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The perplex numbers P (also called the hyperbolic numbers [6, 7], the spacetime num-
bers [2, 3], and sometimes the split-complex numbers [8]) are, like the complexes, a
two-dimensional number system over the reals. Every perplex number z has the form
Z =1t + xh, where ¢ and x are real numbers. But £, rather than being a square root of
minus 1, is a square root of plus 1, an extra such root, supplementing +1, the preexist-
ing, well-known, customary and usual, real square roots of 1.

The perplex numbers tend to be rediscovered every few years and put to various
uses. They are related, for example, to the hyperbolic geometry Einstein used to define
special relativity. As Sobczyk [6] argues, they should get more attention from mathe-
maticians and, in particular, deserve to be taught to undergraduates.

In this article, we review the basic properties of the perplex numbers, and then state
and prove a fundamental theorem of algebra for them. In fact, rather surprisingly, we
have a whole series of fundamental theorems for this intriguing, relatively obscure
number system.

Properties of the perplex humbers

If z =t + xh is a perplex number, then ¢ is called the real part of z and x is called the
hyperbolic part. Alternatively, ¢ is often referred to as the time component, and x the
space component [2]. (Fjelstad [5] dubbed x the hallucinatory part.)

Given perplex numbers z; = t; + x4 and z, = £, + x2h, we have the basic opera-
tions: :
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21+ =00 +1)+ (x; +X2)h,
21 — 23 = (4 — &) + (x1 — x)h,

2122 = (Wit + x1%2) + (a1 + Lix)h.

For division, it is usually advantageous to rationalize the denominator. To do this, we
need a perplex conjugate: 7 = t — xh. Then we can write

21 _uzz _ (+xnh)(—xh)  nh —xix+ (X — hx)h
 wm (h+xh)(n-xh) 5 —x3 |

In particular, we see that for z = ¢ + x4, its multiplicative inverse is

1 'z t—xh
z @ 1r—x?

I

As with the complex numbers, the quantity zz = t*> — x* is a real number; unlike
the complex numbers, it can be negative or zero. We see that any perplex number
z =1t+ xh with t = £x is a zero divisor. This means that while C is a field, the
perplex numbers P are not even an integral domain, just a commutative ring.

We next define the perplex modulus, or absolute value, of z = ¢ + xh to be

lzlp = Vlzz] = V]2 = x2|.

Note that |z{p > O for all z € P. From above, we note that 1/z exists for any perplex
number z such that |z|p 7 0, that is, for all z € IP but our zero divisors.

We can identify the number z = ¢ + x/ in the perplex plane with the point or vector
(¢, x). (See Figure 1.) We can then think about a “unit circle” in our plane, a graph of
the set of perplex numbers z such that |z|p = 1. This will be a pair of hyperbolae with
intercepts on the horizontal z-axis at 1 and —1 and on the vertical x-axis at 2 and —h.

Figure 1. The perplex “unit circle.” The dashed lines are the zero divisors.

The perplex plane is often thought of as a two-dimensional projection of four—
dimensional spacetime.

Definition. For a perplex number z = ¢ + xh:
* If |z] > |x|, then z is a time-like number.
* If |¢] < |x|, then z is a space-like number.
* If |¢] = |x|, then z is a light-like number.
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