
Math 333 - Practice Exam 2 with Some Solutions

(Note that the exam will NOT be this long.)

1 Definitions

1. (0 points) Let T : V → W be a transformation. Let A be a square matrix.

(a) Define “T is linear”.

(b) Define the null space of T , null(T ).

(c) Define the image of T , image(T ).

(d) Define “T is one-to-one”.

(e) Define “T is onto”.

(f) Define “T is invertible”.

(g) Define “T is an isomorphism”.

(h) Define rank(T ) and nullity(T ).

(i) Define “A is invertible”.

Solution: See your notes or textbook.
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2 Linear Transformations, Null Spaces, and Images

2. (0 points) Let T : P2(R) → P2(R) be given by T (f(x)) = f(x)− xf ′(x).

(a) Show T is linear.

Solution: Let a ∈ R and f(x), g(x) ∈ P2(R). Then

T (af(x) + g(x)) = [af(x) + g(x)]− x[af(x) + g(x)]′

= af(x) + g(x)− axf ′(x)− xg′(x)

= a[f(x)− xf ′(x)] + [g(x)− xg′(x)]

= aT (f(x)) + T (g(x)).

(b) Find a basis for the image of T .

Solution: We know that a generating set for the image of T is the image of the

standard basis of P2(R). Thus

image(T ) = span({T (1), T (x), T (x2)})

= span({1, x− x, x2 − 2x2})

= span({1,−x2}).

The vectors {1,−x2} are clearly linearly independent, so it will also be a basis.

(c) Is T one-to-one? Is T onto? Justify your answer.

Solution: Since rank(T ) = 2 and dim(P2(R)) = 3, T is clearly not onto. Fur-

thermore, the Dimension Theorem says the nullity(T ) = 1, so T is not one-to-one

either.
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3. (0 points) Let T : R3 → R3 be the linear transformation defined by

T (x, y, z) = (x + y, x− z, 2x + 3y + z) .

(a) Show T is linear.

(b) Find a basis for null(T ).

(c) Find a basis for image(T ).

(d) State the Dimension Theorem and verify that T satisfies it.

(e) Is T one-to-one? Onto? Explain.

4. (0 points) Let V and W be finite-dimensional vector spaces and T : V → W be

linear.

(a) Prove that if dim(V ) < dim(W ), then T cannot be onto.

Solution: Suppose dim(V ) < dim(W ), and assume (by means of contradiction) that

T is onto. Then image(T ) = W , and thus rank(T ) = dim(W ). By the dimensions

theorem, we know

dim(V ) = rank(T ) + nullity(T )

= dim(W ) + nullity(T )

Since dim(V ) < dim(W ), this implies nullity(T ) = dim(V ) − dim(W ) < 0, which is

a contradiction since nullity can not be negative. Thus T is NOT onto.

(b) Prove that if dim(V ) > dim(W ), then T cannot be one-to-one.

Solution: Similar argument to (a). See if you can get it.
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5. (0 points) Let T : V −→ W be a linear transformation. Prove the following

theorems.

(a) Theorem 2.1: The sets null(T ) and image(T ) are subspaces of V and W , respec-

tively.

(b) Theorem 2.2: Let β be a basis of V . Then the set {T (β)} is a generating set for

image(T ).

(c) Theorem 2.4: T is one-to-one if and only if null(T ) = {0}.

Solution: See your notes or textbook.

3 Matrix Representations and Change of Basis

6. (0 points) Consider the vector space V = P1(R).

(a) Explain why you know that the set β = {1 + x, 1− 2x} is a basis of V .

Solution: Since neither vector is a multiple of the other, β is linearly independent.

Since the dimension of V is 2, β is a basis.

(b) Determine [p(x)]β, where p(x) = 2x− 3 ∈ V .

Solution: Notice that p(x) = 2x− 3 = (−4/3)(1 + x) + (−5/3)(1− 2x). Therefore

[p(x)]β =

(
−4/3

−5/3

)
.

7. (0 points) Let T : P2(R) −→ R2 be given by T (f(x)) = (f(0), f ′(1)).

(a) Show that T is linear.

Solution: Let f(x), g(x) ∈ P2(R) and c ∈ R. Then

T (cf(x) + g(x)) = (cf(0) + g(0), cf ′(1) + g′(1))

= c(f(0), f ′(1)) + (g(0), g′(1))

= cT (f(x)) + T (g(x)).
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(b) Determine the matrix of T with respect to the standard bases of P2(R) and R2.

Solution: First we recall that the standard basis of P2(R) is β = {1, x, x2} and that

the standard basis of R2 is γ = {(1, 0), (0, 1)}. Now we look at the image of each

element of the basis β under T .

T (1) = (1, 0), T (x) = (0, 1), and T (x2) = (0, 2).

Since we are using the standard basis of R2 the columns of our matrix are the vectors

we have just written. So our matrix is

[T ]γβ =

(
1 0 0

0 1 2

)
.

8. (0 points) Let β and γ be the following standard ordered bases of M2×2(R) and

P2(R), respectively:

β =

{(
1 0

0 0

)
,

(
0 1

0 0

)
,

(
0 0

1 0

)
,

(
0 0

0 1

)}
and γ = {1, x, x2}.

Compute [T ]βγ if we define the linear transformation T : P2(R) −→ M2×2(R) by

T (f(x)) =

(
f ′(0) 2f(1)

0 f ′′(3)

)
.

Solution: First we see that T (1) =

(
0 2

0 0

)
. So the first column of [T ]βγ is the coordi-

nate vector [T (1)]β = (0, 2, 0, 0). Next T (x) =

(
1 2

0 0

)
. So the second column of [T ]βγ

is the coordinate vector [T (x)]β = (1, 2, 0, 0). Finally T (x2) =

(
0 2

0 2

)
. So the third

column of [T ]βγ is the coordinate vector [T (x2)]β = (0, 2, 0, 2). So in total we get

[T ]βγ =


0 1 0

2 2 2

0 0 0

0 0 2


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9. (0 points) Let V , W , and Z be vector spaces, and let T : V → W and U : W → Z

be linear transformations.

(a) Prove that if U ◦ T is one-to-one, then T is one-to-one.

Solution: Suppose U ◦ T is one-to-one. Then null(U ◦ T ) = {0}. What is null(T )?

Suppose x ∈ null(T ), then T (x) = 0 and (U ◦ T )(x) = U(T (x)) = U(0) = 0. So x

is in null(U ◦ T ) also. But 0 is the only thing in null(U ◦ T ), so x = 0, and we have

shown that null(T ) = {0}. Therefore T is one-to-one.

(b) Prove that if U ◦ T is onto, then U is onto.

Solution: Similar argument to (a). See if you can get it.

(c) Prove that if U and T are one-to-one and onto, then U ◦ T is also

Solution: Similar argument to (a). See if you can get it.

10. (0 points) Let T : R3 → R2 be the linear transformation defined by

T (x, y, z) = (x + y + z, x + 3y + 5z)

Let β and γ be the standard bases for R3 and R2 respectively. Also consider another

basis α = {(1, 1, 1), (2, 3, 4), (3, 4, 6)} for R3.

(a) Compute the matrix representation [T ]γβ.

(b) Compute the matrix representation [T ]γα.

(c) Compute Q the change of coordinate matrix from β to α.

(d) Check that [T ]γα ·Q = [T ]γβ.

(e) Let x = (1, 5, 7). What is [x]β? Use this, together with Q, to find [x]α.
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Solution:

(a) Plugging basis β into T and writing as a linear combination of the elements of γ, we

get [T ]γβ =

(
1 1 1

1 3 5

)
.

(b) Plugging basis α into T and writing as a linear combination of the elements of γ, we

get [T ]γα =

(
3 9 13

9 31 45

)
.

(c) To get the change of basis matrix, we must find the coordinate vectors of the elements

of β with respect to α:

[(1, 0, 0)]α =

 2

−2

1

, [(0, 1, 0)]α =

 0

3

−2

, and [(0, 0, 1)]α =

 −1

−1

1

.

Therefore the change of basis matrix is Q =

 2 0 −1

−2 3 −1

1 −2 1

 .

(d) [T ]γα ·Q =

(
3 9 13

9 31 45

) 2 0 −1

−2 3 −1

1 −2 1

 =

(
1 1 1

1 3 5

)
= [T ]γβ.

(e) x = (1, 5, 7) =⇒ [x]β =

 1

5

7



=⇒ [x]α = Q · [x]β =

 2 0 −1

−2 3 −1

1 −2 1


 1

5

7

 =

 −5

6

−2


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