
First case of completeness

We have a temporary definition of limit. A number L (in some representation, might end
with infinitely many 9s), is the limit of the increasing sequence {an} (here none of the an
end with infinitely many 9s) if given any integer k > 0, there is an Nk such that if n > Nk,
then an agrees with L to k decimal places.

First completeness theorem (1.3): A positive increasing sequence {an} (here none of the
an end with infinitely many 9s) which is bounded above by M has a limit.

Mattuck says that his proof isn’t “formal”. Mine probably isn’t either, but, I think it’s
better. And I think we should be “better” now.

Suppose that {an} (here none of the an end with infinitely many 9s) is positive increasing
sequence which is bounded above by M . Consider {int(an)} (By int(x) I mean the integer
part of x.). In this sequence of integers, there are no more than int(M) changes, but there
are infinitely many terms. Because an ≤ an+1 they are in order. Eventually the integer parts
must settle. This is a version of the pigeonhole principle. There infinitely many {int(an)} to
be put in the finitely many (actually there are int(M) + 1) spots up to int(M). So, because
there are only finitely many numbers in {int(an)} one of them must be the largest. This is
the integer part of L.

This is the case k = 0. We have proven that for k = 0 there is an N0 (the first time when
{int(an)} is its largest value) such that if n > N0, then an agrees with the integer part of L.

This is our base case for induction. We will continue with the induction step. The
remaining steps are about the same, maybe a little bit easier.

So, as typical for induction, we assume our result is true for k and attempt to prove it
for k + 1 for any k. Our induction hypothesis is there is L and Nk such that if n > Nk, then
trunck(an) (By trunck(x) I mean x truncated at the k decimal place) agrees with trunck(L).
We now want to extend this to k + 1. Therefore we look at the next digit. Now consider
trunck+1(an). This agrees in the first k places for n > Nk. Now focus all attention on the
k + 1 decimal place. Like before, there are a limited number of options, this time only 10 (0
to 9). Sometime it hits the largest value of all the an with n > Nk, and because an ≤ an+1,
it doesn’t go down from there. Suppose it hits the largest value at Nk+1. Use the largest
value for the k+ 1 place of L. We then have that there is L and Nk+1 such that if n > Nk+1,
then trunck+1(an) agrees with trunck+1(L).

Question: where did we use that none of the an end with infinitely many 9s?


