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FIGURE 1.11. Exercise 11.

12. Using the results of Exercise 11, prove that the slope of RF3 is

t —b
= — cot 6,
s—c a

thus proving Lemma 1.6.

13. In Figure 1.10, extend the line through S, X, and V so that it inter-
sects the line PK at W. Let § = /RPS and ¢ = /F} PK. Show that
|SX|/|SW| =1 —tanftan¢. As S approaches P, ¢ stays fixed but
0 approaches 0. Use this to conclude that |SX|/|SV| approaches 1.

14. The quote from Harmonice Mundi is something of a cheat. It only
refers to the third law, the first two having been published ten years
earlier in Astronomia Nova. Kepler also had a fourth law governing
the relative distances of the planets from the sun. It is now conve-
niently forgotten by most scientists since it was wrong. What was
Kepler’s fourth law? Hint: see Figure 1.12, taken from his book Mys-
tertum Cosmographicum, published in 1596.

1.5 Reprise with Calculus

While I find Newton’s proof of Theorem 1.1 very appealing in its simplicity
and the clarity with which it illuminates the connection between radial
force and equal areas, his proof of Theorem 1.3 is not as transparent as
one would wish. There is much more to Newton’s Principia. He goes on
to derive Kepler’s laws from the law of gravity and then to explore the
consequences of his insights. The entirety of Principia consists of three
volumes. But, at this point, I want to leave Newton and find a simpler
language for explaining celestial mechanics.

The search for a better idiom in which to understand our mathematics
is going to be a recurrent theme throughout this book. It is not always
easy to make the transition; new concepts are often at a high level of
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FIGURE 1.12. Kepler’s fourth law?

abstraction and difficult to grasp. But, once you are comfortable with the
new terminology, it can greatly clarify relationships and proofs. I feel that
the effort expended is more than repaid in a better understanding of the
material at hand and an enhanced ability to build on it. It is worth keeping
in mind, however, that we always have choices and that future generations
may look upon our expressions and proofs as unnecessarily convoluted.

Trajectories as Functions

In moving into the language of calculus, we first need to describe the tra-
jectory of our moving particle as a function. We can think of its position
7(t) as a function of time. For this chapter, we shall stay in the z,y plane.
The z and y coordinates are each functions of time:

r(t) = (z(t), y(1))-

For any specific value of ¢, we can think of 7(t) as either a point in the plane
or as the vector from the origin to this point. While initially somewhat
confusing, it is very convenient to be able to move freely between these two

interpretations.
We speak of 7(t) as a function from one real variable, t, to two real
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FIGURE 1.13. #(t) = (t* + 1,t> — t).

variables,  and y. This aspect of 7 is described in notational shorthand:
7:R — R2%

A function from one variable to one variable such as f(t) = t3 — ¢t is called
a scalar function. A function from one variable to more than one variable
such as r(t) is called a vector function. We shall restrict our attention to
functions for which the derivative is defined at all or almost all values of ¢.
A nice example is the path (Figure 1.13) for which the position at time

t is given by

x(t) = t2+1,

y(t) = t3—t.
The velocity vector at time ¢, ¥(t), is the rate at which the position is
changing:
dr
dt’
and is uniquely determined by the rate at which the x coordinate of our
particle is changing:

U=

dr

— =2t

dt
and the rate at which the y coordinate is changing

dy 2
= =3t -1
dt 3 ’

so that we have for our example

_, dr dy
o(t) = (EZ’E) = (2t,3t% — 1).
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Here is where we can exploit the ambiguity between points and vectors.
It is natural to think of the velocity as a vector. At time ¢ = 2, our particle
is at the point (5,6) moving with a velocity (4, 11), that is, the velocity
has the same magnitude and direction as the vector from (0,0) to (4,11).
But, we can also view the velocity as a vector function describing its own
path in the z,y plane and ask how the velocity is changing. The rate of
change of the velocity is the acceleration d(t), which is the derivative of the
velocity: , )

o= (£259) o,
dt dt?’ dt?

For the problem at hand, that of understanding celestial mechanics, it is
easiest to use the polar coordinates r(t), the distance to the origin at time
t, and 6(t), the angle between 7(t) and the positive z axis. We shall need to
assume that we stay away from the origin so that r(t) is never zero. Note

that r(¢) is the magnitude of the vector 7(¢t):

r(t) = |7(¢). (1.6)
The relationships between rectangular and polar coordinates are given by

x=rcosf, y=rsinb, (1.7)

r=+z?+y% tanf=y/z. (1.8)

Local Coordinates

It is also convenient to compute in terms of local coordinates that change as
our particle moves. In particular, we shall want to decompose the acceler-
ation into a component parallel to the vector 7(t) and a second component
perpendicular to it. This can be done by defining a unit vector or vector of
length 1 in the direction of 7 by

7(t) _ (r(t) cosB(t),r(t)sinb(t))

U (t) = i 0 = (cosf(t),sinf(t)) (1.9)

and a perpendicular unit vector (Figure 1.14)

Ug(t) = (—sinf(t), cos6(t)). (1.10)

It is important to keep in mind that %, and iy are functions of ¢. In
particular, they have derivatives that are related:

di, ., df do e
prale (— sin @ a,coso a) = = o> (1.11)

dug _ (—cosO i —sin#f %) __% Uy. (1.12)

dt
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FIGURE 1.14. The local coordinates i, and g.

Since the product rule for derivatives works on each coordinate, it also
holds for the product of a scalar function times a vector function:

d df
~(F(OF(E) =

Combining these results with the fact that

)+ f (t)dr(t) (1.13)

F = ri,, (1.14)
we see that

L& d, . dr_ | di, dr_  df
V=g T a ) =gty = g trgte (119
a = @ = i drﬁ —i—i rd—eu

T odt dt \dt ") dt \'at?

s G W

= Ehtgalet gl trgltry gt

— &—-'r‘ d_9 i, + d29+2@ﬁ i,

— \ a2 dt Ur T \" a2 dtdt )

d2r do L 1d [ ,d8\ .
= (W_r(dt) ) 'U,r+;a (’f' a) Ug. (1.16)
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Modern Proof of Kepler’s First Law

Equation (1.16) tells us that acceleration is entirely radial, that is, parallel
to 7, if and only if

1d ( ,db

rdt ( a) =0

which is equivalent to saying that r(¢)2 df/dt is a constant independent of
t. We have proven the following result.

Lemma 1.8 If the position of a particle over time is described by the vector
function 7(t), then the acceleration is purely radial if and only if r(t)2 df/dt
is a constant independent of t.

Combining this with the next lemma gives us another proof of Theorems
1.1 and 1.2.

Lemma 1.9 If the position of a particle over time is described by the vector
function 7(t), then the rate at which the radial vector sweeps out area is
given by

a4 = 17"(t)2 ﬁ

a2 dt
Proof: Given a circle with center at the origin and radius r, the area of
the sector swept out by the radius as it moves through an angle of A
is given by (r2/2)A6. It follows that if AA is the area swept out by the
radial vector from time s to time ¢ and if the distance from the origin stays
constant during this time interval, then

(1.17)

,,.2

AA=—Af,
2
where A0 = 6(t) — 6(s).
If r does not stay constant, then we can find two points in the interval
[s,t], call them t; and to, where r takes on its minimum and maximum
values, respectively, over this interval:

r(ty) <r <r(ta).

It follows that
r(t1)?
2
We now divide through by At =1t — s:

2
A <AAL @AG.

r(t1)* Af <B4 r(t2)? A

2 At~ At — 2 At
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and take the limit as s approaches t. This forces ¢; and t; to also approach
t and yields
2 2
r(t)* df < dA < r(t) ﬁ
2 dt — dt — 2 dt

Q.E.D.

Modern Proof of the Law of Gravity

We shall now use calculus to demonstrate that if the acceleration is purely
radial and the path is an ellipse with one focus at the origin, then the
acceleration is inversely proportional to the square of the distance from the
origin.

Lemma 1.10 The general equation of an ellipse with one focus at the ori-
gin and major axis on the x axis is given in polar coordinates by

r(1 +ecosf) = c, (1.18)

where € and c are real constants, |e| < 1, ¢ > 0. The semimajor axis is
c/(1 — €?) and the semiminor azis is c¢/v/1 — €2.

Proof: Equation (1.18) can be rewritten as
r=c—ercosf.

We use Equations (1.7) and (1.8) to convert this to rectangular coordinates
and then square each side to obtain

2% +y? = ¢® — 2cex + 222,

which can be rewritten as

2cex c2e? c2e?
1_ 2 2 2 _ 2
( 6)($+1—52 (1—52)2)+y A
1= g2
1 — 2\\2 2
wree/A-e) v _ | (1.19)

a? b?

where a = ¢/(1 — €2),b =¢/v/1 — €2,

The center of this ellipse is at (—ce/(1 — €2),0) which is cle|/(1 — €2)
from the origin. This is precisely the distance of the focus from the center
of the ellipse:
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Theorem 1.4 If a particle moves so that its acceleration is always radial
and if the particle follows the curve given by Equation (1.18), then the
acceleration is

. -k
where k = 2(dA/dt) is a constant.

Proof: The fact that dA/dt is constant follows from Theorem 1.2. From
Lemma 1.9 we know that

dé
2
— =k. 1.21
T (1.21)
If we solve for df/dt:

do

— =kr? 1.22

D =k, (1.22)
then we can substitute into our expression for the acceleration [Equa-
tion (1.16)]:

. d’r  k%\ .

We solve Equation (1.18) for r and then differentiate with respect to ¢:

_ c

" T ecost’

dr _ —ce(—sinf) df _ cesinf k
dt  (1+ecos@)2dt  c2r—2 r2?’

where the last equality uses Equations (1.18) and (1.22). Simplifying this

expression, we obtain
dr ke sin @
dt ¢ '
We differentiate a second time and again use Equations (1.18) [in the form
cosf = (c — r)/re] and (1.22) to simplify:
d*r ke d9 ke(c—r)k k% K?
— = —cosf— = — — = = - —,
dt? c dt ¢ re 12 13 cr?

and therefore

" d’r K%\ | k?

Q.E.D.
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1.6 Exercises

1.

10.
11.

12.

13.

© o N = o

For each of the following paths given by 7(t), find the position of the
particle at the specified times and sketch the path.

(a) 7(t) = (3cost,sint),t = 0,7/3,3w /4,3 /2.

(b) #(t) = (sint, 2 — 1),t = —7/2,0,7/2, .

(¢) 7(t) = (VEVE/(t+1)),t =1/4,1,2, 4.

(d) 7(t) = (t —2sint,1 — 2cost),t = —7/3,0, 7, 2m.

For each of the vector functions in Exercise 1, find the velocity v at
the indicated times.

For each of the vector functions in Exercise 1, find the acceleration @
at the indicated times.

Using the relationships of Equation (1.7), prove that

df  x(dy/dt) — y (dz/dt)
dt z? + y? '

(1.25)

It follows that acceleration is radial if and only if x(dy/dt) and
y (dz/dt) differ by a constant.

In Exercises 5-10, let 7(t) = (t2 — t,tv/2t —12),0 <t < 2.

Sketch the curve described by 7(t).

Find r(t).

Find %, and iy as functions of ¢.

Find dr/dt and df/dt. (Hint: use Exercise 4.)

Express the velocity in terms of the local coordinates @, and .
Express the acceleration in terms of the local coordinates @, and .

Compare and contrast the proof of Theorems 1.1 and 1.2 given in
Section 1.5 with Newton’s original proof. Which proof do you like
better? Why?

The constant £ in Equation (1.18) is called the eccentricity. What
happens if € is larger than 1?7 equal to 17 equal to 07 less than 07

If e = 1 in Equation (1.18), then there is a value of 8, § = m, for
which 7 is not defined. If ¢ = —1, then r is not defined when 6 = 0.
If |e| is larger that one, then there is an interval of values for 6 over
which 7 is not defined. Find this interval in terms of £ and explain its
relationship to the path 7(1 + £ cos§) = ¢ when |¢| > 1.



14.

15.

16.

17.

18.

19.

20.

21.
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Prove that the constant ¢ in Equation (1.18) is half of the latus rectum
L of the ellipse.

Comparing Equations (1.5) and (1.20) we see that |RS]| is the change
in velocity per unit time, which corresponds to |a(t)|; 24 is twice
the area swept out per unit time, which corresponds to k; |PFj| is
the distance from the sun, which corresponds to r; but L is twice c.
Explain this discrepancy.

Find the acceleration in terms of distance from the origin of a particle
moving along an ellipse with its center at the origin (instead of having
one focus at the origin) and sweeping out equal area in equal time.

Find the acceleration in terms of distance from the origin of a particle
moving along the logarithmic spiral

where c is an arbitrary constant, given that the particle sweeps out
equal area in equal time.

Given a particle that sweeps out an equal area in equal time and
whose path is given by r = f(6), show that the acceleration is given

by
KO (PO ]
“‘rs[fw) (%9) 1} .

Find the acceleration in terms of distance from the origin of a particle
with constant angular velocity,

g

— =k
dt ’

which follows an elliptical orbit with the sun at one focus,

r(1+ ecosf) = c.

If we use complex coordinates to represent the points in the plane of
the orbit, then we have the correspondence

i, = (cosf,sinf) «—— e =cos@ +isind.
Show that g corresponds to ie®.
Show that if .
7=re?, (1.26)

where r and @ are functions of time ¢, then
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