Here are some problems for us getting started in general topology:

From the book: $\S 2 4,6$

Is the collection $\mathcal{T}_{\infty} = \{U \mid X \setminus U \text{ is infinite or empty or all of } X\}$ a topology on X?

Show that the set of open (two-dimensional) rectangles forms a basis for a topology on \mathbb{R}^2 . Show that the set of open disks also forms a basis for a topology on \mathbb{R}^2 .

Find three topologies on the five point set $X = \{a, b, c, d, e\}$ such that the first topology is a subset of the second and the second is a subset of the third, without using either the discrete or indiscrete topologies. Find a topology on X that is neither a subset nor a superset of each of the first three that you found.

Let X be a set and assume $p \in X$. Show that the collection \mathcal{P} , consisting of \emptyset , X, and all subsets of X containing p, is a topology on X. Also show that the collection \mathcal{E} , consisting of \emptyset , X, and all subsets of X that exclude p, is a topology on X.

An arithmetic progression in \mathbb{Z} is a set $A_{a,b} = \{a + nb \mid n \in \mathbb{Z}\}$ with $a, b \in \mathbb{Z}$ and $b \neq 0$. Prove that the collection of arithmetic progressions $\mathcal{A} = \{A_{a,b} \mid a, b \in \mathbb{Z}, b \neq 0\}$ is a basis for a topology on \mathbb{Z} .

Paraphrase on basis:

A collection of subsets \mathcal{B} of a set X is a basis for a topology if it satisfies:

B1: For each $x \in X$, there exists a $U \in \mathcal{B}$ such that $x \in U$.

B2: For each $x \in X$, if $x \in U, V \in \mathcal{B}$, then there exists a $W \in \mathcal{B}$ such that $x \in W \subset U \cap V$.

We define a set U to be open in the topology generated by \mathcal{B} , (which we denote $\mathcal{T}_{\mathcal{B}}$) if for all $x \in U$, there exists a $V \in \mathcal{B}$ such that $x \in V \subset U$.

Prove: a set is in $\mathcal{T}_{\mathcal{B}}$ if and only if it is a union of elements of \mathcal{B} . I.e. $\mathcal{T}_{\mathcal{B}} = \{ \cup_{U \in \mathcal{S}} U \mid \mathcal{S} \subset \mathcal{B} \}$

One part of $\S 3$ 4 is to prove that this is a topology on X.

The other part of §3 4 is to prove $\mathfrak{T}_{\mathcal{B}} = \mathfrak{T}_{\mathcal{B}'}$ if and only if for every $x \in X$, if $x \in U \in \mathcal{B}$, then there exists a $V \in \mathcal{B}'$ such that $x \in V \subset U$, and for every $x \in X$, if $x \in V \in \mathcal{B}'$, then there exists a $U \in \mathcal{B}$ such that $x \in U \subset V$.