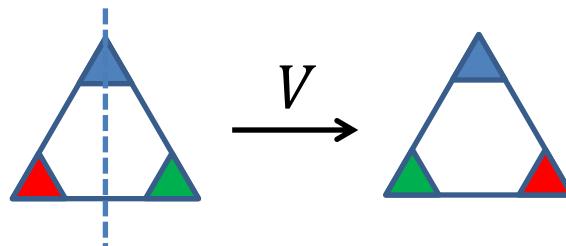
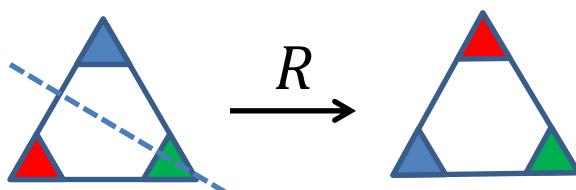
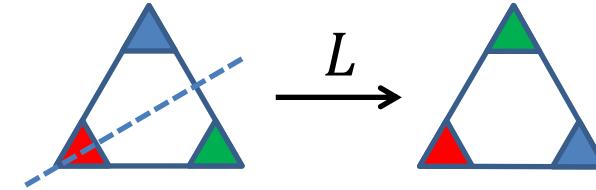
Rotations

 $R_0 \rightarrow$  $R_{120} \rightarrow$  $R_{240} \rightarrow$ 

Reflective Symmetry

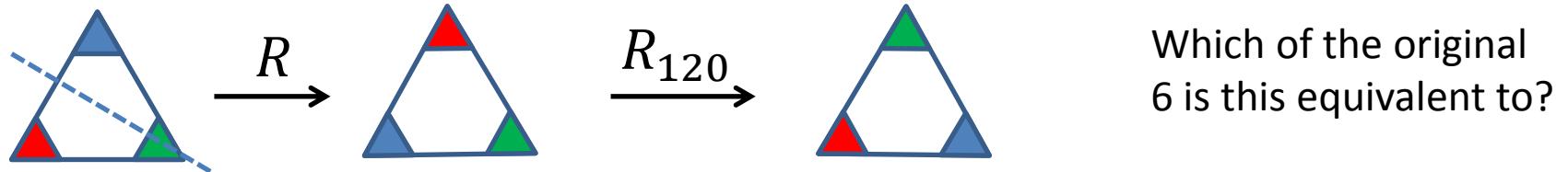


What are the possible reflections of an equilateral triangle?



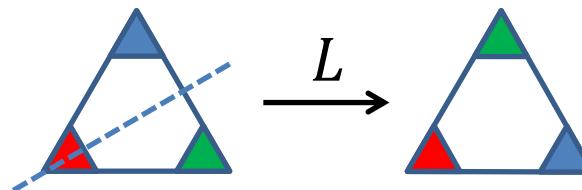
Composition

We can compose (or combine or multiply) the 6 symmetries, but this will always be equivalent to one of the original 6.



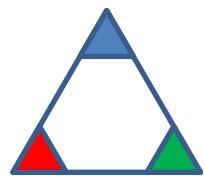
Which of the original 6 is this equivalent to?

This is the same as L .

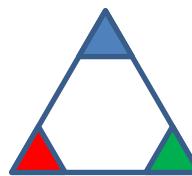
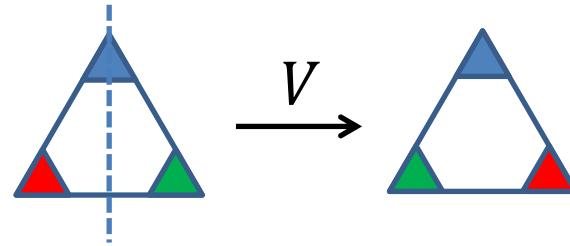


So we can say $R_{120} \cdot R = L$

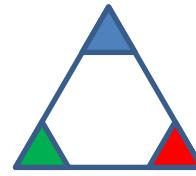
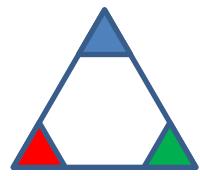
Summary of Symmetry



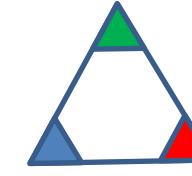
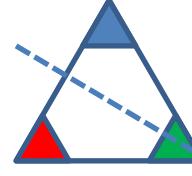
$$R_0 \rightarrow$$



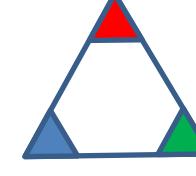
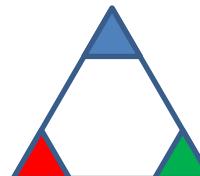
$$V \rightarrow$$



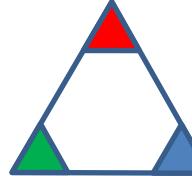
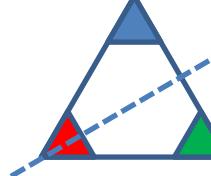
$$R_{120} \rightarrow$$



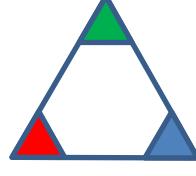
$$R \rightarrow$$



$$R_{240} \rightarrow$$



$$L \rightarrow$$



Cayley Table

We can summarize these computations in a Cayley table (or operation table.)

$a \cdot b$	R_0	R_{120}	R_{240}	V	R	L
R_0	R_0	R_{120}	R_{240}	V	R	L
R_{120}	R_{120}	R_{240}	R_0	R	L	V
R_{240}	R_{240}	R_0	R_{120}	L	V	R
V	V	L	R	R_0	R_{240}	R_{120}
R	R	V	L	R_{120}	R_0	R_{240}
L	L	R	V	R_{240}	R_{120}	R_0

$a \cdot b$	R_0	R_{120}	R_{240}	V	R	L
R_0	R_0	R_{120}	R_{240}	V	R	L
R_{120}	R_{120}	R_{240}	R_0	R	L	V
R_{240}	R_{240}	R_0	R_{120}	L	V	R
V	V	L	R	R_0	R_{240}	R_{120}
R	R	V	L	R_{120}	R_0	R_{240}
L	L	R	V	R_{240}	R_{120}	R_0

This is an example of a group. It is called the “*Dihedral Group of order 6*” and is denoted by D_3 .

Notice:

1. Each composition is one of the original 6 symmetries.

(**Closure**: If A and B are in D_3 , then so is AB .)

2. R_0 acts as an **identity**: $R_0 \cdot A = A \cdot R_0 = A$

3. Every element has an **inverse**: $V \cdot V = R_0$ and

$$R_{120} \cdot R_{240} = R_{240} \cdot R_{120} = R_0$$

4. The compositions in D_3 are **associative**: $(AB)C = A(BC)$

5. Is the operation **commutative**?

No, this is an example of a **nonabelian** group. If a group has commutativity, it is an **abelian** group.