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Celestial Mechanics

3.1 The Calculus of Curves

We are not quite ready to prove that Newton’s law of gravitational at-
traction implies Kepler’s second law. We need to take a closer look at the
Calculus of vector functions in the light of the vector algebra described in
the last chapter.
As in Section 1.5, let #(t) denote the position of a moving particle at
time ¢. The derivative of 7(t) is defined as it is for scalar functions:
d .

4 i) = tim TEER T

1
dt h—0 h (3 )

Observe that 7(t+h) —7(t) is the vector from 7(t) to 7 (t+h), which can be
viewed as a chord of the curve traced by our moving particle (Figure 3.1).
In the limit, this becomes a tangent to the curve. The velocity vector is
defined to be this derivative:

d

9(t) = = 7 (). (3.2)

The acceleration vector is the derivative of the velocity:

2
i) = Loy = L ). (3.3)
dt
Throughout this chapter, we shall assume that the first two derivatives of
7 (t) exist.
Rules of Differentiation

Derivatives of vector functions satisfy the same basic rules of differentiation
that hold for scalar functions.

Theorem 3.1 If 7 (t) is constant, then
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7(t+ h)

7 (1)

FIGURE 3.1. 7(t + h) — 7(t).

Proof: If 7(t) is constant, then

#(t+h) —7(t) =0,
so that
= 0.

> oL

770 = Jim,

Q.E.D.

Theorem 3.2 Let 7(t) and 5(t) be differentiable vector functions, A(t) a

differentiable scalar function, and c a real constant. We have

i(cf’) = E
di = ‘@
d - .
dt dt dt
d, . _ ax dr
a()\r) = d—t'f‘ )\E,
d . . dr _ _ ds
c—ﬁ('r §) = o s—{—r-a,
i(*xé’) = fx§+rx§
i dt it

(3.4)
(3.5)
(3.6)
(3.7)

(3.8)

Proof: The proofs exactly mimic those for scalar functions. To prove

Equation (3.4) we observe that

o) = pim LR =)

dt h—0 h
_ limcr(t—l—h)—’r'(t)
h—0 h
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7(t+h) —7(t)

= ¢ lim
h—0

. dr

dt’
The proof of Equation (3.5) is similarly straightforward and is left as an
exercise. For Equation (3.6), we insert

M) F(E+R) + AR F(E+h) =0

into the numerator of the definition of the derivative:

d, . .
E(AT)
e MEERF(E+B) = AOF ()
) h
_ At+h)F(E+h) = AT+ h)+ AT+ h) — AT (F)
= a5 h
_ ,lli_%()\(t+h’)l—)\(t)F(t_i_h)+)\(t)f'(t+h})l—1"(t))
. At+h) = A(t) .
= (1_’9 h )(2‘1’%’”(””))
+/\(t)(}lli_%r(t-l-h’)lmr(t))
SN
= @ T

What makes this proof work is the distributive law:
At+h)F(t+h) = ATt +h) = (Mt+h)=X2)7T(t+h),
AT+ h) = AT (@) = M) (F(t+h)—7(2)).

Notice that we need both forms of this law, Equations (2.3) and (2.4). We
have proven that the distributive law also holds for dot products and cross
products, and so exactly the same argument yields Equations (3.7) and

(3.8).
Q.E.D.

One corollary to this theorem is a result we used in Section 1.5.

Corollary 3.1 If 7(t) = (z(t),y(t), 2(t)), then

i (da: dy dz)

dt — \dt’dt’ dt

That is, differentiation of a vector function expressed in coordinate form is
performed by differentiating each of the coordinates.
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Proof: We use the additive rule [Equation (3.5)], the rule for the derivative

of a product [Equation (3.6)], and the fact that 7, 7, and k are constants so
that -
i _ dj _ dk _ G

dt ~ dt  dt
It follows that
dr d ~ de , dy ., dz - dr dy dz
_ = — 7 7 = — — ——k = _ . —].
i~ Ttk = Gt g (dt’dt’dt)
Q.E.D.

Corollary 3.2 If dr/dt is zero for all t, then 7(t) is a constant vector.

Proof: We can write

so that dr/dt = 0 if and only if

dr _dy _dz _
dt  dt  dt

From single variable calculus, this implies that z, y, and z are constants.

Q.E.D.

The next corollary may be slightly surprising at first glance, but a little
consideration of what it means should convince you that you already know
it.

Corollary 3.3 If |7(t)| is a constant independent of t, then 7(t) 1s per-
pendicular to U(t).

Proof: By our hypothesis,

where c is a constant. Differentiating both sides with respect to t yields

d ar ar

0= Z(F-7) = 2 -F+7

— - F+7 — =277
a "tha T
and therefore, 7 and v are perpendicular.

Q.E.D.
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<

—

/) \

FIGURE 3.2. The curve 7(t) = (cost,sint,t).

What we have just proved is that the tangent to a circle is always per-
pendicular to the radius.

Example

As an example, we take a path that spirals up a vertical cylinder of radius
1 (Figure 3.2):
7 (t) = (cost,sint,t).
The velocity is
v(t) = (—sint,cost,1).

The magnitude of this velocity is

|9(t)| = Vsin?t + cos?t + 1 = V2,

a constant, and so Corollary 3.3 implies that the acceleration will always
be perpendicular to the velocity. In fact, the acceleration is

a(t) = (—cost, —sint,0),

and it is easily seen that
v-a=0.
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Arc Length and Tangents

We now define the following functions. The distance from the origin is

r(t) = |7 (), (3.9)
the speed is
v(t) = |U(t)], (3.10)
the arc length is ,
s(ty) = /lv(t) dt, (3.11)
the unit tangent is .
T(t) = % v(t) # 0, (3.12)

and the principal normal is

\T _ Tl(t) 2l _ @ A
N(t) = Fol T'(t) = — #0. (3.13)

We have already met 7(t). The speed is the absolute value of the velocity.
Integrating the speed or distance traveled per unit time over an interval of
time gives the total distance traveled in that time, denoted by s(t). Starting
the integral at 0 is an arbitrary convention since we usually treat the arc
length not as a function of one time variable but of two: the arc length
fromt =ty tot =t;:

s(t1) — s(to) = / 1 v(z) dz. (3.14)

to

The unit vector in the direction of ¥(t) is called the unit tangent or simply
the tangent. The principal normal has two important properties given in
the next theorem.

Theorem 3.3 The principal normal, N (t), is perpendicular to the tangent,
T(t), and, if U(t) and @(t) are not parallel, then N(t) lies in the plane
spanned by U(t) and d(t).

Proof: Since |T(t)| = 1, Corollary 3.3 implies that 7"(¢), and thus N (), is
perpendicular to T'(t). Since ¥(t) and d(t) are not parallel, neither of them
is identically 0. We have

- _d-‘_d 2 WD 2o o] —',_’U’_‘ 1 NT
at) = Ev = E(UT) = vT +vT" = ;v+vIT |N. (3.15)
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FIGURE 3.3. An osculating plane for 7 (t) = (cost,sint,t).

Since @ and ¥ are not parallel, v|T"| is not zero. Therefore, we have
- 1 . v
N=-—a- .

v|T"| v2|T"|

—

Q.E.D.

What we have demonstrated is that T and N are perpendicular unit
vectors spanning the plane defined by ¢ and @, and thus T and N provide
a convenient basis for describing points in this plane. If we translate this
plane so that it passes through 7 (t),

{F+af+ﬂﬁ]a,ﬂ€R},

we obtain what is called the osculating (or kissing) plane (see Figure 3.3).
Remember that 7, T, and N are all functions of time, t, so that our plane
changes over time. The significance of the osculating plane is that if our
acceleration were constant, then our curve would lie in this plane. It thus
provides us with a plane we can consider to be tangent to the curve.

Example

Returning to our spiral,
7 (t) = (cost,sint,t),

we have

r(t) = \/cos2t—+—sin2t+t2 = V1+1t2,
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v(t) = Vsin®t+cos2t+1 = V2,

s(t) = /(;t\/idm = tV?2,
V2

T@) = —2—(— sint, cost, 1),

N(t) = (—cost,—sint,0).
A perpendicular to the osculating plane is given by
¥ X @ = (sint,—cost, 1).
The dot product of this perpendicular with 7 is
vxa-r=t,
and so the equation of the osculating plane passing through 7 is
vxa-(z,y,2)—vxa-r=0,

which is
(sint)z — (cost)y+ z—t=0.

For example, the osculating planes at ¢t = 0, 7/2, and 57 /4 are, respectively,

—y+Z = 0)
z+z-—m/2 = 0,
V2 V2 5m

T ttgytimg =0

Curvature

We next investigate the notion of curvature, finding the radius of the circle
that best approximates our curve. Let us start by assuming that the curve
traced by 7(t) is in fact an arc of a circle of radius p lying in some plane.
We specify some fixed direction in that plane and let a(t) be the angle
between the tangent, T', and our fixed direction (Figure 3.4). We view our
plane so that the path travels counterclockwise around the center of the
circle.

We consider the derivative da/ds, the rate at which o changes with
respect to the arc length. On a circle, this is constant, and the value of
this constant can be determined by considering what happens if we go



3.1. The Calculus of Curves 61

Y axis

N,

\la(t)

/ >

T axis

FIGURE 3.4. The angle a(t) between T and the chosen direction.

completely around the circle: a will have changed by 27w while the arc

length traversed is 2mp,
do 2T 1
=== _Z 1
ds 2mp p (3-16)
For a curve lying in a plane, da/ds is well defined, and we can define p
as the reciprocal of this derivative at the point in question. To calculate p,

we observe that

do _ do/dit

ds  ds/dt’
From Equation (3.11), we see that
ds

If we standardize our plane so that 7'is the unit vector in our chosen direc-
tion and 7'is the perpendicular unit vector in the plane, then

T(t) = (cosa) T+ (sina) 7.
Differentiating both sides with respect to t gives us
T'(t) = o (t) [~ (sina) 7'+ (cos @) 7).
The vector in parentheses is a unit vector and so
17(8)] = |/ (t).

Since the particle is moving counterclockwise, the angle «(t) is increasing,
and so o/(t) is positive:

do -
— =|T"(¢)|.
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We have shown that .
do _da/dt _ |T'(t)|

ds  ds/dt  w(t)
This gives us a definition of curvature that is valid for any curve for which
T’ is well defined.

Definition: The curvature of the path 7(t), denoted by x(t), is defined
to be the reciprocal of the radius of the circle that best approximates the
curve at 7 (t). Specifically, this is defined to be

(3.17)

The radius p(t) = 1/k(t) is called the radius of curvature. Note that the
curvature is zero if and only if the path is a straight line.

Computing |T”(t)| from the definition is often difficult. The following
theorem provides us with a more direct approach to computing «.

Theorem 3.4 If 7(t) is twice differentiable and the first derivatwve is not
0, then the curvature of the path traced by 7 (t) is given by

K= '—i—ﬁﬁl (3.18)

Proof: From Equations (3.15) and (3.17) we see that
a(t) = v'T +o|T'|N = 'T + v?kN,
and so, since Tx§= 0,
ExT = VT xT+v2kN x¥ = v’kN x7 = v®°«N x T.
Since |[N x T| = 1, we finally arrive at
1@ x ¥ = v3k.
Q.E.D.

Examples

The curvature of 7(t) = (cost,sint,t) is

|(—sint,cost, 1) X (—cost,—sint,0)|
23/2
|(sint, —cost,1)] V2 1

23/2 T 93/2 T 9?7

K =
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T T 1 |
—4—3—2—11/1 2

FIGURE 3.5. The curve 7 + rcosf = 1.

and the radius of curvature is 2.

As a second example, consider the problem of finding the velocity, ac-
celeration, and curvature of the path of a particle following the parabola
given in polar coordinates by

r(1+cosf) =1, (3.19)
which is traversed at a constant speed,
v(t) =2,

in a counterclockwise direction about the origin (Figure 3.5).
If we differentiate both sides of Equation (3.19) with respect to ¢t and use
the relationship

14 cosf =r"t, (3.20)
we see that

dr . do
E(l + cos @) — rsmO% =0,

w__ 1 _a

dt  r2sinf dt’
We now recall from Equation (1.15) that
dr do

= —1uU r— 1,
at bt g ve

where 4, and ty are perpendicular unit vectors, and so

o= (B (-2 (@20

(3.21)
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Combining this with the expression for df/dt given in Equation (3.21) and
recalling that we have a constant speed of 2, we see that

/1+ : .12 _ \/1+rzsin29.
r2sin“ 6

|7 sin 6|
Using the fact that our curve is traversed counterclockwise, we can choose
the proper sign, and we see that

dr
dt

dr
dt

2:U:

ﬁ _ 2rsin 6
dt 1+ r2sin’
do 2

dt r\/1+r2sin20.

We can simplify the square root by using the fact that sin®6 = 1 — cos? §
and, from Equation (3.20), that cos§ = r~! — 1:

1+7%sin?60 = 1472 —r?cos?6 = 1—}—7‘2~—r2(r‘1~-1)2 = 2.

We have shown that

% = sinfV2r, (3.23)
% = r3/2\/2, (3.24)
v = ﬂ(rl/zsin0ﬁr+r'l/2ﬁg). (3.25)

If we differentiate Equation (3.25), remembering that r, 6, @,, and
are all functions of ¢, we get the acceleration

a = \/5(27" 7 sin@ i, +r cos&dtur+r sm0dtug

1 a2 dr —1/2d9~)_

— =T Ug — 1 — Uy

2 dt dt

Substituting our values of dr/dt and df/dt from Equations (3.23) and (3.24)
yields
@ = (sin®@)d, + 2r (cos @) i, + 2r~'(sinf) iy
— r~!(sin0) @y — 2r i,
= (sin®?0+2r~'(cosf —r 1)) @, + r~'(sin6) dp
= (sin®@+2r') @, + r~'(sin6) do, (3.26)

where in the last line we have used Equation (3.20) once again. It follows
that
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i = (\/ir—l/2 sin2@ — v2r~1/2(sin? § + 2r—1)) i@, x iy
= _2\/57'—3/2 ﬁr X 697

<y
X

Txd = 2v2r 32

-3/2
K = ——2\/—2; = (2r)3%/2
Exercises
Prove that
dirygy = &L B
a TV T @
Prove that
gy ¥ g 88
dt T dt dt’
Prove that
4 ins)= T ogrin ®
a\ T T

In Exercises 4 through 12, use each of the following trajec-
tories:

(a) 7(t) = t27— 4tj — t2k,
(b) 7(t) = (cosht)7+ (sinht) j+ tk,
(cosht = (e! + e7t)/2,sinht = (et — e t)/2)
(c) 7(t) =tcost7+tsint ]+ k.
Sketch the curve traced over the interval from ¢t = 0 to 2.
Find 7(t) and a(t).
Find r(t) and v(t).

. Find the cosine of the angle between 7 and 9. For what values of ¢ is

7 perpendicular to ¥? When is it parallel to '?

. Find the cosine of the angle between ¥ and a@. For what values of ¢ is

v’ perpendicular to @? When is it parallel to @?

. Find the definite integral that expresses the arc length from ¢ = 0 to

2.
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10.
11.
12.
13.

14.
15.

16.

17.

3. Celestial Mechanics
Find v x a.
Find the equation of the osculating plane at time t.
Find the curvature at time t.
Prove that .
Qv

N =2~
@y

Does 7(t) - ¥(t) = 0 for all ¢ imply that r(t) is constant?
Consider a particle whose path is the ellipse
(2 4 cosf) = 2,

traversed in a counterclockwise direction about the origin, and that
sweeps out one unit of area per unit time:

dA 1 ,df

— =72 =1

a2 dt
Find the velocity and acceleration expressed in terms of the local
coordinates i, and uy.

Consider a particle whose path is the spiral
r=e>",

sweeping out one unit of area per unit time. Find the velocity and
acceleration expressed in terms of the local coordinates u, and y.

A missile traveling at constant speed is homing in on a target at the
origin. Due to an error in its circuitry, it is consistently misdirected
by a constant angle a. Find its path. Show that if |a| < 90°, then
it will eventually hit its target, taking 1/cosa times as long as if it
were correctly aimed. (Hint: use local coordinates 4, and wy.)

3.3 Orbital Mechanics

Equipped with calculus and vector algebra, we can now make short work
of Newton’s result that the law of gravity implies Kepler’s second law.

Lemma 3.1 Let 7(t) be the position of a particle at tvme t, U(t) its velocity,
and d(t) its acceleration. If @ is radial (always parallel to 7), then

Fxv=K, (3.27)
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where K is a constant vector of magnitude

K = |K| = 2% (3.28)

= rusing, (3.29)

where dA/dt is the rate at which area is swept out and ¢ is the angle between
7 and v.

Proof: From Equation (3.8) and the fact that 7 and @ are parallel, we
have

d 4 4 o

a(f’xﬁ) =Uxv+7rxd=0+0=0,

and thus, by Corollary 3.2, 7 x ¥’ is a constant vector that we shall call K.
Equation (3.29) follows from Equation (3.27) and the definition of the

cross product. To prove Equation (3.28), we use the representations of 7

and ¥ in terms of local coordinates [Equations (1.14) and (1.15)]:

K =Fx¥ = ri, x (@ﬁrwﬁﬁo) LATRN

7 o =r E(ur X Ug), (3.30)

so that &0
K=r?—. 3.31
r (3.31)

Lemma 1.9 now concludes the proof.

Q.E.D.

Kepler’s Second Law

The full law of gravity says that the force of gravitational attraction is in-
versely proportional to the square of the distance and directly proportional

to each of the masses: M

— m -
where G is a gravitational constant, M and m are the respective masses,
and r is the distance. If m is the mass of our orbiting particle, then its

acceleration satisfies .
F = ma, (3.33)

or
= ———i,. (3.34)
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Theorem 3.5 Let 7(t) denote the position at time t of a moving particle
whose acceleration is given by Equation (3.34) and that sweeps out area at
the constant rate K/2. There then exists a constant vector € such that

. oo KP
Equivalently, if (r,0) is the position in polar coordinates, then
2
r(1 +ecosf) = (3.36)

GM
We recognize Equation (3.36) as the equation of a conic section: an el-
lipse, parabola, or hyperbola (Lemma 1.10 and Exercise 12 of Section 1.5).

In particular, if |€] < 1, then it is the equation of an ellipse with one focus
at the origin.

Proof: We shall prove this by using the identity for scalar triple products:

3 -

FXT-K=UxK-T. (3.37)
By Equation (3.27), the left side is
"xi7-K=K-K=K?2 (3.38)

To evaluate the right side, we use our definition of @ [Equation (3.34)],

the representation of K in local coordinates [Equation (3.30)], and the fact
that (d/dt)d, = (df/dt)ie [Equation (1.11)]:

d 2 L= GM 0 dl
dt( xK) = axK = ( = ur) X (r 5 U xug)
dé . de d .
= —-GM — p [@r X (U, X Ug)] = GM = Ug = E(GM’U,T).

This means that the derivative of 7x K —GM Uy i8S 6, andso 7xK~GM Uy
is a constant vector which we shall denote by GMZ¢:

=

= GM(u, +¢), (3.39)
= GM(u,+¢&) -7 = GM(J]F|+7-¢). (3.40)

5'\‘1 ><
3

v
v X
Combining this result with Equations (3.37) and (3.38), we see that

—

K2 =7fxt-K = 9xK-7F=GM(f|+7-8),
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Equation (3.36) follows from the equalities |#| =7 and 7-€& = recosf.

Q.E.D.

I challenge the reader to return to Newton’s original proof of Kepler’s
second law (Proposition XVII) and work through it, comparing it to this
proof.

Equation of the Orbit

If we define the positive z axis to be parallel to € = 7 and set

K2

= GM’ (3.41)

then we have an elliptic orbit precisely when |¢| < 1, and the equation of
this orbit is, by Lemma 1.10,

1-e))(z+a)+y* = A (3.42)

where

a=—2_ (3.43)

The apogee, or farthest distance, is

v lely g (1 + lel)v v
= = = . (3.44
|a|+1—52 1—e2+1—52 (I —le)(1+ |el) 1— |e] (3-44)

The perigee, or nearest distance, is

v —lely ¥ (1—lel)y ¥
— — = = . 3.45
T s e T T T easE it O

The mean distance is the semimajor axis:

2
=13 (3.46)

Note also that if £ is positive, then most of the ellipse lies to the left of
the y axis, and the orbiting particle reaches its perigee when it crosses the
positive z axis. If € is negative, then most of the ellipse lies to the right of
the y axis, and the orbiting particle reaches its apogee when it crosses the
positive z axis (Figure 3.6).

If the absolute value of ¢ is 1, then our orbit is a parabola. If it is greater
than 1, then the orbit is a hyperbola. What is significant about these cases
is that they are nonperiodic: our particle sweeps in close to the object it is
orbiting and then heads off, never to return. A satellite circling the earth
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FIGURE 3.6. Orbits for ¢ = —-;—, -;—, and 2.

that achieves a parabolic or hyperbolic orbit is said to reach escape velocity.
Assuming it is on the outbound arm (and so is in no danger of crashing
into the earth), the earth’s gravity cannot hold it back.

Eccentricity and Escape Velocity

Let us narrow our focus to satellites orbiting the earth where the value of
GM is approximately

GM =4 x 10'* m3/s%. (3.47)

To simplify matters, we shall ignore the effects of the moon and other
bodies. If we know the position, 7, and velocity, v, of our satellite at any
given time, we can find K and ¢ and thus compute the orbit. Our first
problem will be to find the escape velocity from the earth.

The constant K is easily computed from Equation (3.29): K = rvsin @,
where ¢ is the angle between 7 and v. To find ¢ from r, v, and ¢ is a little
trickier. From Equations (3.39) and (3.27), we see that

z‘ixI?_ﬁ’x(Fxﬁ)

CM i (3.48)

Uy + €=
We can solve this for € and then get

2 = ¢g.¢
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Ux(Fx0) o\ (Tx(TxD) .
GM " GM "

1, 2
el elihal ke v

Now, v is perpendicular to 7 x ¥, and therefore,

Tx (Fxv) -d]+1. (3.49)

[T x (7 x ¥)| = rv?|sin ¢|.
We can rearrange our scalar triple product @' x (7 X %) -, to [(@, x ¥)-(Fx7)].
Since 4, x U is parallel to 7 x ¥, the dot product of these vectors is simply
the product of their magnitudes:
¥ x (F x ¥) - @, = (vsin@)(rvsin¢) = rv?sin? ¢.

Making these substitutions into the last line of Equation (3.49), we obtain

2 i 2
- 14 %%%? (rv? — 2GM) . (3.50)

If, instead of factoring out rv2/G2M?, we replace the 1 in the first line by
cos? ¢ + sin® ¢, we see that we can also write €2 as

rv?

2
g2 =sin? ¢ (1 — 5]\—4) + cos? ¢. (3.51)

If ¢ = 0, then our satellite is moving vertically. It either keeps going
forever in a straight line or slows down, reverses direction, and crashes
back into the earth. Since neither of these cases is particularly interesting,
we shall assume that ¢ is not zero.

Because r and v are positive, we have a nonperiodic orbit (|e| > 1) if and
only if

rv? > 2GM = 8 x 10" m3/s?,
14
v> % m/s. (3.52)

As we get further from the earth, the escape velocity decreases. At the
surface of the earth where r is roughly 6.4 x 10° meters, the escape velocity
is about 11200 m/s or 24 800 miles/h. Note that escape velocity does not
depend on the angle between r and v. In practice, you must check that
you are not on a trajectory that will collide with the earth. As long as this
will not happen, heading in any direction at 25000 miles/h will launch you
toward the ends of the universe.

A circular orbit has an eccentricity of ¢ = 0, which is achieved if and
only if

rv =GM AND ¢=rm/2.
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In a properly elliptic orbit (0 < |e|] < 1), the angle between # and ¥ is
/2 at precisely two points: the apogee and the perigee. At these points,

we have the relationship
21— ro2 \ 2 ’
GM

e=+ (1 - g;;) . (3.53)

The choice of sign is determined by whether the perigee occurs on the
positive or negative x axis. The eccentricity is positive when rv?> > GM
and negative when rv? < GM, and so

or

ro?

Kepler’s Third Law and Geosynchronous Orbit

Kepler’s third law now comes for free. The area inside an elliptic orbit is 7
times the product of the semimajor and semiminor axes, which is

- ¥ 0% _ rK*
1—e2\/T—¢e2 GZM2(1-¢e2)3/2

Since the area is swept out at the constant rate K /2, the period of the orbit
(the time needed to complete one orbit) is the area divided by the rate:

o2r K3
G2M?2(1 — £2)3/2
3/2

period =

2 vy

VG (1= )7
2 3/2
- , 3.55
veu® (3:59)
2
period? = éLMa3, (3.56)

where a is the semimajor axis. Equation (3.56) is Kepler’s third law.

An orbit is said to be geosynchronous if its period is the same as the
time it takes the earth to complete one rotation, that is, 1 day or 86400 s.
Inserting this and the value of GM into Equation (3.55), we get an a value
of about 42000 km, or roughly 35600 km above the surface of the earth.
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Accelerating while in Orbit

A curious phenomenon happens to a vehicle in orbit that fires its rockets to
achieve acceleration in a nonradial direction. If two vehicles are traveling
in tandem in a circular orbit and one of them produces a brief acceleration
in the direction of its velocity, then instead of pulling ahead of its com-
panion, it will swing out into an orbit of greater eccentricity and actually
fall behind. The mathematics behind this comes out of our equation for
eccentricity [Equation (3.51)].
Initially, since we are in a circular orbit, we have

rvt = GM,
and the semimajor axis is r, so the period is

vGM

We let our first vehicle continue in this orbit, but we briefly fire the rock-
ets on the second vehicle. In view of the distances involved, a “burn,” or
rocket firing, of a few seconds can be viewed as an instantaneous increase
in velocity, so that at the moment of the burn the position of our second
vehicle, 7(t), is still the same as that of the first vehicle, but the velocity
has changed from v to

period =

172 = Cﬁ,

for some positive constant c. We have assumed that our instantaneous
acceleration is parallel to v, so that initially the angle between 75 and v5
is still 7/2. It is convenient to define the positive z axis so that the burn
occurs as we cross it.

The new value of K is

K2 = |F2 Xﬁg‘ = I’I'_“X C'l7| = cK. (357)

Since the angle between 75 and ¥, is m/2 and rv? = GM, the new value of

€ satisfies
roU2 o TV
€9 =

- GM GM
Since c is assumed to be positive, we have a noncircular orbit unless ¢ = 1.
Note that we stay in a periodic orbit if and only if ¢ < v/2. If ¢ is less than
1 (we have decelerated), then we are at our apogee and e is negative. If
¢ is larger than 1 and less than /2, then we are at our perigee and 5 is
positive.

We have demonstrated that if the second vehicle fires its afterburners,
it will swing out into a wider orbit. But as long as ¢ is less than v/2, it

2
1 =c%-1. (3.58)

= C
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will continue to return to its perigee on each orbit. Which vehicle gets back
first? The semimajor axis for the second vehicle is

K2 clK? K? r

T GM(1-¢2)  GM(232-c%)  GM(2-¢&)  2—-c2

as

and so its period is
27 r3/2

/GM (2 _ 62)3/2’

as opposed to the period of the first vehicle,

JCM

If the second vehicle has accelerated, 1 < ¢ < \/5, then it will take it
longer to return to the point of the burn. To beat the first rocket back to
that point, it must decelerate, 0 < ¢ < 1. Care is required, however, as
deceleration puts you into an eccentric orbit passing closer to the earth,
and it is desirable to avoid colliding with it.

Caveat

Before using the mathematics of this chapter to send a satellite into orbit,
be aware that in practice we cannot ignore the moon’s influence. For a few
orbits staying relatively close to the earth, the moon will not have much
effect, but over time it will modify the orbit considerably. In fact, in time,
the sun and each of the planets, even each of the asteroids, will exert a
measurable sway over the satellite. The mathematics we have developed is
incomplete as an exact model of our universe because our universe consists
of more than two objects.

Our model is a good approximation, and the influence of the other bodies
can be calculated to almost any degree of accuracy. But, we are placed in
a position uncomfortably close to that of pre-Keplerian astronomers: we
possess a beautiful and simple theory that is only a first approximation.
To make it agree with observational accuracy, we need to complicate it
considerably.

This is not to suggest that we are no better off than our medieval prede-
cessors. It is Newton’s laws that tell us how to make most of the corrections.
There is no need to resort to convoluted inventions to account for them.
Yet, there is something basically dissatisfying about the present state of
affairs. One wishes for a model that combines elegance, utility, and sim-
plicity, probably in forms we would not yet recognize, in an explanation of
the intricate dance of many bodies under gravitational attraction. There is
some indication that the collection of results now being grouped under the
heading of chaos theory is groping in this direction.
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3.4 Exercises

1. Prove that @, x (4@, x Uy) = —uy.
2. Prove that in a properly elliptic orbit, the angle between 7 and v is
/2 only at the apogee and the perigee.

3. Mars has a radius of approximately 3300 km and a mass 0.15 times
that of Earth. Find the escape velocity on the surface of Mars.

For Exercises 4 through 7, we are considering a rocket that
is fired to 300 km above the surface of the earth, 6.7 x 106 m
from the center of the earth. At this point, the engines are
cut off and the rocket enters orbit. The angle between 7 and
v is denoted by ¢.

4. What velocity must it have attained if it is to remain in a circular
orbit at this height? What is the period of this orbit?

5. If its speed is 9000 m/s and ¢ = 7/2, what are the values of the
apogee and perigee of the resulting orbit? What is the period of this
orbit?

6. If its speed is 9000 m/s and ¢ = 7/3, what are the values of the
apogee and perigee of the resulting orbit? What is the period of this
orbit?

7. If its speed is 9000 m/s, find the angle ¢ that will result in an orbit
whose perigee is 6.5 x 10® m. What are the values of the eccentricity,
apogee, and period of this orbit?

8. A rocket has attained a circular orbit around the earth at 6.6 x 108
m from the center of the earth. It is traveling at a speed of 7785
m/s. We want to move it out to a circular orbit of » = 7.0 x 108
m by executing a burn, increasing its speed to v; so that it enters
an eccentric orbit whose apogee is 7.0 x 10 m. When it reaches this
apogee, we perform a second burn to increase its speed from v, the
speed of the eccentric orbit at the apogee, to 7560 m/s, the speed
needed to maintain a circular orbit at this height. Find v, and v,.

9. Show that the absolute value of the eccentricity is the difference be-
tween the apogee and the perigee divided by their sum. Find the
absolute value of the eccentricity of an orbit whose apogee is 12 x 108
meters and whose perigee is 8 x 10° m.

For Exercises 10 through 14, we consider the New York to
Tokyo space shuttle now being planned. Our shuttle acceler-
ates until it is 160 km above New York (6.56 x 10° m from the
center of the earth). At that point, the engines are cut, and
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New York
FIGURE 3.7. The New York to Tokyo shuttle, Exercises 10 to 14.

the shuttle enters an orbital glide until it is 160 km above
Tokyo, at which time it decelerates for the landing. For the
purposes of simplification, we shall ignore the rotation of the
earth until the last problem in this set.

New York is at 70° W, 41° N; Tokyo is at 140° E, 36° N. Find the
angle between the lines connecting the center of the earth, O, to New
York and Tokyo, respectively. All of our calculations are on the plane
defined by these three points, and we take the bisector of this angle
to be the positive z axis (Figure 3.7).

Find the speed needed to achieve a circular orbit at » = 6.56 x 106.
How many minutes will it take for the orbital glide between New York
and Tokyo?

What speed must it reach if instead of a circular orbit it is to enter
an elliptic orbit with apogee at

(a) 7.0 x 10% m,
(b) 7.5 x 106 m,
(c) 8.0 x 10® m,
(d) 9.0 x 10° m?

In each of these cases, how many minutes will it take for the orbital
glide?

Find the value of the apogee that minimaizes the speed we need when
we enter the glide. What is this minimal speed, and how long will the
glide last?

Redo Exercise 11 taking into consideration the fact that the rotation
of the earth is moving Tokyo eastward at the rate of 15°/h.



