

Algebraic Topology - Homework 8

Problem 1. Consider the oriented 3-simplex $\sigma^3 = \langle v_0 v_2 v_1 v_3 \rangle$.

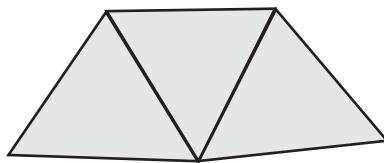
- (a) Without finding them or counting them, how many total orderings of these vertices are equivalent to this orientation? Explain.
- (b) What are the induced orientations on all of the faces of σ^3 , i.e. the n -simplexes with $n = 0, 1, 2$?
- (c) Given the oriented n -simplex $\sigma^n = \langle v_0 v_1 \dots v_n \rangle$, how many total orderings of these vertices are equivalent to this orientation?

Problem 2. Let σ be the 2-simplex with orientation given by $\langle v_0 v_1 v_2 \rangle$.

- (a) Draw σ with the orientation on each face induced by the given orientation.
- (b) Compute $\partial_2(\sigma)$.
- (c) Give the other two equivalent orientations of σ and compute ∂_2 of them. Do your answers agree? Why is this important?
- (d) Compute $\partial_1(\partial_2(\sigma))$.

Problem 3. Let K be the simplicial complex pictured below.

- (a) Pick an orientation on only one of the 2-simplexes of K . Using that choice, give an induced orientation on all remaining simplexes so that the orientations are compatible. (This is also sometimes called a **coherent orientation**.) As you obtained your induced orientation, did you get to make any choices or was there only one option of orientation for any given simplex?
- (b) Using the orientation from (a), compute the homology groups $H_p(K)$ for all $p \geq 0$.

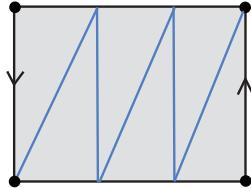


Problem 4. (a) Give a triangulation of an annulus.

- (b) Pick an orientation on only one of the 2-simplexes, and find a coherent orientation for the remaining simplexes in the triangulation from (a).
- (c) Compute all of the homology groups of the annulus using the orientation from (b).

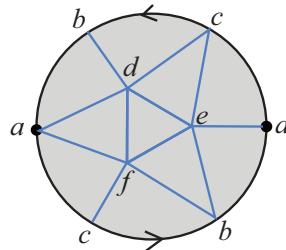
Problem 5. Below is a triangulation of the Möbius strip M . To make your life easier, let the arrows that indicate the gluing of the sides also be the orientation on that 1-simplex.

- (a) Show that it is not possible to find a coherent orientation. This means that the Möbius strip is **nonorientable**.
- (b) Pick an orientation for each simplex of this triangulation. (Of course, it will not be a *coherent* orientation.) Use this orientation to compute the homology groups $H_p(M)$ for all $p \geq 0$.



Problem 6. Below is a triangulation of the projective plane P . (The letters just indicate the vertices.)

- (a) Use the triangulation to determine if P is orientable or nonorientable.
- (b) Pick an orientation for each simplex of this triangulation. (It may or may not be a *coherent* orientation.) Use this orientation to compute the homology groups $H_p(P)$ for all $p \geq 0$.



Problem 7. Below on the left is an oriented triangulation of the Klein bottle K . The letters indicate the vertices, and the orientations are indicated in red. On the right is a Δ -complex of the Klein bottle, with edges labeled with x , y , and z .

- (a) Is the orientation on the triangulation coherent?
- (b) Using either the simplicial complex on the left or the Δ -complex on the right, compute the homology groups $H_p(K)$ for all $p \geq 0$.

