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Definition. Let p : E — B be a continuous sprjective_Tap. The open §et U oft hli
is said to be evenly covered by p if the inverse image p~" (U) can.bej wnt;en 2:8 :
union of disjoint open sets V, in E such that fc.)r each «, Fhe restriction o p . 0 af
is a homeomorphism of V,, onto U. The collection {Vy} will be called a partition o

p~1(U) into slices.

If I/ is an open set that is evenly covered b:f' p, we often picture thg set Pﬂ: |.f-!;fi ]rl
as a “stack of pancakes,” each having the same size and shaPe as U, floating 11}1l tf':f ’
above U; the map p squashes them all down onto U.. See. Figure 53.1. I.\Iotclzt ati 1
is evenly covered by p and W is an open set contained in U, then W is also evenly

covered by p.

p i)

Figure 53.1

Definition. Let p : E — B be continuous and surjective. If every po'int bof B hgs };1
neighborhood U that is evenly covered by p, then p is called a covering map, an
is said to be a covering space of B.

Note that if p : E — B is a covering map, then f(?r each _b € B.theE S:Ttl){-1
space p~ (k) of E has the discrete topology. For aal—::h 5.]mﬁ. Vi is ulapen_:nb}
intersects the set p~ ' (b) in a single point; therefore, this point is open in p (&) .

Note also that if p : E — B is a covering map, theq p is an open r?ap.h tg;
suppose A is an open set of E. Given x € p(A), chi)ose a ne1g}.xborhood U of x tl .';1“1
evenly covered by p. Let {V,} be a partition of p~ (U ) into slices. There is Aa .pm ﬂ
of A such that p(y) = x; let Vg be the slice containing y. Thg set Vg N 1shopeet
in E and hence open in Vg; because p maps V_ﬂ homeomprphlcally onto U, t § S g
p(Vg N A) is open in U and hence open in B; it is thus a neighborhood of x containe

in p(A), as desired.
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EXAMPLE 1. Let X be any space; leti : X — X be the identity map.. Then / is a
covering map (of the most trivial sort). More generally, let E be the space X x {1, ..., n}
consisting of n disjoint copies of X. The map p . E — X given by p(x,{) = x for all ;

is again a (rather trivial) covering map. In this case, we can picture the entire space E as a
stack of pancakes over X.

In practice, one often restricts oneself to covering spaces that are path connected,
to eliminate trivial coverings of the pancake-stack variety. An example of such a non-
trivial covering space is the following:

Theorem 53.1. Themapp : R — S! given by the equation

p(x) = (cos2mx, sin 2 x)
is a covering map.

One can picture p as a function that wraps the real line R around the circle $!, and
in the process maps each interval [n,n + 1} onto S1.

Proof.  The fact that p is a covering map comes from elementary properties of the sine
and cosine functions. Consider, for example, the subset U of §! consisting of those
points having positive first coordinate. The set P~ (U) consists of those points x for
which cos 27 x is positive; that is, it is the union of the intervals

Vi=(n—$.n+D),

for all n € Z. See Figure 53.2. Now, restricted to any closed interval V,,, the map o
is injective becaunse sin2xx is strictly monotonic on such an interval. Fucthermore,
p carries V, surjectively onto U, and V, to U , by the intermediate value theorem.
Since V,, is compact, p|V, is a homeomorphism of V,, with U. In particular, p|V,, is a
homeomorphism of V,, with U.
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Figure 53.2

Similar arguments can be applied to the intersections of S! with the upper and
lower open half-planes, and with the open left-hand half-plane. These open sets
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cover S', and each of them is evenly covered by p. Hence p : R — § lis a cov-
ering map. |

If p : E — B is a covering map, then p is a local homeomorphism of £ with B.
That is, each point e of E has a neighborhood that is mapped homeomorphically by p
onto an open subset of B. The condition that p be a local homeomorphism does not
suffice, however, to ensure that p is a covering map, as the following example shows.

EXAMPLE 2. Themap p : Ry — S! given by the equation
p(x) = (cos2mx, sin 27 x)

is surjective, and it is a local homeomorphism. See Figure 53.3. But it is not a covering
map, for the point by = (1, 0) has no neighborhood U that is evenly covered by p. The
typical neighborhood U of by has an inverse image consisting of small neighborhoods V,
of each integer n for n > 0, along with a small interval Vg of the form (0, ¢). Each of the
intervals V, for n > 0 is mapped homeomorphically onto U by the map p, but the interval

Vj is only imbedded in U by p.

v, v, v,
E—e)—F
0 1 2

Figure 53.3

EXAMPLE 3.
map p : S' — S! given in equations by

plzl = i

[Here we consider S! as the subset of the complex plane € consisting of those complex

numbers z with |z] = 1.] We leave it to you to check that p is a covering map.

Example 2 shows that the map obtained by restricting a covering map may not be

a covering map. Here is one situation where it will be a covering map:

Theorem 53.2. Let p : £ — B be a covering map. If By is a subspace of B, and if
Ey = p"l(Bo), then the map po : Eg — Bo obtained by restricting p is a covering

map.

The preceding example might lead you to think that the real line R is the
only connected covering space of the circle § ! This is not so. Consider, for example, the
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Proaf.  Given by e Ehl}, let £ be dan open set in & containing by that is evenly covered
_bl"’ pi let [V, } be a partition of p—! (1) into slices, Then t/ MByisa ncighl:-urh}:md TL

in Ay, unq the sets Vi, N Eg are disjoint open sets in £y whose union is p~ Lig r*,qjﬁbu
and each is mapped homeomorphically onto U N By by p. r Uﬁ

Theorem 53.3. Itp:E— Bandp : E' — B are covering maps, then
pxp  ExE — BxB
1S a covering map.
Proof. Given b € Band b' € B, let U and U’ be neighborhoods of & and &'

respectivel y i
p ely, that are evenly covered by p and p’, respectively. Let {V,) and {Vé} be

.« . _1 —a
pafitlt.lons of /p (U) and (p")y~N (U, respectively, into slices. Then the inverse image
gfl.g P x p" of the open set U x U’ is the union of all the sets Va X Vlé These are
1sjoint open sets of £ ! i i |
-ie p x E', and each is mapped homeomorphically onto U x U/’ b-y

EXAMPLE 4. Consider the space T = S! x S!: it is called the torus. The product map
pxp:RxR-— §'xgs!

;se I;ll ggv;eriélg 1c])f thi torus by the plane R?, where p denotes the covering map of Theo
.L. Each of the unit squares [, n + 1] x [m irely
around the torus. See Figure 53.4. Ao I PR £ e by 2 ey

pPxp

HE

Figure 53.4

? Rin this ﬁgure4, we have p%ctured the torus not as the product S! x S, which is a subspace
o and thus difficult to visualize, but as the familiar doughnut-shaped surface D in [R3

obtained by rotating the circle C; in the xz-plane of radius % centered at (1, 0, 0) about

the Z-axis. It is not hard to see that S' x §! is homeomorphic with the surface D. Let C
pc the circle of .radius L in the xy-plane centered at the origin. Then let us ma C X C2
into D by defining f(a x b) to be that point into which « is carried when one Il)‘otaltes th2
01.rcle C; about the z-axis until its center hits the point b. See Figure 53.5. The ma ;
will be a hgmeomorphism of C1 x C, with D, as you can check mentall.y - If you Wli)sh
you can wite equations for f* and check continuity, injectivity, and sur'ec.tivit directl ’
(Continuity of £~! will follow from compactness of C; x Cy.) , ! ’ i
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Figure 53.5

EXAMPLE 5. Consider the covering map p x p of the preceding example. Let by denote
the point p(0) of S 1. and let By denote the subspace

Bo = (S x bo) U (bo x S

of S! x §1. Then By is the union of two circles thag have a point vin cqmmolré':,we sometimes
call it the figure-eight space. The space Ep = p~ (Byp) is the “infinite gr1

Eo=Rx Z)U(Z xR)
pictured in Figure 53.4. The map po : Eo — Bo obtained by restricting p x p is thus a

ering map. . .
- Thf inﬁﬁite grid is but one covering space of the figure eight; we shall see others later

on.
EXAMPLE 6. Consider the covering map
pXi:RXR+——)S1 x Ry,

where i is the identity map of R and p is the map of Theorem 53.1. If we take. the §tandard
homeomorphism of § I x Ry with R? — 0, sending x x t to tx, the composite gives us a

covering

Rx R — R2—0

The Fundamental Group of the Circle 3

RXR, l

Figure 53.6

Exercises

- Let ¥ have the discrete topology. Show that if p: X x Y — X is projection on

the first coordinate, then P 18 a covering map.

- Let p : E — B be continuous and surjective. Suppose that U is an open set of B

that is evenly covered by p. Show that if U is connected, then the partition of
p~1(U) into slices is unique.

. Let p : E — B be a covering map; let B be connected. Show that if P~ (ko)

has k elements for some by € B, then p~L(b) has k elements for every b € B.
In such a case, E is called a k-fold covering of B.

.Letg: X - Yandr:Y — Zbe covering maps; let p = r o ¢. Show that if

r~1(z) is finite for each z € Z , then p is a covering map.

. Show that the map of Example 3 is a covering map. Generalize to the map

p(2) =27".

. Let p: E — B be a covering map.

(a) If B is Hausdorff, regular, completely regular, or locally compact Hausdorff,
then so is E. [Hint: If {V,} is a partition of p~!(U) into slices, and C is a
closed set of B such that € — U, then p"{t‘?) M Vi is a closed set of £.]

(b) If B is compact and p~'(b) is finite for each b € B, then E is compact.
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3 . It is pictured in Figure 53.6. This cov- . e
ghihe punefjred Pl?nehby thzolz)efncgfflir;ﬁrﬂi?; aslt;glRiemann surface corresponding The study of covering spaces of a space X is intimately related to the study of the
ering map appears 1n'the S;En)c/tion fundamental group of X. In this section, we establish the crucial links between the
to the complex logarithm ' two concepts, and compute the fundamental group of the circle.




CHAPTER V

Covering Spaces

§1. Introduction

Let X be a topological space: a covering space of X consists of a space X
and a continuous map p of X onto X which satisfies a certain very strong
smoothness requirement. The precise definition is given below. The theory of
covering spaces is important not only in topology, but also in related disci-
plines such as differential geometry, the theory of Lie groups, and the theory
of Riemann surfaces.

The theory of covering spaces is closely connected with the study of the
fundamental group. Many basic topological questions about covering spaces
can be reduced to purely algebraic questions about the fundamental groups
of the various spaces involved. It would be practically impossible to give a
complete exposition of either one of these two topies without also taking up
the other.

§2. Definition and Some Examples of
Covering Spaces

In this chapter, we shall assume that all spaces are arcwise connected and
locally arcwise connected (see §11.2 for the definition) unless otherwise stated.
To save words, we shall not keep repeating this assumption. On the other
hand, it is not necessary to assume that the spaces we are dealing with satisfy
any separation axioms.
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Definition. Let X be a topological space. A covering space of X is a pair
consisting of a space X and a continuous map p: X + X such that the
following condition holds: Each point x & X' has an Iarm-{:stvcnnnuctcd open
neighborhood U such that each arc component of p (l[f} 15 mapped mp:ulog,u-
cally onto U by p [in particular, it ia assumed th-%l P (U)is num:_mptyj. Any
open neighborhood U that satisfies the condition JI..lST.ISLH_iEd is called an
elementary neighborhood. The map p is often called a projection.

To clarify this definition, we now give several e).(am_ples. In some of the
examples our discussion will be rather informal, w?nch is .ofte'n.morc }.1e1pful
than a more rigorous and formal discussion in getting an intuitive feeling for
the concept of covering space.

Examples
2.1. Let p: R — S! be defined by
p(t) = (sin t, cos t)

for any t € R. Then, the pair (R, p) is a covering space of the unit c?rcle St Any
open subinterval of the circle S 1 can be serve as an elementary neighborhood.
This is one of the simplest and most important examples. o

2.2. Let us use polar coordinates (r, §) in the plane R2. Thc.n}, the unit c1r'c1e
S! is defined by the condition r = 1. For any integer n, positive or negative,
define a map p,: S* — S' by the equation

p.(1, 8) = (1, nd).

The map p, wraps the circle around itself n times. It is .readily seen that, if
n # 0, the pair (S*, p,) is a covering space of St. Once again, any proper open
interval in 8 is an elementary neighborhood. )

2.3, If X isany space, and i : X —+ X denotes the identity map, F%]EI‘I the pair
(X. i} is a trivial example of a covering space of X. Similarly, if f is a_humeu-
morphism of ¥ onto X, then (Y, f)is a covering space of X, w}_uch is Elllﬁu a
rather trivial example. Later in this chapter, we shall prove that, if X is simply
connected, then any covering space of X is one of these trivial covering spaces.
Thus, we can only hope for nontrivial examples of covering spaces in the case
of spaces that are not simply connected. .

24, 1{(X, p) is a covering space of X, and (¥, g) is a covering space of ¥,
then (¥ x ¥, p x q) is a covering space of X x Y [the map p x qis defined
by (p x 9)(x, y) = (px, qy)]. We leave the proof to the reader.. It is clear that,
if U is an elementary neighborhood of the point x € X and Vis an elementary
neighborhood of the point y € Y, then U x ¥ is an elementary neighborhood
of (x,y)e X x Y.

Using this result and Examples 2.1 and 2.2, the reader. can construct
examples of covering spaces of the torus T = §* x § !, In particular, the ple}ne
R? = R x R, the cylinder R x S%, or the torus itself can serve as a covering
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FIGURE 5.1. A surface of genus 2 as a quotient space of a bordered surface.

space of the torus. The reader should try to visualize the projection p involved
in each of these cases.

2.5. In §L.4, the projective plane P was defined as a quotient space of the
2-sphere S Let p:S* — P denote the natural map. Then, it is readily seen
that (S%, p) is a covering space of P. We can take as an elementary neighbor-
hood of any point x € P an open disc containing x.

2.6. Let S be a compact, orientable surface of genus 2. We shall show how
to construct a great variety of covering spaces of S. Note that we can regard
S as a quotient space of a compact, bordered surface M, where M is orientable,
of genus 0, and its boundary consists of four circles C;, C;, C;, and C;. The
natural map M — S identifies the boundary circles in pairs (see Figure 5.1):
Ci and Cy are identified to a single circle C; by means of a homeomorphism
h; of C; onto C{, i = 1,2. We can also think of M as obtained from S by cutting
along the circles C, and C,.

Let D be the finite set {1, 2, 3, ..., n} with the discrete topology and g : M x
D — M, the projection of the product space onto the first factor. We can think
of M x D as consisting of n disjoint copies of M, each of which is mapped
homeomorphically onto M by g. We now describe how to form a quotient
space of M x D, which will be a connected 2-manifold S and such that the

map g will induce a map p:§— S of quotient spaces; i.c., so we will have a
commutative diagram

MXD—)§

.
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It will turn out that (S, p) is a covering space of S. The identification by which
we form § from M x D will all be of the following form: The circle C; x {j}
is identified with the circle € x {k} by a homeomorphism which sends the
point (x, j) onto the point (h;(x), k), where i = 1 or 2, and j and k are positive
integers <n. We can carry out this identification of circles in pairs in many
different ways, so long as we obtain a space S which is connected. For example,
in the case where n = 3, we could carry out the identifications according to
the following scheme: Identify

C; x {1} with Cf x {2},
C, x {2} with Cf x {3},
Cy x {3} with Cy x {1},
C, x {1} with Cj x {2},
C, x {2} with Cj x {1},
C, x {3} with Cj x {3}.
We leave it to the reader to concoct other examples and to prove that in each
case we actually obtain a covering space. Obviously, we could use a similar
procedure to obtain examples of covering spaces of surfaces of higher genus.
2.7. Let X be a subset of the plane consisting of two circles tangent at a
point:
C,={(ny:x-1+y* =1}
Cr={(xy):x+ 1) +y* =1}
X = Cl | Cz.
We shall give two different examples of covering spaces of X. For the first
example, let X denote the set of all points (x, y) € R? such that x or y (or both)
is an integer; X is a union of horizontal and vertical straight lines. Define
p: X - X by the formula
(1 + cos(m — 2mx), sin 2nx) if y is an integer,
(—1) + cos 2zy, sin 27y) if x is an integer.

plx, y) = {

The map p wraps each horizontal line around the circle C, and each vertical
line around the circle C,.

For the second example, let D, denote the circle {(x, y) € R*:(x — 1) +
(y — 3m)? = 1} for any integer n, positive, negative, or zero, and let L denote
the vertical line {(x, y): x = 0}. The circles D, are pairwise disjoint, and each
is tangent to the line L. Define

X’:LU(U D,,),

neZ

and p': X' — X as follows: Let p’ map each circle D, homeomorphically onto
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C, by a vertical translation of the proper amount. Let p’ wrap the line L
around the circle C, in accordance with the formula

2 2
p'(0,y) = ( —1 +cos %,Sm-%).
Then, (X', p') is a covering space of X.
2.8. Here is an exampie for students who have at least a slight familiarity
with the theory of functions of a complex variable. As usual, let
Z"
n!

M8

exp(z) =

Il

n=0

denote the exponential function, where z is any complex number. The expo-
nential function is a map, exp : C — C — {0}, where C denotes the complex
plane. We assert that (C, exp) is a covering space of C — {0}, and that, for any
z e C — {0}, the open disc

U,={weC:|w-—z| <|z|}

is an elementary neighborhood. To prove this, we would have to show that
any component V of the inverse image of U, is mapped homeomorphically
onto U, by exp; i.e., that there exists a continuous function f: U, —» V such
that, for any w € U,,

expLf(w)] = w,

and, foranyve ¥,
flexpv) =v.

Such a function f is called a “branch of the logarithm function in the disc U,”
in books on complex variables, and in the course of establishing the properties
of the logarithm, the required facts are proved.

Recall that, if z = x + iy, then exp z = (exp x)*(cos y + isin y), where
exp x = ¢* now refers to the more familiar real exponential function,
exp:R— {teR:t > 0}. From this formula, the following fact emerges. We
can regard C = R x Rand C — {0} = {re R:r > 0} x S' (use polar coordi-
nates). Then, we can consider the map exp:C —» C — {0} as a map p x q:
RxR-{reR:r>0}xS' where p(x)=e* and gq(y)=/(cosy,sin )
Compare Examples 2.1, 2.3, and 2.4.

2.9. We now give another example from the theory of functions of a
complex variable. For any integer n # 0,let p, : C — Cbe defined by p,(z) = z".
Then, (C — {0}, p,) is a covering space of C — {0}. The proof is given in
books on complex variables when the existence and properties of the various
“branches” of the function \’/; are discussed; the situation is analogous to that
in Example 2.8. Note that it is necessary to omit O from the domain and range
of the function p,; otherwise we would not have a covering space. As in
Example 2.8, we can consider C — {0} = {re R:r > 0} x S' and decompose
the covering space (C — {0}, p,) into the Cartesian product of two covering
spaces.
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To clarify further the concept of covering space, we shall give some ex-
amples which are almost, but not quite, covering spaces.

Definition. A continuous map f: X — Y is a local homeomorphism if each
point x € X has an open neighborhood V such that f(V) is open and f maps
V topologically onto f(V).

It is readily proved that, if (X, p) is a covering space of X, then p is a local
homeomorphism (the proof depends on the fact that in a locally arcwise
connected space, the arc components of an open set are open). Also, the
inclusion map of an open subset of a toplogical space into the whole space is
a local homeomorphism. Finally, the composition of two local homeomor-
phisms is again a local homeomorphism. Thus, we can construct many ex-
amples of local homeomorphisms.

On the other hand, it is easy to construct examples of local homeomor-
phisms which are onto maps, but not covering spaces. For example, let p map
the open interval (0, 10) onto the circle S 1 as follows:

p(t) = (cos ¢, sin t).

Then, p is a local homeomorphism, but ((0, 10), p) is not a covering space of
S1. (Which points of S* fail to have an elementary neighborhood?) More
generally, if (X, p) is a covering space of X, and V is a connected, open, proper
subset of X, then p|V is a local homeomorphism, but (V, p|V)is nota covering
space of X. It is important to keep this distinction between covering spaces
and local homeomorphisms in mind.

Note that a local homeomorphism is an open map. In particular, if X, p)
is a covering space of X, then p is an open map.

We next give a lemma which makes it possible to give many additional
examples of covering spaces.

Lemma 2.1. Let (X, p) be a covering space of X, let Abea su~bspace of X which
is arcwise connected and locally arcwise connected, and let A be an arc compo-
nent of p~*(A). Then, (4, p|A) is a covering space of A.

The proof is immediate. The two covering spaces described in Example 2.7
can also be obtained by applying this lemma to the covering spaces R? =R x
R and R x S! of the torus S* x S described in Example 2.4 [choose A4 to be
the following subset of S* x S': A = (S! x {xo}) U ({xe} x §'), where x, €
S T.

]We close this section by stating two of the principal problems in the theory
of covering spaces:

(a) Give necessary and sufficient conditions for two covering spaces
(X,, p;) and (X,,p,) of X to be isomorphic (by definition, they are

|
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isomorphic if and only if there exists a homeomorphism h of X, onto
X, such that p,h = p,). '

{b) Given a space X, determine all possible covering spaces of X (up to
isomorphism).

As we shall see, these problems have reasonable answers in terms of the
fundamental groups of the spaces involved.

EXERCISES

2.1. Prove that the following four conditions on a topological space are equivalent:

(a) They are components of any open subset are open.

(b) Every point has a basic family of arcwise-connected open neighborhoods.

(c) Every point has a basic family of arcwise-connected neighborhoods (they are
not assumed to be open).

(d) For every point x and every neighborhood U of x, there exists a neighborhood
V of x such that V < U and any two points of ¥ can be joined by an arcin U.

Thus, any one of these conditions could be taken as the definition of local
arcwise connectivity.

2.2. Give an example of a local homeomorphism f: X — Y and a subset A < X such
that f| A is not a local homeomorphism of 4 onto f(A).

2.3. Prove that if X is compact and f: X — Y is a local homeomorphism, then, for
any point y € Y, f~'(y) is a finite set. If it is also assumed that Y is a connected
Hausdorff space, then f maps X onto Y.

2.4. Assume X and Y are arcwise connected and locally arcwise connected, X is
compact Hausdorff, and Y is Hausdorff. Let f : X — Y be a local homeomorphism;
prove that (X, f) is a covering space of Y. (WARNING: This exercise is more subtle
than it looks!)

§3. Lifting of Paths to a Covering Space

In this section, we prove some simple lemmas which provide the key to many
of the results in this chapter. Let (X, p) be a covering space of X, and let
g:I— X be a path in X; then, pg is a path in X. Also, if gy, g, : I - X and
do ~ d1, then pgy ~ pg,. We can now ask for a sort of converse result: If
f:I - X is a path in X, does there exist a path g: I — X such that pg = f?1If
do, 9 : I = X and pg, ~ pyg,, does it follow that g, ~ g;? We shall see that
the answer to both questions is Yes. This fact expresses one of the basic
properties of covering spaces.

Lemma 3.1. Let (X, p) be a covering space of X, %, € X, and x, = p(%,). Then,
for any path f: I — X with initial point x,, there exists a unique path g: 1 — X
with initial point X, such that pg = f.
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Proor. If the path f were contained in an elementary neighborhood U there
would be no problem. For, if ¥ denotes the arc component of p 1(U) which
contains %,, then, because p maps V topologically onto U, there would exist
a unique g in V with the required properties.

Of course, f will not, in general, be contained in an elementary neighbor-
hood U. However, we can always express f as the product of a finite number
of “shorter” paths, each of which is contained in an elementary neighborhood,
and then apply the argument in the preceding paragraph to each of these
shorter paths in succession.

The details of this procedure may be described as follows. Let {U;} be a
covering of X by elementary neighborhoods; then {f ™ (U;)} is an open covering
of the compact metric space I. Choose an integer n so large that 1/n is less than
the Lebesgue number of this covering. Divide the interval I into the closed
subintervals [0, 1/n], [1/n, 2/n], ..., [(n — 1)/n, 1]. Note that f maps each
subinterval into an elementary neighborhood in X. We now define g succes-
sively over these subintervals, starting with [0, 1/n].

The uniqueness of the lifted path g is a consequence of the following more
general lemma.

Lemma 3.2. Let (X, p) be a covering space of X and let Y be a space which is
connected. Given any two continuous maps fy, f; : Y = X such that pfo = pfi,
the set {y € Y: fo(y) = f1(y)} is either empty or all of Y.

ProOF. Because Y is connected, it suffices to prove that the set in question is
both open and closed. First we shall prove that it is closed. Let y be a point
of the closure of this set, and let

x = pfo(y) = pfi(¥)-

Assume f,(y) # f1(y); we will show that this assumption leads to a contradic-
tion. Let U be an elementary neighborhood of x, and let ¥, and V; be the
components of p~1(U) which contain fy(y) and f; (y), respectively. Since f, and
f, are both continuous, we can find a neghborhood W of y such that f,(W) =
V, and f;(W) < V. But it is readily seen that this contradicts the fact that any
neighborhood W of y must meet the set in question.

An analogous argument enables us to show that every point of the set
{ye Y: fo(y) = fi(»)} is an interior point. Q.E.D.

Lemma 3.3. Let (X, p) be a covering space of X and let go, g, : I = X be paths
in X which have the same initial point. If pgy ~ pg., then go ~ gy; in particular,
do and g, have the same terminal point.

Proor. The strategy of this proof is essentially the same as that of Lemma
3.1. Let %, be the initial point of g, and g,. The hypothesis pg, ~ pg, implies
the existence of a map F:I x I - X such that
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F(s, 0) = pgo(s),
F(s, 1) = pg,(s),
F(0, t) = pgo(0) = p(Xo),
F(1, t) = pgo(1).

By an argument using the Lebesgue number, etc., we can find numbers
0=s5,<8; < <S§,=1and 0=1t,<t; < -+ <t, =1 such that F maps
each small rectangle [s;—y, s;] x [t;—;, t;] into some elementary neighborhood
in X. We shall prove that there exists a unique map G:1 x I —» X such that
pG = F and G(0, 0) = X,,. First, we define G over the small rectangle [0, s, ] x
[0, t,] so that the required properties hold; it is clear that this can be done
because F maps this small rectangle into an elementary neighborhood of the
point p(%,). Then, we extend the definition of G successively over the rectangles
[si—1» 5] x [0, t,]fori =2, 3,..., m, taking care that the definitions agree on
the common edge of any two successive rectangles. Thus, G is defined over
the strip I x [0, t;]. Next, G is defined over the rectangles in the strip I x
[y, ta], ete

The uniqueness of G is assured by Lemma 3.2. Similarly, by the uniqueness
assertion of Lemma 3.1, we see that G(s, 0) = go(s), G(0, t) = X, G(s, 1) =
g,(s), and that G maps {1} x I into a single point %, such that

p(X,) = pgo(1) = pg,(1).

Thus, G defines an equivalence between the paths g, and g, as required.
Q.E.D.

As a corollary to these results on the lifting of paths, we shall prove the
following lemma:

Lemma 3.4. If (X, p) is a covering space of X, then the sets p~*(x) for all x € X
have the same cardinal number.

ProoF. Let x, and x, be any two points of X. Choose a path f in X with
initial point x, and terminal point x;. Using the path f, we can define a
mapping p~(x,) = p~1(x,) by the following procedure. Given any point
Vo € p~1(x,), lift f to a path g in X with initial point y, such that pg = f. Let
y, denote the terminal point of g. Then, y, — y, is the desired mapping. Using
the inverse path f [defined by f(t) = f(1 — )], we can define in an analogous
way a map p *(x,) = p~1(x,). It is clear that these maps are the inverse of
each other; hence each is one-to-one and onto. Q.E.D.

This common cardinal number of the sets p~*(x), x € X, is called the number
of sheets of the covering space (X, p). For example, we speak of an n-sheeted
covering, or an infinite-sheeted covering.
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Examples

3.1. Consider the covering space (R, p) of §' described in Example 2.1.
According to Lemmas 3.1 and 3.3, any clement « € (8, (0, 1)) can be “lifted”
to a unigue path class in R starting at the point 0. The end point of this path
class will be some integral multiple of 2z, Conversely, suppose we have a path
class i in R starting at 0 and ending at some point which is an integral multiple
of 2. The path class p,(#) is an element of 7(S"). According to this argument,
path classes in R which end at different integral multiples of 2m must give rise
to different elements of m(8!). Thus, (") is an infinite group. This completes
the proof of Theorem 5.1 of Chapter II.



