Number Theory 5: LCM and GCD

Objectives

- ⇒ To learn what is meant by the *least common multiple* (LCM) of a set of integers, and develop an algorithm for finding it
- ⇒ To learn what is meant by the *greatest common divisor* (GCD) of a set of integers, and develop an algorithm for finding it

Activity 1: Finding least common multiples

The *least common multiple* (LCM) of two integers x and y is the smallest integer that is a multiple of both x and y. In other words, it is the smallest number that both x and y will divide. We denote the least common multiple of x and y LCM (x, y). Similarly, the LCM of a set of integers is the smallest number that is divisible by all of the integers in the set. One of your tasks today will be to come up with a procedure for finding the LCM of two or more integers.

1. Find the LCM of:

a. 4 and 9

b. 4 and 14

c. 6 and 25

d. 6 and 21

e. 8 and 15

f. 8 and 12

g. 3 · 5 and 2 · 7 h.

h. 3 · 5 and 3 · 7

i. $p_1 p_2$ and $p_3 p_4$ j. $p_1 p_2$ and $p_1 p_3$

2.	a.	Under what circumstances is the LCM of two numbers equal to their product ?					
	b.	product ? Give an example of two numbers for which the LCM is less than their product.					
	C.						
	d.						
3.	Find the LCM of:						
	a.	5 and 20	b.	16 and 48			
	C.	30 and 6	d.	5 and 1			
	e.	p_1 and $p_1 p_2 p_3$	f.	p_1 and $p_1 p_2^3$			
	g.	9,36 and 12	h.	10, 100 and 1000			

4. Write a general statement about the LCM of two integers if one of them is a multiple of the other.

5. Complete the following table.

	numbers	numbers in factored form	factored form of LCM	<u>LCM</u>
28	4 , 14	2 • 2, 2 • 7	2 • 2 • 7	
	6 , 21			
	8 , 12	2 ³ , 2 ² • 3	23 - 3	24
	10 , 16			
	56 , 24			
	36 , 120			
		$7^2 \cdot 5$, $2^2 \cdot 5^3 \cdot 7$		
		p ₁ p ₂ ³ p ₃ , p ₁ ⁴ p ₂ p ₃		
	18 , 21 , 35			
	24 , 22 , 27			

6. Write an explanation of how to find the LCM of two (or more) integers. The first step in your explanation should be "Factor each integer into powers of primes"

Activity 2: Finding greatest common divisors

The *greatest common divisor* (GCD) of two integers x and y is the largest integer that divides both x and y. We denote the greatest common divisor of x and y GCD (x, y). Similarly, the GCD of a set of integers is the largest number that divides all of the integers in the set. Your second task today will be to come up with a procedure for finding the GCD of two or more integers.

- 1. Find the GCD of:
 - a. 1 and 14

b. 15 and 16

c. 8 and 25

- d. 24 and 49
- e. p₁ and p₂ where p₁ and p₂ represent prime numbers.
- 2. Two integers that have no common factor (other than 1) are called *relatively prime*. Write a statement about the GCD of two integers that are relatively prime.

3. Complete the table below.

	<u>numbers</u>	numbers in factored form	factored form of GCD	<u>GCD</u>
3	6 , 9	2 • 3, 3 • 3	3	
6	24 , 42	$2^3 \cdot 3$, $2 \cdot 3 \cdot 7$	2 • 3	
	16 , 96			
	50 , 75			
	252 , 210			
		33 • 54, 2 • 3 • 53		
		$p_1^2 p_2^3$, $p_1^3 p_2^2$		
	6 , 15 , 21			
	24 , 22 , 27			

4. Write a general procedure for finding the GCD of two or more integers. The first step in the procedure should be "Factor each integer into powers of primes."