213 Problem Set 4 Solutions

This is your last problem set before the exam (that should be obvious now). There were to be a total of ten questions here, five from each section. We returned to section 2.3. Make sure that the problems you chose were different OR work in 4.7. I will be doing all, because it's just better for all of you that way. Probably the 4.7 questions are more important for the exam than the ones here from 2.3.

- §2.3 47 For questions like this, and the next one, my way is to first mark the given information on the graph, and the connect the pieces. I could make fancy computer graphs, but I think for this kind of question, it's probably better to see hand-drawn graphs with the bits, like I would expect you would do. Here are the bits from the problem:
- (a) $\lim_{x\to 2} f(x) = 1$ so we need to approach y=1 from both sides at x=2. We could have a hole or just thru the point (2,1). I drew the first.
 - (b) $\lim_{x \to 4^-} f(x) = 3$ from the left side at x = 4 the value moves to y = 3.
 - (c) $\lim_{x \to \infty} f(x) = 6$ and from the right side at x = 4 the value moves to y = 6.
 - (d) and from x = 4 is not defined, so there is no value for x = 4. I have labeled the bits on my graph.

(next question on the next page)

§2.3 49 Same as above. Here are the bits:

- (a) $\lim_{x \to -\infty} f(x) = 2$ so on the left of the graph go to y = 2.
- (b) $\lim_{x \to 0} f(x) = -\infty$ so as we approach 3 from the left, go down off the bottom.
- (c) $\lim_{x\to 2^+} f(x) = \infty$ and as we approach 3 from the right, go up off the top.
- (d) $\lim_{x\to\infty} f(x) = 2$ like (a), this says that on the right of the graph go to y=2.
- (e) $f(0) = -\frac{1}{3}$ This one is just plot the point $(0, -\frac{1}{3})$.

As an unimportant detail, the function they might have in mind is $f(x) = 2 + \frac{7}{x-3}$, which satisfies all the given conditions. If you want you can make your own graph of that.

§2.5 8 Classify discontinuities for $f(t) = \frac{t+3}{t^2+5t+6}$. A good first move for all purposes is to factor the denominator. Yes, factoring is something we're doing a lot of, probably most of our algebra work so far it seems. $f(t) = \frac{t+3}{t^2+5t+6} = \frac{t+3}{(t+3)(t+2)}$. The only potential problems are going to come from the denominator equalling zero. f(t) is undefined at both t=-3 and t=-2. So there's no hope of it being continuous at either of those points. Everywhere else is continuous. I would compute the value and the two side limits, but there are no values, so we only have the two side limits. In fact, the two sides for t=-3 are the same. Here's the work for that: first notice that $f(-3) = \frac{0}{0}$, so $\lim_{t\to -3} f(t) = \lim_{t\to -3} \frac{t+3}{(t^2+5t+6)} = \lim_{t\to -3} \frac{t+3}{(t+3)(t+2)} = \lim_{t\to -3} \frac{1}{t+2} = -1$. Because both sides are the same, the whole limit exists. This discontinuity is removable. We could include f(-3) = -1 and it would be continuous.

Now, what about x=-2? First notice that $f(-2)=\frac{1}{0}$. So now we only care about signs. $\lim_{t\to -2^-} f(t)=\lim_{t\to -2^-} \frac{t+3}{t^2+5t+6}=\lim_{t\to -2^-} \frac{t+3}{(t+3)(t+2)}$ for values near and less than -2 the numerator is positive, the first part of the denominator is also positive for the same reason, but the second is negative. We have $\frac{+}{+-}$. This is negative, so we have $\lim_{t\to -2^-} f(t)=-\infty$.

The other side is about the same, I'll just change a few bits: $\lim_{t\to -2^+} f(t) = \lim_{t\to -2^+} \frac{t+3}{t^2+5t+6} = \lim_{t\to -2^+} \frac{t+3}{(t+3)(t+2)}$ for values near and greater than -2 the numerator is positive, the first part of the denominator is also positive for the same reason, and the second is still positive this time. We have $\frac{t}{t+1}$. By the old saying "three positives make a positive" this is positive, so we have $\lim_{t\to -2^-} f(t) = \infty$. Clearly from the beginning, with all the infinite work, this is an infinite discontinuity; there's no fixing it.

§2.5 18 We want to make $f(x) = \begin{cases} e^{kx} & 0 \le x < 4 \\ x+3 & 4 \le x \le 8 \end{cases}$ continuous. The "given interval" part is a bit odd. The interval here is [0,8]. There's no problem at the endpoints, despite it not being defined from the other side. Neither one gives a break in the graph. The only possible problem is at x=4. We compute our three values: f(4) = 4 + 3 = 7 using the bottom rule, $\lim_{x \to 4^-} f(x) = \lim_{x \to 4^-} e^{kx} = e^{k4}$ using the top rule, and $\lim_{x \to 4^+} f(x) = \lim_{x \to 4^+} x + 3 = 7$ using the bottom rule. We want these three to be equal. We're glad that two already are. We want $7 = e^{k4} = 7$. So, we solve $7 = e^{k4}$ for k. We start by taking the logarithm of both sides (that's how we get variables out of exponents). I'm going to use the natural logarithm. I will show it for any other logarithm also. $\ln 7 = \ln(e^{k4}) = k4$, so $k = \frac{\ln 7}{4}$. If you use any other logarithm it looks similar, as follows: we solve $7 = e^{k4}$ for k. We start by taking the logarithm of both sides: $\log 7 = \log(e^{k4}) = k4(\log e)$, so $k = \frac{\log 7}{4\log e}$. These are both the same number. Approximating it is not very important to me, but if you care, it is about 0.486478.

§4.7 12 $\lim_{x\to\infty} \frac{2x-5}{4x}$. Compared to twice infinity, the -5 doesn't matter much so $\lim_{x\to\infty} \frac{2x-5}{4x} = \lim_{x\to\infty} \frac{2x}{4x} = \lim_{x\to\infty} \frac{2x}{4x} = \lim_{x\to\infty} \frac{2}{4} = \frac{1}{2}$. That wasn't bad.

§4.7 14 $\lim_{x\to-\infty} \frac{3x^3-2x}{x^2+2x+8}$. The $3x^3$ term matters most in the numerator. The x^2 term matters most in the denominator. The rest are insignificant as we go back toward negative infinity, so $\lim_{x\to-\infty}\frac{3x^3-2x}{x^2+2x+8}=$ $\lim_{x\to -\infty}\frac{3x^3}{x^2}=\lim_{x\to -\infty}3x=-3\infty=-\infty.$ Thankfully the §2.3 and §4.7 questions were both quite short. Please look at the ones you didn't do.