Table of Knot Mosaics | |||||||
Mosaic number 7  | 
    |||||||
Crossing number:  | 
          10 or less | 
          11  | 
          12  | 
          13  | 
          14  | 
          15  | 
          16  | 
    
(Click mosaic for larger view.)  | |||||||
When listing prime knots with crossing number 10 or less, we will use the Alexander-Briggs notation, matching Rolfsen’s table of knots. [Rolfsen]  | |||||||
  | 
           : m = 5, t = 17 | 
           : m = 6, t = 22  : m = 6, t = 24 | 
           : m = 6, t = 27  : m = 6, tm = 32* | 
           : m = 7, t = 27  : m = 7, t = 29 | 
           : m = 7, t = 31 | 
         ||
| * Note: Every prime knot that requires 32 non-blank tiles to fit on a 6-mosaic (i.e. tm = 32) has tile number less than 32, and this tile number can only be achieved on a 7-mosaic. | |||||||
![]()  | 
         ![]()  | 
         ||||||
![]() ![]()  | 
         ![]() ![]()  | 
         ![]() ![]()  | 
         ![]() ![]()  | 
         ![]() ![]()  | 
    |||
![]()  
                  | 
          ![]()  
                  | 
    ||||||
![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
    ||||
![]() ![]()  | 
          ![]()    | 
          ![]() ![]()  | 
          ![]() ![]()  | 
          ||||
![]() ![]()  | 
          ![]() ![]()  | 
          ![]()    | 
          |||||
![]() ![]()  | 
          ![]() ![]()  | 
          ||||||
![]() ![]()  | 
          |||||||
![]() ![]()  | 
          ![]() ![]()  | 
          ![]()    | 
          ![]()    | 
    ||||
![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
    |||
![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
          |
![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
          ||||
![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
    ||||
![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
          ||||
![]()    | 
          ![]()    | 
          ![]()    | 
    |||||
![]()    | 
          |||||||
![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
    ||
![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
          ||||
![]()    | 
          ![]()    | 
          ![]()    | 
          ![]()    | 
          ||||
![]()    | 
          ![]()    | 
          ![]()    | 
    |||||
![]()    | 
          ![]()    | 
          ||||||
![]()    | 
          |||||||
![]()    | 
          |||||||
![]()    | 
    |||||||
![]()    | 
          ![]()    | 
          ![]()    | 
          |||||
![]()    | 
          ![]()    | 
          ||||||
![]()    | 
          ![]()    | 
    ||||||
| *These knots are listed as 10162‑10166 in Rolfsen due to the Perko Pair. | |||||||
Heap, A.; Knowles, D. Tile Number and Space-Efficient Knot Mosaics; J. Knot Theory Ramif. 2018, 27.
Heap, A.; Knowles, D. Space-Efficient Knot Mosaics for Prime Knots with Mosaic Number 6; Involve 2019, 12.
Heap, A.; LaCourt, N. Space-Efficient Prime Knot 7-Mosaics; Symmetry 2020, 12.
Heap, A.; Baldwin, D.; Canning, J.; Vinal, G. Knot Mosaics For Prime Knots with Crossing Number 10 or Less; in preparation.
Kuriya, T.; Shehab, O. The Lomonaco–Kauffman Conjecture; J. Knot Theory Ramif. 2014, 23.
Lee, H.; Ludwig, L.; Paat, J.; Peiffer, A. Knot Mosaic Tabulation; Involve 2018, 11.
Lomonaco, S.J.; Kauffman, L.H. Quantum Knots and Mosaics; Quantum Inf. Process. 2008, 7, 85–115.
Ludwig, L.; Evans, E. An Infinite Family of Knots Whose Mosaic Number Is Realized in Non-reduce Projections; J. Knot Theory Ramif. 2013, 22.
Rolfsen, D. Knots and Links; Publish or Perish Press: Berkeley, CA, USA, 1976.