
Euclidean Algorithm

                        _q_ remainder r
When we divide  b |  a                      this means b (q) + r = a (by our 

method of checking division).  

Because of this, if a number n is such that n | a and n | b, then n | r.  
[In words, if a number divides two numbers, it divides their remainder.]

See:  r = bq - a.  
n | b implies n | bq and n | a implies n | -a
n | bq and n | -a implies that n | bq + (-a) or n | bq - a, that is n | r.

We can use this fact to create a new way to find greatest common divisors.  
This method is called the Euclidean Algorithm.  Given two numbers, for example 
15 and 21.  Let’s find their greatest common divisor, call it d = gcd (15, 21).  

If d | 15 and d | 21, then d | r1 here d | 6.

If d | 6 and d | 15, then d | r2 so d | 3.

If d | 6 and d | 3, then d | r3 so d | 0, but this is obvious.

So, what the best thing we know is that d | 3.  This means d is either 1 or 3.  
Nicely, all of these steps work backwards, because if a number divides the divisor 
and remainder of a division problem, then it divides the original number.  Working 
backwards with 3 . . 

3 | 3 and 3 | 0, therefore 3 | 6
3 | 6 and 3 | 3, so 3 | 15
3 | 15 and 3 | 6, so 3 | 21
Therefore 3 | 15 and 3 | 21.   Since 3 | 15 and 3 | 21and d | 3, d = 3.

Notebook work:  Use Euclidean Algorithm to find the greatest common 
divisor for each of these pairs.  For each one, check the backwards proof as above.  

(24, 42)
(210, 252)
(40, 72)
(22, 27)
(17, 51)



Sums of multiples

This work with the Euclidean Algorithm tells us a little more than just the 
greatest common divisor.  For this reason, this is a particularly valuable method.  
Returning to our example of 15 and 21 . . 

remember

21 ÷ 15 = 1 r 6
15 ÷ 6 = 2 r 3
6 ÷ 3 = 2 r 0

Focus on the greatest common divisor, here 3.  It first shows up as a 
remainder . . .

2 (6) + 3 = 15, that is 3 = 15 - 2 (6).
But, 6 also shows up as a remainder
6 = 21 - 15
So, 3 = 15 - 2(21 - 15) = 3(15) - 2(21) = 45 - 42 = 3.
Ok, that’s obvious, but there’s something important here . . 
3 = 3 (15) - 2 (21), that is 3, the greatest common divisor, can be written as a 

sum of multiples of the two original numbers, 15 and 21.  

By the same reasoning and computation, this is always true, that is the 
greatest common divisor can always be written as a sum of multiples of the two 
original numbers.  

Notebook work:  In each of the five examples used last time, write the 
greatest common divisor as the sum of multiples of the two original numbers.



Primes are Irreducible

Theorem:  If p is a prime number, p | ab implies p | a or p | b.

Notebook work:  This is not true if p is not prime.  Create two 
counterexamples to this where p is not prime.

Proof of theorem:  Assume p | ab.

We want to prove that either p | a or p | b.  We’ll start be assuming p † a, 
and prove p | b.  If we can do this, we’ll be done.

Notebook work:  Explain briefly why this method of argument shows that if 
p | ab then p | a or p | b.

So assume p † a.  Because p is prime, p has only 1 and p as factors.  
Therefore the greatest common divisor of p and a must be either 1 or p.  But, here 
because p † a, the greatest common divisor of p and a must be 1 (otherwise it 
would be p and p would divide a).  

By the previous page, we can thus write 1 as a sum of multiples of p and a:

1 = sa + tp

Multiply both sides by b:

b = sab + tpb

Now, we assumed p | ab, so it must be true that p | sab.  Clearly p | tpb    
(this is clear, right?)

Notebook work:  Why do we know if p | ab then p | sab?

So, p | sab and p | tpb, therefore p | sab + tpb = b, so p | b as desired.



Fundamental Theorem of Arithmetic:  Prime factorization of natural 
numbers is unique up to order.  

[This is the theorem that we use whenever we say “find the prime 
factorization of these numbers.”  Otherwise how do we know that there aren’t 
seven different prime factorizations?]  

Proof of FTA:  Suppose that things labeled pi are some prime numbers, and 
so are things labeled qi.  

Suppose that some number, a ! 1, has two prime factorizations.  Particularly 
suppose that a = p1 p2 … pm = q1 q2 … qn.  We want to show that the collection 
of primes in these lists is the same, maybe with a different order.

We see that p1 | a.  Therefore p1 | q1 q2 … qn

By the theorem that says primes are irreducible, p1 | q1 or p1 | q2 … qn.

If p1 | q1, then p1 = q1.  
If p1 | q2 … qn, then p1 | q2 or p1 | q3 … qn

and so on, eventually p1 | qi for some i, and hence p1 = qi.

Divide both expressions for a by p1 = qi.  Then repeat this procedure with 
p2.  This process matches prime factors on the left with prime factors on the right.  
Because it continues, it will match up all the prime factors until it is done.  Then all 
the prime factors have been paired with each other, and it is shown that the two 
prime factorizations of a had the same prime factors.  

This concludes the proof of the fundamental theorem of arithmetic.  

Notebook work:  Why did I assume a ! 1?  What about that case?


