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233 Problem Set 2 Solutions

§2.2.7. a. SA =

1 0 0
0 7 0
0 0 1

 1 2 −1
2 0 2
−3 2 3

 =

 1 2 −1
14 0 14
−3 2 3

, as expected. If we wanted to multiply the

third row by −3 instead, we would use S =

1 0 0
0 1 0
0 0 −3

.
b. PA =

0 1 0
1 0 0
0 0 1

 1 2 −1
2 0 2
−3 2 3

 =

 2 0 2
1 2 −1
−3 2 3

, as expected. If we wanted to switch the first and

third instead, we would use P =

0 0 1
0 1 0
1 0 0

.
c. L1A =

 1 0 0
−2 1 0
0 0 1

 1 2 −1
2 0 2
−3 2 3

 =

 1 2 −1
0 −4 4
−3 2 3

, as expected. If we wanted to multiply the

first row by 3 and add to thie third instead, we would use L2 =

1 0 0
0 1 0
3 0 1

.
Notice in all three cases, the matrix that does that action is the result of doing that action on the identity

matrix. Think about this. Remember multiplying by the identity on the right it doesn’t change the matrix
on the left, so the matrix on the left needs to be the matrix that is the effect of the operation on the identity.

d. The nice thing is that we already got a start on this in c., and then we even had a hint for step two.
And, there are only three steps, so ... that’s not bad.

To review, and pull together, we started with

A =

 1 2 −1
2 0 2
−3 2 3



. The first step was taken above, multiplying by L1 =

 1 0 0
−2 1 0
0 0 1

. That changes to the matrix, as stated

above to  1 2 −1
0 −4 4
−3 2 3


We were told the next step uses matrix L2 =

1 0 0
0 1 0
3 0 1

 which multiplies the first row by 3 and adds to

the last row to get 1 2 −1
0 −4 4
0 8 0


And now we only have one step left. This is to multiply the second row by 2 and add to the last. This uses

matrix L3 =

1 0 0
0 1 0
0 2 1

 And it gives us 1 2 −1
0 −4 4
0 0 8


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And, we’re almost done - finally! That is our matrix U =

1 2 −1
0 −4 4
0 0 8

. To find L, we multiply our left

matrices one by one, on the left to get L = L3L2L1.

So, L =

1 0 0
0 1 0
0 2 1

1 0 0
0 1 0
3 0 1

 1 0 0
−2 1 0
0 0 1

 =

 1 0 0
−2 1 0
−1 2 1

.
We should check LA = U , so we try it with Sage, and ... hooray (although I did notice a mistake by

checking).

§2.2.13. Catching up from 12, A =

[
0.8 0.5
0.2 0.5

]
.

There’s not much to do here, but, yes, [
0.8 0.5
0.2 0.5

] [
5
2

]
=

[
5
2

]
And similarly, [

0.8 0.5
0.2 0.5

] [
−1
1

]
=

[
−0.3
0.3

]
= 0.3

[
−1
1

]
b. This is kinda dull, also x2 = Ax1 = A(c1v1 + c2v2). We have two properties of multiplication that we

saw in activity 2.2.3 parts d. and e., A(v +w) = Av + Aw, and A(cv) = cAv. Using the first one we get
A(c1v1 + c2v2) = A(c1v1) + A(c2v2) then using the second (twice) = c1A(v1) + c2A(v2) and now we can
use the results in a. = c1(v1) + c2(0.3)(v2) and we commute the constants to get = c1(v1) + 0.3c2(v2), as
desired.

c. The rest is pretty similar, each time we compute again, we multiply c2 by 0.3, hence we get what is
written. I’m not very concerned about this one.

d. x1 =

[
500
500

]
. Find x1 = c1v1+c2v2. For this we have x1 =

[
5 −1
2 1

]
c. Hence we reduce

[
5 −1 500
2 1 500

]
.

So, we find c1 = 1000
7 , and c2 = 1500

7 .

e. x2 = 1000
7 v1 + 0.3 1500

7 v2 =

[
650
350

]
and x3 = 1000

7 v1 + 0.32 1500
7 v2 =

[
695
305

]
while x4 = 1000

7 v1 + 0.33 1500
7 v2 =

[
708.5
291.5

]
.

f. So, what is this getting close to? That’s unclear, but here’s an idea ... the more we multiply by 0.3,

the smaller that part gets, so this gets closer to just c1v1 which is

[
5000
7

2000
7

]
, which is more cleanly said that 5

7

of the bicycles are at B and 2
7 of the bicycles are at C. And ... now we know.

§2.3 9. a. There is pivot position in every row and every column, that’s convenient.
b. Hence the span of the columns is all of R12.
c. If c is some other vector, the matrix A still reduces the same as before, so there’s some different

solution, but only one.
d. Because there’s only one for any c, there is only one for 0. But we know that A0 = 0. So, that is the

entire solution space.

§2.3.11 a. To analyse the span, we can find the matrix of with the three vectors as columns and reduce.
If it reduces to the identity, any vector is in the span. If it reduces to something with fewer rows, then the
vectors which correspond to basic (not free) variables, can be used to span the span without the others. In

this case,

 1 2 1
0 1 1
−2 0 2

 reduces to

1 0 −1
0 1 1
0 0 0

 we should have seen (I didn’t) that v2 − v1 = v3. So, the
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first two vectors suffice, and the span is the plane spanned by the linear combinations of v1 and v2. Not a
surprise that it doesn’t include all the vectors.

b. Let’s see if Sage will do what is asked for us, I’m not sure how good it is at algebra with variables.

We’re starting with the matrix

 1 2 1 a
0 1 1 b
−2 0 2 c

 Sage is unhappy with this, ok. So, we reduce this matrix

by hand. We can do it. It’s ok. No reason to be lazy, and there’s already a good 1 and 0. And it only
needs to be triangular. It takes only two steps, twice the first row added to the third, and then -4 times

the first row added to the third yields

1 2 1 a
0 1 1 b
0 0 0 c+ 2a− 4b

. So, for the system to be consistent we need

0 = c+ 2a− 4b. So the set of all vectors ⟨a, b, c⟩ such that 0 = c+ 2a− 4b is the span.
c. Geometrically the span would be a vector. But, that’s not exactly the question. There would only

be one basic variable and two free variables, so there would be two rows of zeroes. That would give two
equations with the three variables a, b, and c; the linear system has two equations instead of one. That is
how it changes the system, and that is the question.

§2.4.3. a. Suppose v1 and v2 are linearly dependent (I’m using the definition that they have a non-zero
linear combination equal to the zero vector. This is equivalent to one being a sum of the others, but the
equations are easier to write this way. I won’t mark wrong for using the definition used in the book, it’s just
more difficult to set up in general). Therefore av1 + bv2 = 0 for some a and b, not both zero. We can then
write av1 = −bv2 and divide by either a or −b, picking one that isn’t zero to find one vector as a scalar
multiple of another.

b. If {v1,v2, . . . ,vn} is an independent set of vectors, then the only way that c1v1+c2v2+ · · ·+cnvn = 0
is with all ci = 0. Since there’s no way to make a nonzero linear combination with all n vectors, there is
also no way to make a nonzero linear combination with fewer of them (it would be like using zeroes for the
omitted vectors), hence any nonempty subset is also independent.

c. If {v1,v2, . . . ,vn} is an independent set of vectors comprising the columns of A, and Ax = b is
inconsistent, this is equivalent to making a matrix with columns: v1,v2, . . . ,vn,b. Because the original set
is independent there is a pivot in each column. Because b is inconsistent, if we include it as a column, we
will have a pivot in a row that does not have a pivot for the first vectors, therefore, if we augment the matrix
once more by including 0 we cannot find a nonzero linear combination of the vectors that yields zero, so
{v1,v2, . . . ,vn,b} is also an independent set.

§2.4.7 Ok, this feels not bad. More work for me than you, only because I need to type the matrices.
Away we go.

a. 4 independent vectors in R5: 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0


This is the only possible answer here. They are in R5 so there are 5 rows, we need 4 pivots, and that’s the
only place they can be in reduced form.

b. 4 independent vectors in R4: 
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


This is again the only possible answer here. This is almost identical to the first one, one fewer row since
only four dimensional vectors.

c. R4 is 4-dimensional and cannot be spanned by 3 vectors. This is impossible. I would need 4 pivots in
3 columns.
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d. To do this I would need 5 pivots in three rows. This is also impossible.
e. 5 vectors whose span is R4: R4: 

1 0 0 0 7
0 1 0 0 −1
0 0 1 0 24
0 0 0 1 13

 .

Finally one that has more than one answer although not much. The only variation here is that we are free
to choose anything for the last column. I admit, it would look suspicious to me if the last column were all
zeroes. It’s not wrong, but it’s much more special than it needs to be.

§2.5.5. I hope you like that we’re connecting back to our in-class activities. That feels good to me.

a. 1. T (x) = Ax =

10 20
50 30
30 30

[
x1

x2

]
=

10x1 + 20x2

50x1 + 30x2

30x1 + 30x2

. That’s all of that, but it’s a part of a part.

2. The first row is cakes, so there are 10x1 + 20x2 cakes.
3. Bakery one works for x1 hours and makes 10 cakes per hour, so they make 10x1 cakes. The other

bakery makes 20 cakes/hour and works for x2 hours, so they make 20x2 cakes. And, that’s that.

b. This should remind you of the trucks, and of course when we saw bicycles in §2.2.
1. We want to know about those that end at P. If they begin at P and stay there that happens 0.6 of

the time. If they begin at Q and end up at P, that happens 0.7 of the time. So, x1 bicycles start at P,
of those 0.6x1 return to P. And x2 bicycles start at Q, of those 0.7x2 return to Q. So, altogether there are
0.6x1 + 0.7x2 bicycles at P at the end of the day.

2. Similarly there are 0.4x1 + 0.3x2 at Q.

3. Just combining the two above gives T

([
x1

x2

])
=

[
0.6x1 + 0.7x2

0.4x1 + 0.3x2

]
4. So A =

[
0.6 0.7
0.4 0.3

]
This question should all feel painfully slow, but I hope it clarifies the connection for anyone who was

missing it.

§2.5.7. This also should sound pretty familiar.

a. I hope by now we can just write the columns to get A =

[
20 30 0
15 5 40

]
.

b. Similarly the matrix B =

[
5 6
8 10

]
. (As a tip: I’m looking at the output and seeing that the first row

is electricity, E, and that helps me to keep it straight.)

c. We compute Ax =

[
20 30 0
15 5 40

]3020
10

 =

[
1200
950

]
. That’s the first question. Now we compute By for

the second question to get

[
5 6
8 10

] [
1200
950

]
=

[
11700
19100

]
. To be clear that’s (in the ambiguous ”units”) 11700

units of energy and 19100 units of labour.
d. C = BA, notice in part c. we did A first then B, we always work on the left with function composition.

This gives C =

[
20 30 0
15 5 40

] [
5 6
8 10

]
=

[
190 180 240
310 290 400

]
. These §2.5 questions felt like a break after the

first questions. I hope that’s comforting.

§2.6.3. a. To find the matrix, we want to know the effects on e1, e2, and e3. The effects of each will
give the columns respectively. I’ll do the easy one first T (e1) = e1, it isn’t moving because we’re rotating
around it. T (e2) = e3, as the y direction moves to the z direction. Finally T (e3) = −e2, as z moves to y,

but negative. We can put this together into matrix X =

1 0 0
0 0 −1
0 1 0

. That wasn’t too bad.
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b. Ok, now we do it around y. I’ll do the easy one first T (e2) = e2, it isn’t moving because we’re rotating
around it. T (e3) = e1, as the z direction moves to the x direction. Finally T (e1) = −e3, as x moves to z,

but negative. We can put this together into matrix Y =

 0 0 1
0 1 0
−1 0 0

.
c. One more time, around z. I’ll do the easy one first T (e3) = e3, it isn’t moving because we’re rotating

around it. T (e1) = e2, as the x direction moves to the y direction. Finally T (e2) = −e1, as y moves to x,

but negative. We can put this together into matrix Z =

0 −1 0
1 0 0
0 0 1

.
d. Before I do the answer, I should find the negative around x matrix. It’s like X, but this time

T (e2) = −e3 and T (e3) = e2. So, we have N =

1 0 0
0 0 1
0 −1 0

. So, to find the effect of 90◦ around x, then

90◦ around y, and finally −90◦ around x, we compute NYX =

 0 1 0
−1 0 0
0 0 1

 which you should notice is

very close to Z, but not quite. It’s Z with the signs switched; this is a rotation around the z-axis but −90◦,
alright that’s kinda interesting, but not what I wanted to know.

e. Ok, I was hoping that d. asked for the x then y then z result. The first person to send me that,
correct, with a explanation of the geometric effect I will record +1 for this problem set.

§2.6.7. a. The matrix A =

[
2 0
0 2

]
is pretty simple. It multiplies all vectors by two, and hence doubles

the length of all vectors, scaling them by a factor of two. In general A =

[
r 0
0 r

]
scales the length of the

vectors by r (notice that we assume here that r > 0).

b. Notice by using our view of columns that If R(x) = Ax for A =

[
0 −1
1 0

]
that R

([
1
0

])
=

[
0
1

]
and

R

([
0
1

])
=

[
−1
0

]
, the x-direction goes to y and the y-direction goes to −y. This should all look familiar.

This is our 90◦ rotation, counterclockwise (as all mathematicians hate clocks [apparently]). This is a clue

for the more general A =

[
cos θ − sin θ
sin θ cos θ

]
. Notice if θ = 90◦, then we get the first matrix. That’s a big

clue. Also notice that If R(x) = Ax, then R

([
1
0

])
=

[
cos θ
sin θ

]
and R

([
0
1

])
=

[
− sin θ
cos θ

]
. The first should

look familiar from polar coordinates in calc II. The second is the 90◦ rotation of the first. I hope you can

put these two facts together to see that the matrix A =

[
cos θ − sin θ
sin θ cos θ

]
is the general rotation matrix

counterclockwise thru angle θ.
c. This is simple computation:[

r 0
0 r

] [
cos θ − sin θ
sin θ cos θ

]
=

[
cos θ − sin θ
sin θ cos θ

] [
r 0
0 r

]
=

[
r cos θ −r sin θ
r sin θ r cos θ

]
d. There’s not much to do here.

[
a −b
b a

]
=

[
r cos θ −r sin θ
r sin θ r cos θ

]
by substitution for a and b which equals[

r 0
0 r

] [
cos θ − sin θ
sin θ cos θ

]
by the work in c.

e. Connecting to polar coordinates from Calc II, remember r =
√
a2 + b2 and θ = tan−1(b/a). With

these values

[
a −b
b a

]
is the matrix of rotation by angle θ and scaling by factor r, in either order.

f. S ◦ T is T first then S. This is two successive rotations and two successive scalings. They combine
together to be a scaling of

√
a2 + b2

√
c2 + d2 and a rotation of tan−1(b/a)+ tan−1(d/c). That’s an awkward

way to say it, but it’s the two rotation/scalings done one after the other.


