

Algebraic Topology - Homework 4

Problem 1. Suppose α is any loop based at a point x_0 in a space X . Draw several stages of a homotopy to illustrate how $\alpha \cdot \alpha^{-1}$ is homotopic to the constant loop ε .

Problem 2. Let G and H be groups. Suppose $h : G \rightarrow H$ is a homomorphism. Let e denote the identity of G .

- (a) Show that $h(e)$ is the identity element of H .
- (b) For any $x \in G$, show that $h(x^{-1}) = (h(x))^{-1}$.
- (c) Show h is injective if and only if $\ker(h) = \{e\}$.

Problem 3. Let x_0 and x_1 be points in a topological space X , and let γ be a path from x_1 to x_0 . Show that the isomorphism $h : \pi_1(X, x_0) \rightarrow \pi_1(X, x_1)$, as defined in class with $h(\langle \alpha \rangle) = \langle \gamma \alpha \gamma^{-1} \rangle$, is in fact an isomorphism. To do this, just show that h is a homomorphism and then find an inverse of h to conclude that h is bijective.

Problem 4. Let X and Y be topological spaces, and let x_0 be a point in X . Let $f : X \rightarrow Y$ be a continuous function, and let α and β be loops in X based at x_0 .

- (a) Show that $f \circ \alpha$ is a loop in Y .
- (b) Suppose α and β are homotopic in X . Use a homotopy between α and β to construct a homotopy between $f \circ \alpha$ and $f \circ \beta$ in Y . Conclude that $f_* : \pi_1(X, x_0) \rightarrow \pi_1(Y, f(x_0))$, defined by $f_*(\langle \alpha \rangle) = \langle f \circ \alpha \rangle$, is well-defined.
- (c) Show that f_* is a homomorphism.

Problem 5. Suppose that for any topological space X we have an associated group $H(X)$. Suppose that for any continuous function $f : X \rightarrow Y$ we are able to get an induced homomorphism $f_* : H(X) \rightarrow H(Y)$ that satisfies the two properties: (1) $(id_X)_* = id_{H(X)}$ and (2) if $f : X \rightarrow Y$ and $g : Y \rightarrow Z$, then $(g \circ f)_* = g_* \circ f_*$.

Consider the circle S^1 as the boundary of the disk D^2 . Assume that $H(D^2) \cong \{0\}$ and $H(S^1) \cong \mathbb{Z}$.

- (a) Suppose there is a continuous function $r : D^2 \rightarrow S^1$ with $r(x) = x$ for all $x \in S^1$. Describe the homomorphism r_* . (Since all other points on D^2 are continuously mapped to somewhere in S^1 , this map r retracts the entire disk onto its boundary. It is called a **retract** of D^2 onto S^1 .)
- (b) Consider the inclusion function $i : S^1 \rightarrow D^2$ with $i(x) = x$ for all $x \in S^1$. Describe the homomorphism i_* .
- (c) What is $r \circ i$? What is $(r \circ i)_*$?
- (d) Have you found a contradiction? If so, conclude that, if such a group H could be defined, then no continuous function can retract a disk onto its boundary by leaving the boundary points fixed. If not, consider your life's worth and start the problem over again.
- (e) Does such a group H exist?
- (f) How does the fact that there does not exist a retract of D^2 to S^1 that leaves S^1 fixed relate to deformation retractions?

Problem 6. Let B^n be the n -ball.

- (a) Determine $\pi_1(B^n)$ for $n \geq 2$. Hint: See proof for $\pi_1(B^2)$ since B^2 is a disk.
- (b) Determine $\pi_1(S^n)$ for $n \geq 2$. Hint: See proof for $\pi_1(S^2)$.

Problem 7. Determine the fundamental group of the annulus, Möbius strip, and the solid torus.