CHAPTER

5

VECTOR
FIELDS ON
SURFACES

Henri Poincaré (1854-1912), one of the founders of topology, was a rr}athematl.man
and physicist, particularly interested in the qualitative theory (?f dlffer.entlal equatlons.
In this chapter, we explore some of the connections betv&‘/een dlffereptral equauon_s a}nd
topology. References for more complete coverage of this material include Godbillion
[Go] and Hartman [Hrt]. '

The link is the notion of a vector field. Suppose at each point of the plane. or Qf a
surface M a tangent vector to M is determined in such a way that its length and direction
vary continuously with the point; that is, nearby points have nearly ]shfz same \{ectors
assigned. More formally, a tangent vector field on a surface M € R™ is a continuous
function v : M — RY so that v(p) (drawn based at p) is a tangent vector to M at 2 In
other words, v(p) lies in the tangent plane to M at p (Figure 5.1). Of course, if M is the
plane, that simply means that the vectors also lie in the plane.

v(p)

FIGURE 5.1
Tangent vectors in the plane and sphere
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FIGURE 5.2

The surface on the left is smooth; those on the right are not smooth.

We are sneaking in some calculus here (to be expected with differential equations).
We are asking that our surface M be smooth—that is, have a smoothly varying tangent
plane at each point (Figure 5.2). We don’t want M to have corners or edges. In fact, to
be precise about doing differential equations on surfaces, we would need to introduce
calculus on surfaces. A wonderful introduction to this subject is Spivak’s Calculus on
Manifolds [Sp]. We will rely on some intuitive notions, avoiding the technical details.
The topology of the surface has some fascinating interactions with qualitative properties
of vector fields on a surface. This is the direction we will go. Let’s first look at vector
fields in a simple setting—the plane.

5.1 VECTOR FIELDS IN THE PLANE

The relationship between vector fields and differential equations can be illustrated in the

plane. A vector field in the plane is determined by a system of first-order (autonomous)
differential equations:

dx

— = F(x,
= (x,y)
dy

= 7 G(x,y)

The vector determined at each point (x, y) in the plane is simply v(x,y) =
(F(x,y), G(x,y)), so we have a vector field in the plane. It is continuous since the
coordinate functions F and G are continuous. In fact, we will assume that F and G are
differentiable functions.

Example 5.1.1 The system
dx
dr
dy
dr

=
=—x
determines the vector field given by v(x, y) = (¥, —x). This means that, at each

point (x, y) in the plane we draw the vector that has coordinates (y, —x). In
Figure 5.3, we draw a sampling of the vectors, giving us a fairly good picture of
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FIGURE 5.3
The vector field v(x, y) = (y,—x)

FIGURE 5.4

Some integral curves of the
vector field v(x, y) = (y,—x)

the vector field. We have rescaled the vectors to unit length for a clearer diagram,
as we will do throughout the chapter.

The origin of the system in Example 5.1.1 has the zero vector assi.gned to it. A
point with the zero vector assigned is called a critical point (or, in various books, a
singular point or singularity or zero) of the vector field. .

We can draw a cleaner and more revealing picture of the system by using integral
curves. The basic existence and uniqueness theorem of differential equations says that,
through each point of the plane, locally there exists a unique solution curve [a curve whose
tangent vector at each point equals the vector v (x, y) assigned by the vector ﬁeld]'. We call
a solution curve an integral curve, or orbit. We think of the vector field as describing the
motion of points in the plane, with the integral curves being the paths of the points. If we
draw some of the integral curves of our system of differential equations in Example 5.1.1,
instead of all the little vectors, we get a simpler picture as shown in Figure 5.4. The
uniqueness part of the theorem ensures that no two integral curves can cross.
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FIGURE 5.5

Is there a vector field
in the plane whose
phase portrait locally
looks like this?

Notice that the integral “curve” assigned to the critical point (at the origin) is simply
a point—that is, a curve that stays fixed at the critical point for all time. The other curves
simply follow the flow of the field of vectors. This picture of the integral curves is called
a phase portrait of the system of differential equations. The phase portraits are what
we are interested in throughout this chapter—in the plane for now and later on surfaces.

The integral curves are parametrized curves, although in general we will only care
about the orientation of the curve. In Section 5.3, however, it will help to work with the
parametrized orbit. If x is any point, the orbit of x can be written {¢,(x)}, where the
subscript 7 is the parameter, which we think of as time. When t = 0, we are at the point
x (having traveled along the orbit for time 0). If ¢ is positive, we travel along the orbit
for time ¢ in the direction that preserves the orientation. If 7 is negative, wé travel from
x for time ¢ in the reverse direction.

EXERCISE 5.1.2 Draw phase portraits in the plane for each of the following systems of
differential equations.

dx dx dx

a — =x b —=—y c. —=y
dt dt dt
dy dy | dy
gt 2 dr — ar

EXERCISE 5.1.3 Does there exist a vector field in the plane whose phase portrait locally
looks like that in Figure 5.5?7 Explain.

A simple closed curve that is an integral curve for a system is called a periodic
orbit. Which of the systems that we’ve seen have periodic orbits?

As you have probably seen in other classes, vector fields occur in many appplica-
tions. For example:

e Gravitational or electromagnetic force fields
 Velocity vector fields of fluids in motion, like air or water
 Gradient fields, like a topographical map

The existence of a critical point or periodic orbit has physical and topological importance.
Critical points play a key role in connecting vector fields with topology.

I $z
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5.2 INDEX OF A CRITICAL POINT

Suppose we have a vector field in the plane. Consider any simple closed curve C in
the plane that does not pass through a critical point. (Note that C is not necessarily
an integral curve of the vector field.) Each point of C has a nonzero vector associated
with it. As we traverse C once in a counterclockwise direction, we draw the vectors
emanating from points along C, basing them at some fixed point, and count the number
of counterclockwise rotations made by the vectors. This integer is called the index
(or winding number) of C with respect to the vector field v, denoted (v, C). An
alternative way of thinking of the index is the total angle variation of the vectors as we
traverse C once divided by 27 (the angle variation of one revolution of a circle). As we
rescale the vectors to unit length, the index is the number of times the vectors on C wind
around the unit circle. Figure 5.6 shows several examples.

%:é D ':_:{ Index + 1
(@)

g D .—Jr» Index + 1
(b

)

@ |:> o—— Index 0
(c

)

~\
@

FIGURE 5.6

On the left, we draw the vectors around curve C. On the
right, the same vectors are translated to the origin. To
compute the index, we count the number of
counterclockwise rotations of the translated vectors as one
traverses C in the counterclockwise direction. Notice than
in (d), the translated vectors make one clockwise rotation of
the origin as C is transversed in the counterclockwise
direction to give an index of —1.
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A critical point is said to be isolated if there is an open set containing the point
that contains no other critical points. In general, critical points need not be isolated. For
example, the vector field given by v(x, y) = (x, 0) has critical points all along the y
axis. However, we will focus on those systems with isolated critical points. So let’s now
assume for the rest of the chapter that all critical points are isolated.

Surround an isolated critical point p by a simple closed curve C so that no other
critical point lies inside or on C. We define the index of p with respect to C to be
the index of C; that is, I (p, C,v) = I(C,v). We will show that this index is in fact
independent of the curve C we take (as long as p is the only critical point inside C).
Figure 5.7 shows some examples of critical points and their indices.

EXERCISE 5.2.1 Determine the index of each of the critical points shown in Figure 5.8.

EXERCISE 5.2.2 Draw critical points of index 4, 0, and —3, respectively. In general,
what values do you think are possible indices for critical points? Experiment with finding
a procedure to create an example of whatever index you think possible. We’ll return to
this topic later.

Source Saddle Dipole
Index + 1 Index — 1 Index + 2
(a) (b) (c)
FIGURE 5.7

Examples of some critical points and their indices: (a) a source, (b) a saddle, and
(c) a dipole

(a) (b)

FIGURE 5.8
Find the index of each of these critical points.
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FIGURE 5.9

The vector field in the plane given by v(x, y) = (y,1 — x%)

Example 5.2.3 Consider the vector field in the plane given by v(x, y) = (v, 1 —
x?%). The critical points occur when v(x, y) = (0,0); that is, when y = 0 and
1 = x2. Therefore, we have two critical points: one at (1,0) and one at (—1, 0). At
these points, we assign the zero vector. Notice that the vectors v (x, y) are vertical
when y = 0 (along the x axis) and horizontal along the lines x ~ i.l' In the
regions of the plane between these lines, we can check the general direction of the
vectors (as shown on the left in Figure 5.9). We draw as many vectors as we need
until we have the feel of the general flow of points under this vector field. Then
we can begin filling in with a few integral curves following the direction of. the
vectors. The picture will not be precise generally, but we can do enough det%ul to
see that the index of the critical point at (1, 0) is 1, and that of the critical point at
(—=1,0)is —1.

EXERCISE 5.2.4 Roughly sketch phase portraits of the following vector fields in the
plane. Find each critical point and determine its index.

o V(X, )’) = (—)’,x)

P O g (s B~ i
v, ) =@ —y.x+Y)
Y, Y=y =+ 1)

e T

EXERCISE 5.2.5 Show that the vector fields W1(x, y), valx, ¥)), and.(—vz(x,y),
v1(x, y)) have the same critical points and the same index around any simple closed

curve C not meeting a critical point.

Here is a more formal definition of the index, as a line integral. If you’ve noF seen
line integrals before, you may skip it. Let C : [0, 1] — R? be a parametrized simple
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closed curve and v(C(s)) a nonzero vector field on C with v(C(s)) = (v{(C(s)),
v2(C(s))).The index I (C,v) is the total angle change around C divided by 27 (one
revolution); that is, if 6 (s) is an angle function, then the total angle variation around C
divided by 27 is fol 0'(s) ds = ¢ d6 = ¢ d(arctan i2). So the index of C is

1 1 V2
I(C,v)=— @ df = — d(arctan —)
2r Je 2 Je Vi
_ 1 1 V1d\12 = V2dV1 N 1 f vldv2 == V2dV1
2r Je 14+ (:_:_)2 v2 2 Jo VP4l

Let’s now see that the index of a critical point is independent of the choice of C. We
will give a good intuitive argument here, though a careful one depends upon knowledge
of line integrals and Green’s theorem. A formal proof, using the line integral definition of
index, is given at the end of this section for those who have the appropriate background.
An alternative approach will be available in the next chapter.

For the intuitive proof, first notice that if we only move the curve a little then we
only move the vectors a little, by continuity; so the index changes only a little. However,
the index is always an integer and hence must stay constant. As we move from one circle
C to another C’ (without critical points in between so that the index is defined at each
stage), a little at a time, it stays constant the whole way. In other words, the index of C
equals the index of C’. We have the following result.

THEOREM 5.2.6 If v is a vector field in the plane and C and C” are two simple closed

curves so that in the region between them v has no critical points, then 7(C,v) =
I1(C',v).

We now take advantage of this fact and simplify our notation for the index of p to
I(p, v) instead of I (p, C, v).

We note, for later use, that the same argument applies if we change the vector field
justalittle (meaning move the arrows slightly) butkeep C the same. Then the index should
change just a little, but since it can only change in “big” shifts of 1 or more, it apparently
stays constant. In other words, 1 (C,v) = I(C, w) for vector fields v close to w.

Let’s put this fact to good use. Suppose a simple closed curve C encloses several
critical points. Then C can be continuously deformed into a curve C’, as shown in
Figure 5.10. Since there are no critical points between C and C’, their indices are the same.

FIGURE 5.10
The indices of C and C’ are the same.
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FIGURE 5.11
Check that the index of C is 0.

Notice that when we move along the arc joining the circle about one critical point with
the circle about another critical point, we later traverse that same arc but in the opposite
direction. So the rotation of vectors contributed by that arc will be canceled the next time
through (since traversing it in the opposite direction reverses the direction of rotation).
Thus, the contribution to total angle rotation of the vectors is by the circles surrounding
the critical points. In other words, I (C,v) = > I(p;, v), where the p;’s are the critical
points encompassed by C. Hence, we have the following.

THEOREM 5.2.7 The index of any simple closed curve C is the sum of the indices of
the critical points that it encloses.

Example 5.2.8 The curve C in Figure 5.11 encircles two critical points: of index
1 and —1, respectively. So the index of C should be 1 — 1 = 0. Count the number
of revolutions made by the vectors based at points of C to check that this is correct.

COROLLARY 5.2.9 If the index of a simple closed curve is nonzero, then the curve
encircles at least one critical point.

This corollary is quite useful. We look at one application now and another a little
later.

Brouwer fixed-point theorem Let f be a continuous map of the closed unit disk
to itself. Then f(c) = c for some point c¢ in the disk. In other words, the closed
disk has the fixed-point property.

Proof: Suppose f is a continuous function from the disk to itself. Define a continu-
ous vector field on the disk by taking v(x) to be the vector pointing from x to f(x)
[Figure 5.12(a)]. On the boundary circle C, we define a vector field w (x) to be the vector
pointing from x on C to the center of the disk. Notice that I (C, w) = 1.

Continuously deform the vector field v restricted to the boundary curve C to the
vector field w, as shown in Figure 5.12(b). The index of C remains constant during this
deformation since, as we noted after Theorem 5.2.6, the vectors change continuously,
and the index is always integer valued. So /(C,v) = I(C,w) = 1. Corollary 5.2.9
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The vector v(x/ ;

X

(a) (b)
FIGURE 5.12
Deforming v to a vector field with index 1 around the
boundary
FIGURE 5.13

Can you fill in a vector
field without critical
points on the interior of
this annulus?

implies that a critical point of v is encompassed by C. In other words, there is a point ¢
in the disk such that v(¢) = 0 that in turn means f(c) = c. "

EXERCISE 5.2.10

a. Suppose we have a vector field on the plane with exactly two critical points: a source
at the origin and a saddle at (0, 1) (see Figure 5.7). Can there be a periodic orbit along
x2 4 y2 = 47 Draw an example or explain why it cannot happen.

b. In the same setting, suppose the only critical points are a saddle at the origin and sinks
at (0, 1) and (0, —1). Answer the same question as in part (a).

EXERCISE 5.2.11

a. Show that a vector field on an annulus can be without critical points only if the indices
of the boundary circles are equal.

b. Draw a vector field on the annulus without critical points given that the boundary
circles are integral curves with opposite orientations, as shown in Figure 5.13.
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From Figure 5.6(b), we saw that the index of a vector field tangent to a circle is 1.
The following result generalizes this fact to any periodic orbit.

v
THEOREM 5.2.12 Hopf’s theorem The index of a vector field'around a closed inte-
gral curve C is 1. In other words, the tangent vector field on a simple closed curve has
index 1.

Proof: Since we only care about angle rotation of the vectors, not length, we may assume
that all the vectors on C are unit vectors. There exists a point Q on C with minimal y
coordinate. We start our parametrization of C at the point Q [Figure 5.14(a)]; that is, let
Q = C(0) = C(1). Define a continuous vector field w on the triangle in the plane given
by 0 < x <y <1 as follows:

unit vector from C (x) to C(y), except for the point (0, 1)

w(x,y) = {v(C(y)) alongx =y
—v(C(0)) whenx =0, y=1
See Figure 5.14(b). You should verify that w is indeed continuous.
Clearly, w # 0 anywhere in the triangle, so by Theorem 5.2.7, the index of w
around the boundary of the triangle is 0. We compare the angle variation of the vector
fields w and v on C:

0,1) (1,1)

o ~(C(0)) v(c))
cw)
x=y
S 0,00 vCO)
(a) (b)
Ci
9 c(y)
‘\C}_ /,’ —L 5
-
© (d)
FIGURE 5.14

Proving that the index of a vector field around a closed integral curve is
always 1 (Hopf’s theorem)
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From (0, 0) to (1, 1) along the hypotenuse, w(x,y) = v(C(y)), so the angle
variation of w is 27 1 (v, C)).

From (1, 1) to (0, 1) along the top where y = 1, w is the unit vector from C(x) to
C(1) = Q as x goes from 1 to 0, so the total angle variation is —m, as shown in
Figure 5.14c. [Note: This follows from y(Q) being minimal.]

From (0, 1) to (0, 0) along the side where x = 0, w is the unit vector from C(0) = Q
to C(y) as y goes from 1 to 0, so the total angle variation is —s, as shown in Figure
5.14d.

Hence, 0 = index(w) = 2x1(C,v) — & — m; that is, I(C,v) = 1, completing the
proof. [Note: We have illustrated the proof with a counterclockwise vector field on C.
You should check that the proof works with a clockwise vector field. Remember that the
index is still measured in a counterclockwise fashion.] "

COROLLARY 5.2.13 If a vector field in the plane has a closed integral curve, then there
exists a critical point inside.

Note that Hopf’s theorem can be generalized to the case where the curve C is a
polygonal curve, smooth except at a finite number of corners and tangent to the vector
field along the smooth regions, as shown in Figure 5.15. However, in this case, in counting
rotations of the tangent vectors, we must add in the angles at the corners of C.

Example 5.2.14 A simple example of a polygonal curve C (where the edges are
straight so that there is no rotation along them) is drawn in Figure 5.16. If the
interior angles of C are a1, oy, and a3, then the total variation of the vector field
is2nI(C,v) = —ay) + (m —a) + (0 —o3) =37 — () + 2 +3) = 27,
So the index is 1.

FIGURE 5.15

Hopf’s theorem holds for a polygonal
curve too, but we must add in the
rotation at the corners.

I
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FIGURE 5.16

Compute the index of the tangent vector field
around this polygonal curve, making sure to
include the angle rotation at the corners.

5.2.1 Appendix to Section 5.2 (Optional)

Here is a proof of Theorem 5.2.6, that the index is independent of the choice of C, using
line integrals and Green’s theorem. We saw an intuitive argument earlier. We will use
the more formal definition of index that we gave following Exercise 5.2.5.

Proof: Let v(x, y) = (vi(x, y), v2(x, y)) be a vector field in the plane with v; and v,
differentiable functions. We want to show that the value of the index is independent of
the choice of enclosing curve, as long as p is the only critical point enclosed in either
curve (that is, no critical points lie between the two curves). What if we take two curves,
C and C*, surrounding p with no other critical point inside either curve? Let C’ be a
curve surrounding p and interior to both C and C*, as shown in Figure 5.17.

av; ov;
We claim that I (C,v) = I(C’,v) = I(C*, v). Since dv; = a—xl dx + 5 dy,

1 —vod d - d
I(C,V)—I(C’,v)z__liﬁ v2av1 + 1 VZ_% vadvy + vy vzj|
2r | Je )

2 2 2 2
vi+v;3 v+ Vv

) v 6\1 c’)v
1 —vyu oy B - +v
= % 2 82,\ 2] dx (lx + 2 > dy
2r | Je vy +v; vi +v;

vy vy
—v +v —Va25 + Vi
_f 26\ ‘dx+ 32‘ 2 -dy
i vi+vi Vi +v;

FIGURE 5.17

We use Green’s theorem to show that the
indices of C and C’ are the same, as are the
indices of C* and C’. Therefore, the index
around C is the same as that around C*.
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Let D be the annular region between the curves C and C’. Notice that C — C’
is the oriented boundary of D, with D to the left of the boundary as we travel it in a
positively oriented fashion. (We traverse C in the counterclockwise direction and use
—C’ to indicate traversing C’ in the clockwise direction.) Hence, by Green’s theorem
with the above integrand being M dx + N dy, we have

oN
Mdx+ Ndy = // (————)dxdy
c-c'
// —h%‘y’ +v 33% 0 —vp 8 v, B2 v d
ox vi+v3 dy vi+v3 4

since mixed partials are equal and therefore cancel. We therefore have that I (C,v) =
I(C'v). Similarly, we can show I (C’,v) = I(C*v), giving that the indices of C and C*
are the same. "

5.3 LIMIT SETS IN THE PLANE

Suppose an orbit enters a bounded region of the plane and never leaves. What can its
limit set look like? A few examples are shown in Figure 5.18. Experimentation will
convince you that the orbit must either spiral in around a periodic orbit or have a critical
point in its limit set. The proof of that fact is the focus of this section. Al h this
material is not essential for the rest of the chapter (with one exception in Section 5.4), it
fits beautifully with our primary interests because it is a strictly two-dimensional result.
In fact the main theorem only works for the plane and the sphere. We take the approach
of Palis and de Melo [PdM].

Let’s introduce a little terminology first. Recall from Section 5.1 that we can
indicate a parametrized orbit by {¢,(x)}, where the subscript ¢ is the time parameter. If
t =0, ¢o(x) = x since we travel for zero time. The positive semiorbit of a point x,
denoted O (x), is {¢ (x) | t > 0}. The negative semiorbit is defined similarly for r < 0.

The w-limit set of a point x, L, (x), is the set of points y so that a sequence of
points {¢,, (x)} on the orbit of x, with #, — 0o, converges to the point y (¢, (x) — ).
Figure 5.18 shows some w-limit sets.

Y,
(P
(a) (b) (c)

FIGURE 5.18

(a) The w-limit set of any point in a small neighborhood of a sink is the
critical point. (b) The w-limit set of x is the periodic orbit toward which
it spirals. (c) The w-limit set of x is the critical point. The w-limit set of
y is the union of three orbits: the critical point plus the two orbits
adjoining it.
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NOTE: The cc-limit set is defined similarly but with #, — —oo. The results we show PROPOSITION 5.3.6 L, (x) meets ¥ in at most one point.

for w-limit sets translate naturally to similar results for a-limit sets simply by reversing

the orientation of the integral curves. EXERCISE 5.3.7 Prove Proposition 5.3.6. Suppose L,,(x) meets ¥ in two points and

' use Proposition 5.3.5 to reach a contradiction.
EXERCISE 5.3.1 Find the a-limit sets of the point x in the bottom two examples in

Figure 5.18. Poincaré-Bendixson theorem Any positive semiorbit contained in a compact
. o subset of the plane must have either a critical point or a periodic orbit in its
EXERCISE 5.3.2 In Figure 5.7, which points have the critical point as their o-limit set? El5STITE.

EXERCISE 5.3.3 If the positive semiorbit of a point x is contained ina compact subset of Proof: Let x be a point whose positive semiorbit stays within a compact set. Suppose

the plane, show that L,,(x) is nonempty. [Hint: Recall some basic properties of compact there is no critical point in the closure of O*(x). We know from Exercise 5.3.3 that
subsets of R” in Section 1.3.4.] there is a point y in L, (x) (not a critical point by our preceding assumption). We will

show that the orbit of y is periodic. Let z be a point in L, (y). Take an arc X through
PROPOSITION 5.3.4 Any o-limitsetis aclosed union of orbits; that s, L, (x) contains 7 that is nowhere tangent to the integral curves of ¢. By Proposition 5.3.5, the positive
all of its limit points and, if it contains some point y, then it contains the entire orbit semiorbit of y meets ¥ in a monotone sequence ¢, (v). However, by Proposition 5.3.4,
of y. ¢, (y) € Lo (x); hence, Proposition 5.3.6 implies that ¢, (y) is a single point; that is, the

orbit of y is periodic. "

Proof: We first show L,,(x) is closed. Suppose z isnotin L, (x). Thereisa neighborhood

V of z such that V is disjoint from {¢(x) [ 1 = T} for some time 7. Then points of V EXERCISE 5.3.8 Can you find an example in the plane so that a nonempty w-limit
are not in L, (x), meaning that the complement of L, (x) is open and L, (x) is closed. set contains neither a critical point nor a periodic orbit? You will need to look at a
Showing that L, (x) is a union of orbits is just as easy. Suppose z is in Ly (x) noncompact w-limit set, of course.
and Z = ¢, (z) is some point on the orbit of z. We know we have a sequence of points,
‘ {¢h,, (x)}, with £, — 00, such that ¢, (x) — z. If we let the sequence flow forward for

e L ke EXERCISE 5.3.9 Let A be an annulus in the plane. Suppose we have a vector field with
‘ time fo, we get P4, (X) = O1o (B, (X)) — ¢, (2) = Z, giving us that 7 is in Lo (x). M

no critical points on A and that the vector field is never tangent to the boundary of A,

. always pointing in toward the interior of A. Show that there is a periodic orbit inside A.
‘ PROPOSITION 5.3.5 Suppose  is an arc that is never tangent to an integral curve.

\ Then if a positive semiorbit of a point x, O (x), meets 3, it does so monotonically. That
is, if ¢ (x), ¢¢(x), and Py (x) meet X, with s <1 < U, then ¢, (x) lies between ¢y (x)
and ¢, (x) along X.

EXERCISE 5.3.10 Suppose v and w are two vector fields in the plane that are always
perpendicular to each other. Suppose v has a periodic orbit. Show that w must have a
critical point.

Proof: The piece of the orbit between ¢, (x) and ¢;(x) and the piece of X between
these same two points form a simple closed curve C. (See Figure 5.19.) By the Jordan 5.4 A LOCAL DESCRIPTION OF A CRITICAL POINT
separation theorem, C disconnects the plane with O+ (¢, (x)) contained entirely in one

ekt : The definition of the index of a critical point works quite well for simple examples and for
component. Since u >t > 5, $.(x) and ¢ (x) are on opposite sidesof ¢;(x)inX. m

some of the basic results we have obtained, but having an alternative way of computing
the index in terms of a local description of the vector field near the critical point will be
o0 % be(X)':2 o AL i ] : .

There are two general types of critical points: rotation and nonrotation.

Rotation critical points Every neighborhood of the critical point contains a pe-

riodic orbit surrounding the critical point. For example, we could have a center
. . dx y iten, i
(which we saw 1n 7 =y, d—)t = —x), where every nearby orbit is periodic, or
a sequence of periodic orbits nearing the critical point with spirals in-between.
Figure 5.20 gives examples of cach. From Hopf’s theorem (Theorem 5.2.12), we
FIGURE 5.19 see that the index of a rotation critical point is always 1, since we can choose C to

A semiorbit must meet an arc £ monotonically. be a periodic orbit.

or
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FIGURE 5.20
Examples of rotation critical points

N

FIGURE 5.21

A nonrotational critical
point has an orbit limiting
on it in positive or
negative time.

Nonrotation critical points We claim that, if p is an isolated critical point that
is not a rotational critical point, then some integral curve approaches p as a limit
in positive or negative time. To see this, take a small disk D surrounding p with
no periodic orbits in D. Every orbit that enters D also leaves D in finite time
or approaches p as a limit, as we want. (Apply the Poincaré-Bendixson the-
.orem.) If we consider a sequence of orbits that get arbitrarily close to p but
enter and leave in finite time and we focus on their points of entry, we see
that they must limit on a point whose orbit must approach p in positive time
(Figure 5.21).

An integral curve that meets the boundary of D and then stays inside D forever,
approaching p in positive time or in negative time, is called a separatrix of D. A sector
(relative to D) is a subregion bounded by separatrices, and is one of three possible types,
which we now study more closely.

1. Elliptic sector The two bounding separatrices of the sector are portions of a single
solution curve which stays entirely in D, with one separatrix approaching p in positive
time and the other approaching p in negative time.

2. Parabolic sector The separatrices both approach p in positive time or both in naga-
tive time, and no other separatrix in the sector has the opposite orientation.
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Elliptic sectors

Hyperbolic sectors

) &

Parabolic sector

FIGURE 5.22
The three types of sectors: elliptic, parabolic, and hyperbolic

3. Hyperbolic sector All solution curves entering the sector along the boundary of
D also exit the sector in finite time. One of the separatrices of a hyperbolic sector
approaches p in positive time, the other in negative time.

Figure 5.22 illustrates the three types of sectors.

Notice that the subdivision of D into sectors is not uniquely determined, since a
parabolic sector is a union of parabolic sectors. However, this ambiguity will not cause
a problem. Also notice that the number of hyperbolic and elliptic sectors of a region D
is finite.

If the critical point is surrounded entirely by parabolic sectors, it is called a focus.
More specifically, it is a sink if all orbits limit on p in positive time or a source if all
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e

e
(a) (b)

FIGURE 5.23

(a) This critical point has two elliptic sectors
and two hyperbolic sectors. (b) This critical
point has all parabolic sectors. Is it clear how
many?

FIGURE 5.24

Looking at different neighborhoods of the
critical point may change the sectors. In
particular, notice that the smaller
neighborhood has an elliptic sector not seen
along the boundary of the larger
neighborhood.

orbits limit on p in negative time. Figure 5.23 shows examples of critical points and their
sectors.

If we take a different disk D, we may get a different splitting into sectors, as
illustrated by Figure 5.24. However, for any disk, the number of hyperbolic and elliptic
sectors is finite.

EXERCISE 5.4.1 Why must the number of hyperbolic sectors plus the number of elliptic
sectors around a critical point be even?

Next we want to find a formula for finding the index of a nonrotational critical
point in terms of the sectors surrounding it. (Recall that we know the index of a rotational
critical point is always 1.) We will do so by computing the contribution to the angle
variation made by each type of sector.

Draw a small curve C around a nonrotational critical point p so that C encloses
no other critical points. At points where the separatrices meet C, we will assume that
they do so at right angles. Although this may not quite be true, any error is made up in
adjacent sectors.
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FIGURE 5.25

A subdivision into sectors and their associated
angles

T
: \ o; = angle between K \
‘/ segments determined /
p "/' by separatrices "' > o
1

FIGURE 5.26
Computing the contribution to the index of an elliptic sector

Suppose we have £ elliptic sectors and H hyperbolic sectors, leaving P parabolic
sectors as the remainder. Join the points of C meeting separatrices to p along straight-line
segments. Let oy, . .., o, be the angles made by these segments for the associated elliptic
sectors. Similarly, let y1, ..., y; be the angles of the hyperbolic sectors and g, ..., f,
the remaining parabolic sectors. Figure 5.25 illustrates the subdivision into sectors and
the associated angles for a critical point with sectors of each type.

Let’s now compute the contribution to the index made by each type of sector.

Contribution of an elliptic sector We must calculate the amount of turning of the
vectors as we move through the sector along C. By studying Figure 5.26, we see that
for an elliptic sector the vectors rotate through angle of o; + 7. There is a rotation
of o; from one straight-line segment to the other, plus an additional rotation of 7 to
reverse the direction from pointing away from p to pointing in toward p.
Contribution of a hyperbolic sector We do a similar analysis. The total rotation in the
sector is through angle of = — y;, but it is in the clockwise direction, so we count it as
y; — m (Figure 5.27).

Contribution of a parabolic sector See'Exercise 5.4.2.
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FIGURE 5.27
Computing the contribution to the index of a hyperbolic sector

EXERCISE 5.4.2 Show that the angle rotation through a parabolic sector is simply f;.

We now put this information together. Traveling once, counterclockwise, around
C, the vectors turn counterclockwise through angle

(@ +m)+ -+ @+m)+p+-+pt+tn—p+- -+ -7
={@ 4 +a)+ B+ +B)+ O+ )} +En —Hn
=21 + (€ —H)m ‘

The index (the number of revolutions) is

24 (€ —Hr +5—’H
21 2

We now have the following.

THEOREM 5.4.3 The index of an isolated critical point is 1 + , where £ = the

number of elliptic sectors and H = the number of hyperbolic sectors.
NOTE: The parabolic sectors contribute nothing. Also, a rotation critical point has index
1, so the formula for the index still holds with & = H = 0.

Figure 5.28 illustrates a few examples that show we get the same results as with
using the angle-rotation definition but with less work.

EXERCISE 5.4.4 Find the index of each of the critical points shown in Figure 5.29.

EXERCISE 5.4.5 Draw a phase portrait for a critical point of index 5 with £ = 10 and
Hi=i2

EXERCISE 5.4.6 Draw a phase portrait for a critical point of index —3.
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Source or sink Saddle

Dipole

(©

FIGURE 5.28

@ &=H=0,s0theindex I =1.(b)E=0and H=4,50 | = —1.
(c)€=2andH=0,s0 ! =2.(d) To construct a critical point with
index 5, for example, we take £ — H = 8. So if £ = 8 then H = 0.

(@ (b) ()

FIGURE 5.29

Use the formula 1 + to compute the index of each of these critical points.

EXERCISE 5.4.7 Among all the critical points with no more than four sectors, find and
sketch the distinct ones with index 1, 2, or 3.

EXERCISE 5.4.8 Show that any critical point with an odd number of sectors has at least
one parabolic sector. :

EXERCISE 5.4.9 Draw all critical points of index 3 that have no more than six sectors.
Explain why you have described all such.
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PROJECT 5.4.10 Recall that the graph of z = f(x, y) is a surface.

a. Show that if f is differentiable, then the level curves of the surface, f(x,y) = ¢,
satisfy the system of differential equations

dx
dr
dy
dt

Iy

where f, and f, are the partial derivatives of f

= —f:\.

Hence, the level curves are integral curves for the vector field v(x, y) = (fy, — T

b. If the function f(x, y) is a height function on an island and v (x, y) in part (a) is the
vector field giving the level curves, what is the index of v(x, y) along the shoreline?
Use your answer to show that—if the only critical points are mountain peaks, pits,
and saddles—(the number of peaks) — (the number of saddles) + (the number of
pits) = 1. What does this remind you of?

¢. Draw several examples of topographical maps for some imaginary islands, illustrating
your findings.

d. The gradient vector field associated to the function fis (fy, fy). Whatis the geometric
relationship between the gradient vector field and v (x, y)? What does the gradient
vector field represent physically?

e. What types of isolated critical points are possible in a gradient vector field? For
example, is it possible to have an elliptic sector? Give an example or an argument as
to why it can’t happen.

NOTE: The ideas in this project and Project 5.5.4 touch on an important aspect of
differential topology called Morse theory (after its founder Marston Morse). Roughly,
Morse theory studies the relationship between critical points of a function and the topol-
ogy of the domain space. As in our examples, where the function is a height function,
the topology of the level sets can change only at critical points. Morse theory charac-
terizes the type of changes that can occur. We can begin to reconstruct the topology
of the domain surface by knowing these changes. The short introductory chapter in
Milnor [Mi] gives an elegant and informal description for surfaces. There is also a clas-
sic video, distributed through the Mathematical Association of America, featuring Morse
as he discusses the above topics with models and animation. It is called Pits, Peaks and
Fasses.

Morse theory and its generalizations have been used in various geometric modeling
applications in computer graphics. For example, how can the shape of a three-dimensional
object be recovered from a two-dimensional image of the object? To be useful, one
must factor in the variation that can occur in the two-dimensional image when viewing
the object from a different perspective. Such questions become critical in interpreting
medical images—for example, in radiotherapy, biopsies, and neurosurgery. Koenderink’s
Solid Shape [Koe] gives an excellent introduction to these applications.
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5.5 VECTOR FIELDS ON SURFACES

So far, we have only looked at vector fields on the plane. Recall that, in the introduction
to this chapter, we defined a vector field on any surface. A (tangent) vector field v on a
surface M C RY is a continuous function v : M — R¥ so that v(p) (drawn based at
p) is a tangent vector to M at p. The vector v(p) lies in the tangent plane to M at p. We
will restrict our attention to compact orientable surfaces.

Let’s examine an important set of examples: gradient vector fields. In Project 5.4.10,
we looked at the special case of a planar surface with a real-valued function z = f(x, y)
(interpreted as height). The associated gradient vector field (f,, fy) is a vector field on
the plane, perpendicular to the level sets of f and pointing in the direction of greatest
increase of f. We use the same idea to create a (tangent) vector field on any surface.
Take M to be a compact surface in R3. We assume that M is a smooth surface, with
smoothly varying tangent planes. The level curves of a height function for M (with the
z coordinate as height) are obtained by intersecting the surface with horizontal planes
z = k for various values of k. We define the gradient vector field on M to be tan-
gent at every point and pointing in the direction of steepest ascent (with respect to the
height z). Hence, the vectors are perpendicular to the level curves of M. Precisely at
the points of M where the tangent plane is horizontal, the gradient vector is the zero
vector—a critical point. Figure 5.30 shows a gradient vector field and its level curves on
the sphere.

In general, the critical points of a gradient vector field on M may not be isolated,
as Figure 5.31 illustrates. However, it can be proved (not here) that a slight perturbation
of the surface can make the critical points isolated. We will assume that isolated critical
points are in all our vector fields.

EXERCISE 5.5.1 Perturb the surface in Figure 5.31 to make it into one whose gradient

vector field corresponding to a height function has isolated critical points. (You should
see many ways of doing so.)

—_—

curves

Gy
. LD

FIGURE 5.30

The gradient vector field of a deformed sphere
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FIGURE 5.31

The gradient vector field on a flat-topped
sphere has an entire disk of critical points.

EXERCISE 5.5.2 Draw a deformation of the sphere so that it has a gradient vector field
associated with a height function with four critical points of index 1 and two saddles.
[Note: Your sphere might be quite distorted, but it will still be a fopological sphere.]

EXERCISE 5.5.3 Do you think one could have a sphere deformed such that its gradient
vector field has no critical points of index 1? Why or why not? What about for 2T or
other compact surfaces? Explain your reasoning. You need not give a formal proof.

PROJECT 5.5.4

1. a. Draw a (topological) sphere shaped so that its height function gives a gradient
vector field having at least one saddle. Draw the corresponding level sets and
gradient vector field on the surface. Now gradually deform the surface into the
standard geometric sphere (given by x? + y% +z% = 1). Draw the gradient vector
fields of the surfaces at several stages of your deformation. Describe how the
critical points change during the deformation. What happens to the sum of their
indices?

b. Begin with a torus standing on one end. Draw the gradient vector field and level
sets associated to the height function for this torus. What is the sum of the indices
of the critical points? As you increase the height from the bottom to the top of the
torus, describe how the level sets change. Then, as you deform the torus, describe
how the critical points and level sets change. Does the index sum change?

2. Let’s now examine the reverse process. We will specify a sequence of —1’s and 1’s.

Your goal is to build a compact surface so that its height function corresponds to

a gradient vector field whose critical points have the specified indices in the given

order. Identify the surface.

a. 1,-1,1,1

b.1,-1,-1,-1,-1,1
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c. ,1,—-1,—-1,1,1

d. 1,-1,-1,-1,1,1, -1, 1

e. Were you able to identify the surface before building it? Can you think of any
restrictions on the achievable types of sequence of 1’s and —1’s? Explain.

It is important to note that the local existence and uniqueness theorem for differ-
ential equations extends to surfaces since the theorem is local and surfaces are locally
homeomorphic to a plane. Hence, we have integral curves on M, at least locally. We do not
know, however, that an integral curve is globally defined—that is, defined for all time ¢.

/)
Example 5.5.5 The differential equation in R given by % = 14 x? has integral
curves given by x = tan(¢ — ¢). These integral curves cannot be extended beyond

T b4
the interval (¢ — —, —).
e val (¢ > c+ 2)

However, there is a completeness theorem in the theory of differential equations
stating that integral curves on a compact surface M can be extended indefinitely (that
is, can continue for all time 7). In particular, we have a phase portrait on all of M, with
integral curves defined for all ¢ in R!.

EXERCISE 5.5.6 Is Corollary 5.2.13 true on S*? On T? Explain.

EXERCISE 5.5.7 Explain why the Poincaré-Bendixson-theorem (see Section 5.3) is true
on the sphere. For other surfaces, it is not necessarily true. Explain why the proof does
not work for other surfaces. Can you find an example showing it is not true on the torus.

The gradient vector fields above illustrate how the geometry of a surface (the
way it is situated in R?) influences the gradient vector field. Does the topology of M
influence what sort of vector fields can occur on M? Of course! That is why we are
studying them in this course. For example, suppose we ask, “On which surfaces M can
we have a nowhere zero (tangent) vector field—that is, a vector field without critical
points?”

Example 5.5.8 On a torus, an example of a nowhere zero vector field is easy;
cover the torus by longitudinal circles as the integral curves and take unit tangent
vectors, as shown in Figure 5.32.

How about the sphere S?? If we draw some examples of vector fields on the sphere,
we might guess not. Look at those in Figure 5.33, for example.

EXERCISE 5.5.9 Draw two or three other vector fields tangent to the sphere. Do they
all have critical points? Can you find one with exactly one critical point? If so, what is
the index of the critical point?
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FIGURE 5.32

A nowhere zero vector field on a torus:
Take vectors tangent to the longitudinal
circles.

(a) (b)

FIGURE 5.33

(a) The gradient vector field along longitudes produces a
sink at the north pole and a source at the south pole. (b) The
tangent vector field along latitudes produces two centers:
one at the north pole and one at the south. Could one
construct a nowhere zero vector field on the sphere?

PROJECT 5.5.10 Draw some examples of vector fields on various surfaces. Conjecture
a relationship between the indices of the critical points and the topology of the surface.
You do not need to prove your conjecture. We will return to this topic shortly.

We will now prove that a vector field tangent to the sphere always has a critical
point. Our results on the index of critical points still apply in the context of surfaces
because index was defined locally. One can simply project a small neighborhood of a
critical point p and the nearby vectors onto the tangent plane at p and compute the index
there, as illustrated in Figure 5.34.

Here is a beautiful proof from Chinn and Steenrod [CS] that vector fields tangent
to the sphere always have critical points. It is actually a special case of our main theorem
about vector fields on surfaces and gives a partial answer to what kind of vector fields
can occur on the sphere.
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FIGURE 5.34

The sink at the north pole projects to a
sink on the tangent plane at the north
pole (with index 1).

U

FIGURE 5.35

In a very small neighborhood
of the north pole p, the
vectors are nearly parallel

to v(p).

THEOREM 5.5.11 Every (tangent) vector field on S? has at least one critical
point. Further, if the vector field v has finitely many critical points py, ..., p, then

Y oy =2
i=l

Proof: We do a proof by contradiction. So suppose v is a tangent vector field on S?
without critical points. Take a small enough neighborhood U of the north pole p so that
the vectors on the boundary are nearly parallel to v(p) (Figure 5.35).

Take the stereographic projection from (S* — U) onto D, a disk in the plane tangent
to the south pole of the sphere. We note that we can also project the vectors to give a
nonzero vector field w on D. (Do you see that nonzero tangent vectors on S? project
to nonzero vectors in the plane?) To visualize the resulting vector field on D, it might
help to imagine reaching inside the sphere and stretching it open to lie flat, keeping the
vectors tangent to the stretching surface along the way (Figure 5.36).

Count the number of rotations of the vectors as you traverse the boundary of the
disk. The index of the projected vector field w around the boundary of D is 2, not 0.
Hence, by Theorem 5.2.7, there is a critical point in the disk, hence a critical point of v
on (S? — U) and therefore on S2.

|
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FIGURE 5.36

Stereographically project S — U and the vector field onto the disk D. What is the index of the
projected vector around the boundary of D?

* For the second part of the theorem, simply position the sphere so that the north
pole is not a critical point. Taking the neighborhood U of the north pole small enough
to miss any critical points, apply the same argument as above. By Theorem 5.2.7, the
sum of the indices of the critical points of w on D is 2. Hence ) ;_, I (p;, v) = 2. This
completes the proof. m

PROPOSITION 5.5.12 If a vector field on S? has a closed integral curve, then at least
two critical points exist. .

EXERCISE 5.5.13 Prove Proposition 5.5.12.

EXERCISE 5.5.14 Why, at any instant, is there at least one point on Earth’s surface
where the wind is still?

EXERCISE 5.5.15 Show that any vector field on the sphere, tangent or not, either has a
critical point or has a vector perpendicular to the sphere.

What about vector fields on other surfaces? The following major theorem about
vector fields on surfaces connects all the ideas of this chapter with our old friend, the
Euler characteristic.

Poincaré-Hopf index theorem [f'w is a (tangent) vector field with isolated crit-
ical points py, ..., py on an orientable surface M, then Y _, I(w, p;) = x (M).

Proof: We do a proof by induction on the genus g of M. If g is zero then M is a sphere
and the result is simply Theorem 5.5.11. Inductively assume that the result is true for a
surface of genus g — 1, and suppose M is homeomorphic to g7'. Take a simple closed
curve C on M that does not disconnect M and such that there are no critical points of w
on C. Cut along C and glue in disks along each of the two resulting boundary circles to
produce a surface M* of genus g — 1 (Figure 5.37).

We extend the vector field w to the interior of the two disks. To do so, imagine the
disks as flattened disks in the plane and simply extend the vector field radially. That is,

FIGURE 5.37

Cut a surface along a non-disconnecting curve and glue in disks to create a surface with
lower genus.

w(p)

w(q)

FIGURE 5.38

Extend the vector field radially
from the boundary of the disk to the
interior.

along each ray from the center of the disk to a point p on the boundary, assign the vector
r - w(p) where r is the distance from the center of the disk (Figure 5.38).

Let’s denote the resulting vector field on M* by w*. Notice that the two disks we
glued in could be glued to each other to form a sphere S?, and since w* restricted to the
boundaries of both these disks matches w on C, w* gives a vector field on S?. We know
by Theorem 5.5.11 that the sum of the indices of the critical points of w* on S? is 2. By
the induction hypothesis, the sum of the indices of w* on M* is x (M*) =2 —2(g — 1).

So we have
n

Y I(pi,w)+2=2-2@- 1),

i=1

or equivalently,

n
> I(pi,w)=2-2g = x(M),
i=1
completing the proof.
[Note: This theorem is also true for nonorientable surfaces, but it takes a different
proof.] "
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FIGURE 5.39

The level sets of the
height function on this
upright torus give a
vector field with two
saddles and two
centers.

EXERCISE 5.5.16 In Example 5.5.8, we saw a vector field on T all of whose integral
curves are simple closed curves. Are there such examples on any other surface?

Example 5.5.17 Suppose we want to draw a phase portrait on T with exactly two
saddles and whatever other critical points are needed. We first notice that each
saddle has index —1, so we need the other critical points to have indices totaling
+2 so that the entire sum will be 0 = x(T). One way of doing this is to have
two more critical points, each of index +1. Sources, sinks, and centers provide
easy ways of producing critical points of index +1. We can, for example, stand the
torus on end and take the level sets of the height function as the integral curves, as
illustrated in Figure 5.39.

Example 5.5.18 Suppose we want to draw a phase portrait on S? with exactly
two critical points, one of index 2. We first notice that the other must be index
0 since the sum of the two indices must equal x (S?) = 2. A dipole has index
2. What is a critical point with index 0? We know the index of a critical point

is given by 1 + . Setting this expression equal to 0 and solving for &
yields H = & + 2. For example, if we take £ = 0 and H = 2, we get index
0. An index O critical point is shown in Figure 5.40. We have simply made the
flow stationary at a point along one orbit (creating a critical point). Notice the
nearby orbits must slow down as they pass the critical point (to preserve continu-
ity), but that is not obvious from the phase portrait. Now put a vector field with
a dipole on S?, and along any integral curve insert a critical point like the one in
Figure 5.40.
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FIGURE 5.40
A critical point of index 0

(a) (b) ()

FIGURE 5.41

The task is to complete the drawing in (a) to a vector field on the
sphere. Two possible solutions are given in (b) and (c). Can you find
others?

Example 5.5.19 Suppose we wish to complete the sketch shown in Figure 5.41(a)
to a vector field on S?. We know that the sum of the indices of the critical points
must be 2. The saddle has index —1. We have many options; two possible solutions
are shown in Figure 5.41(b) and (c).

In Figure 5.41(b), we have added three centers (each index 1). One is at the
top vertex of the plane model, one is at the bottom, and the third is along the edge.
Notice that the third critical point is shown as two points, with those points being
identified. You should draw in the arrows along the integral curves to ensure that
they can be consistently oriented.

In Figure 5.41(c), we have added five critical points to the existing saddle.
What is the index of each one? Is the total index sum equal to 2 as it should be?

Can you find other ways of completing Figure 5.41(a)?

EXERCISE 5.5.20 Draw the phase portrait of a vector field on the sphere with

a. Exactly three critical points
b. One saddle and whatever else you need
c. A “monkey saddle” (six hyperbolic sectors) and whatever else you need

EXERCISE 5.5.21 Draw a phase portrait on the torus (use the plane model if it is easier)
with

a. A center and a saddle as the only critical points
b. Exactly three critical points, one of which has index —1
c. A dipole and whatever else you need ,

.




150  BEGINNING TOPOLOGY

y Al"
N—
o
o

4

_—
a

Yes, it is K.
() (d)

FIGURE 5.42

Complete these partial phase portraits. Make sure that the
Poincaré-Hopf theorem holds in each case.

EXERCISE 5.5.22 Suppose we have a vector field on 2T with exactly one critical point.
What is its index? Draw a phase portrait.

*EXERCISE 5.5.23 Which orientable surfaces have vector fields with precisely one crit-
ical point? Describe a procedure for constructing examples. What if you want precisely
two critical points?

EXERCISE 5.5.24 Figure 5.42 shows parts of phase portraits on the plane models of
some surfaces. For each figure, clearly indicate the necessary critical points, finding the
index of each such critical point, and verify that the Poincaré—Hopf theorem does hold
in that case.

PROJECT 5.5.25 In the exercises, we have seen various examples in which certain
conditions are placed upon some of the critical points of a vector field on a surface and
you are asked to complete the vector field in some way. Are there any combinations

.
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that can’t be completed? That is, if given some number of critical points with indices
specified, with the sum of their indices equal to the Euler characteristic of the surface,
can you always construct a vector field on the entire surface with precisely these critical
points? Explain your reasoning.
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