
Math 333 - Practice Final Exam with Some Solutions

(Note that the exam will NOT be this long.)

1 Definitions

1. (0 points) Let A be an m × n matrix and b ∈ Rm. Let T : V −→ V be a linear

transformation on a vector space V .

(a) Define “Ax = b is consistent”.

(b) Define “Ax = b is homogeneous”.

(c) If m = n, then define “A is diagonalizable”.

(d) Define “T is diagonalizable”.

(e) If m = n, then define “v is an eigenvector of A with eigenvalue λ.”

(f) Define eigenvalue and eigenvector of T .

(g) Define the eigenspace of A associated to eigenvalue λ.

2 Inverses

2. (0 points) Consider the matrix A =

1 1 1

1 0 1

0 1 1

 .

(a) Find the inverse of A (using the Gaussian elimination method).

Solution: A−1 =

 1 0 −1

1 −1 0

−1 1 1



(b) Show that your matrix is, in fact, the inverse of A.
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Solution: AA−1 =

1 1 1

1 0 1

0 1 1


 1 0 −1

1 −1 0

−1 1 1

 =

1 0 0

0 1 0

0 0 1

 and

A−1A =

 1 0 −1

1 −1 0

−1 1 1


1 1 1

1 0 1

0 1 1

 =

1 0 0

0 1 0

0 0 1

.

3. (0 points) Derive the formula for the inverse of a 2 × 2 matrix. That is, what is

A−1 if A =

(
a b

c d

)
? (Don’t just state the formula.)

Solution: Hint: The definition of inverse says A−1 is also a 2 × 2 matrix, say A−1 =(
x y

z w

)
, such that AA−1 = I. Multiply A and A−1, set it equal to I, and solve for x, y,

z, and w in terms of a, b, c, and d.

4. (0 points) Consider the matrix A =

 1 1 3

−1 0 1

2 1 −1

 .

(a) Find the inverse of A.

(b) Suppose A is the change of basis matrix from the standard ordered basis α =

{e1, e2, e3} of R3 to some other ordered basis β = {b1, b2, b3} of R3. Then what

is the ordered basis β?

Solution: (a) A−1 =

 1/3 −4/3 −1/3

−1/3 7/3 4/3

1/3 −1/3 −1/3

 .

(b) Suppose β = {b1, b2, b3} and α = {e1, e2, e3}. Since A is the change of basis matrix

from α to β, then A[bi]α = [bi]β. Since [bi]β = ei and [bi]α = bi, we get Abi = ei, or

equivalently, A−1ei = bi. So the ith vector in β is the ith column of A−1. Therefore,

β =


 1/3

−1/3

1/3

 ,

 −4/3

7/3

−1/3

 ,

 −1/3

4/3

−1/3


 .
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3 Systems of Linear Equations

5. (0 points) Consider the following system of linear equations.

x1 + 2x2 − x3 + x4 = 2

2x1 + x2 + x3 − x4 = 3

x1 + 2x2 − 3x3 + 2x4 = 2

(a) Rewrite the system as a matrix equation Ax = b.

(b) Solve the system using elementary row operations.

(c) Find the column space of A and null(A) by specifying a basis for each.

(d) Determine rank(A) and nullity(A).

Solution:

(a)

 1 2 −1 1

2 1 1 −1

1 2 −3 2




x1

x2

x3

x4

 =

 2

3

2


(b) Row reducing the augmented matrix gives

 1 2 −1 1

2 1 1 −1

1 2 −3 2

∣∣∣∣∣
2

3

2

 99K

 1 0 0 −1/2

0 1 0 1/2

0 0 1 −1/2

∣∣∣∣∣
4/3

1/3

0

 .

Back-solving tells us the solution set is




4/3

1/3

0

0

+ t


1/2

−1/2

1/2

1


.

(c) The basis for the column space of A is the set of linearly independent columns of A.

Since the reduced row echelon form of A is rref(A) =

 1 0 0 −1/2

0 1 0 1/2

0 0 1 −1/2

, we see

that the first three columns all have pivots and the corresponding columns of A,
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
 1

2

1

 ,

 2

1

2

 ,

 −1

1

−3


 ,

form the basis of the column space. The nullspace of A has basis




1/2

−1/2

1/2

1


.

(d) rank(A) = dimension of column space = 3 and nullity(A) = dimension of null(A) = 1.

6. (0 points) Consider the following inhomogeneous system of linear equations.

x + y + z + w = 1

x + y = 0

x + w = 0

(a) Write the coefficient matrix A for this system.

(b) Find the solution space to the associated homogeneous system.

(c) By simple inspection, find just one solution to the given inhomogeneous system.

(d) Find all solutions to the given inhomogeneous system.

7. (0 points) Consider the matrix A =

(
1 1

−2 h

)
and vector b =

(
k

1

)
. Find all

possible values of h and k so that the matrix equation Ax = b has:

(a) no solution.

(b) exactly one solution.

(c) infinitely many solutions.

Solution: For each case we need to look at the augmented matrix (A|b) =

(
1 1 k

−2 h 1

)
.

Performing one row operation we arrive at the new augmented matrix
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(B|c) =

(
1 1 k

0 h + 2 1 + 2k

)
,

and the system Ax = b is equivalent to Bx = c.

(a) Bx = c has no solutions if and only if rank(B) < rank(B|c). This is when the second

column does not have a pivot,but the augmented column does. This occurs if and

only if h = −2 and k 6= −1/2.

(b) Bx = c has exactly one solution if and only if B is invertible which occurs if and only

if rank(B) = 2 if and only if the first and second columns have pivots if and only if

h 6= −2.

(c) Bx = c has infinitely many solutions in the remaining cases and so if and only if

h = −2 and k = −1/2.

8. (0 points) Suppose A is an m× n matrix with rank(A) = 0. Prove A = O.

Solution: The fact that rank(A) = 0 implies that there are NO pivot columns. So

there are no pivots, which means NO row has a first non-zero entry. Thus each row

consists entirely of zeros. Therefore A = O.

4 Determinants

9. (0 points) Find the determinants of the following matrices in two ways:

• By using cofactor expansion along a row or column.

• By invoking some basic facts about determinants. Please state which general facts

about determinants you are invoking. (In other words, you must explain what you

are doing.)

(a) A =

 0 0 1

0 1 0

1 0 0


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(b) B =

 3 2 3

1 5 1

4 6 4



(c) C =


3 4 1 0

0 1 3 2

0 0 2 3

3 4 1 5


Solution: (a) Switching rows one and three give you I3. So det(A) = − det(I3) = −1.

Using cofactor expansion along the first row we get

det(A) = 0− 0 + (1) det

(
0 1

1 0

)
= −1.

(b) Notice that the first and third columns are identical. So det(B) = 0. Also do cofactor

expansion.

(c) Subtracting row one from row four (which does not change the determinant) yields an

upper triangular matrix with diagonal entries 3, 1, 2, and 5. So det(C) = 3 · 1 · 2 · 5 = 30.

Cofactor expansion will lead to the same answer.

10. (0 points) Using row reduction show that:

det

 1 1 1

a b c

a2 b2 c2

 = (b− a)(c− a)(c− b)

Solution: Performing only type 3 row operations (adding a multiple of one row to

another row) does not change the determinant and reduces the matrix to 1 1 1

a b c

a2 b2 c2

 99K

1 1 1

0 b− a c− a

0 b2 − a2 c2 − a2

 99K

1 1 1

0 b− a c− a

0 0 (c− a)(c− b)

 .

The determinant is the product of the diagonal entries (b− a)(c− a)(c− b).
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5 Diagonalization and Eigenspaces

11. (0 points) Consider A ∈ Mn×n(F ). Prove that the vector v ∈ Rn (v 6= ~0) is an

eigenvector of A corresponding to eigenvalue λ if and only if v ∈ null (A− λI).

Solution: The vector v is an eigenvector of A corresponding to eigenvalue λ

⇐⇒ Av = λv

⇐⇒ Av − λv = ~0

⇐⇒ (A− λI)v = ~0

⇐⇒ v ∈ null (A− λI)

12. (0 points) Find all eigenvalues and the corresponding eigenspaces for the following

matrices. For each eigenvalue, give the algebraic multiplicity and geometric multiplicity.

(a)

(
1 0

2 1

)

(b)

(
1 2

2 1

)

Solution: (a) p(λ) = det(A−λI) = det

(
1− λ 0

2 1− λ

)
= (1−λ)(1−λ) = λ2−2λ+1.

So the eigenvalues are repeated with λ = 1. The eigenspace is

Eλ = null(A− I) = null

(
0 0

2 0

)
=

{
t

(
0

1

)}
The eigenvalue λ = 1 has algebraic multiplicity 2 and geometric multiplicity 1.

(b) p(λ) = det(A − λI) = det

(
1− λ 2

2 1− λ

)
= (1 − λ)(1 − λ) − 4 = λ2 − 2λ − 3 =

(λ− 3)(λ + 1). So the eigenvalues are λ1 = 3 and λ2 = −1. The eigenspace for λ1 is

Eλ1 = null(A− 3I) = null

(
−2 2

2 −2

)
= null

(
−2 2

0 0

)
=

{
t

(
1

1

)}
.

The eigenspace for λ2 is

Eλ2 = null(A + I) = null

(
2 2

2 2

)
= null

(
2 2

0 0

)
=

{
t

(
1

−1

)}
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The eigenvalues λ1 = 3 and λ2 = −1 both have algebraic multiplicity 1 and geometric

multiplicity 1.

13. (0 points) Consider the matrix A =

 1 0 0

−1 1 1

1 0 0

.

(a) Find the characteristic polynomial of A.

(b) A is diagonalizable. That is, [LA]β is a diagonal matrix for some basis β of R3. Find

such a basis β.

(c) For the basis β you found above, what is [LA]β?

(d) We also know that A is similar to a diagonal matrix D. Find the matrices D and Q

such that D = Q−1AQ.

Solution: The characteristic polynomial is

p(λ) = det

 1− λ 0 0

−1 1− λ 1

1 0 −λ

 = −λ(1− λ)2.

Thus the eigenvalues of A are 0 and 1. To get the basis β we must determine the

corresponding eigenspaces:

Row reducing A− 0I =

 1 0 0

−1 1 1

1 0 0

 leads to

 1 0 0

0 1 1

0 0 0

. Thus the corresponding

eigenspace is 1-dimensional with basis


 0

1

−1


.

Row reducing A−1I =

 0 0 0

−1 0 1

1 0 −1

 leads to

 1 0 −1

0 0 0

0 0 0

. Thus the correspond-

ing eigenspace is 2-dimensional with basis


 0

1

0

 ,

 1

0

1


.
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Therefore the basis β =


 0

1

−1

 ,

 0

1

0

 ,

 1

0

1


 makes [LA]β a diagonal matrix,

and

D = [LA]β =

 0 0 0

0 1 0

0 0 1

 .

Furthermore, Q =

 0 0 1

1 1 0

−1 0 1

 .

14. (0 points) Let A ∈ Mn×n(R) have the property that A2 = 3A. Prove that the only

numbers that could possibly be eigenvalues of A are 0 and 3. (Hint: Suppose that λ is

an eigenvalue corresponding to eigenvector v and consider A2v.)

Solution: Suppose that λ is an eigenvalue corresponding to eigenvector v. Then Av =

λv. Notice that

A2v = A(Av) = A(λv) = λ(Av) = λ2v.

However, since A2 = 3A, we have

λ2v = A2v = 3Av = 3(λv).

Thus λ2 = 3λ, and therefore λ = 0 or λ = 3. Clearly these are the only choices for

eigenvalues of A.
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