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1.1 Countries of the insect world. Imagine a world populated by semi-
intelligent insects. The world of the insects is divided into small countries, each
country consisting of a few cities connected by dark narrow tunnels. In the
course of their work and leisure the insects slowly walk these tunnels, and by
the time they reach adulthood all insects know how their country’s cities are
connected. If an insect needs to travel from one city to another, and those cities
are directly connected, then the connecting tunnel is taken. Maybe the route
could be shortened by taking two short tunnels through another city, but the
insects are only semi-intelligent, so this possibility never occurs to them. And
the insects are poor at measuring distances, so they probably couldn’t identify
a shorter route even it they looked for it. Life on the insect world is calm and
uneventful, the citizens blissfully bumping along in the dark, performing their
chores with calm inefficiency.

Let’s take a closer look at the world of the insects. Here are two insect
countries:

Our view from the ‘outside’ provides us with a complete picture of both coun-
tries. The insects are confined to the cities and tunnels, so they must expend
more effort to get an accurate view of the layout. Suppose that communication
between insect countries takes place by radio. Citizens from the above countries
were talking, and they began to wonder if their two countries are the same.
How can they determine that their countries have different layouts? First they
observe that both countries have four cities and four main tunnels. So far, their
countries appear similar. Then one says, “We have a city with just one tun-
nel leading to it.” The other one says, “AHA! All our cities have two tunnels
connected to them, so our countries are not set up the same way.”

1
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There are many other ways the insects could determine that t}'leir countries
have different layouts. For example, each of these descriptions applies to exactly
one of the countries above:

. : ”
“My country has a city which connects directly to every other city.

“In my country, you can travel a route of four different tunnels and end up
back where you started.”

“In my country, you can travel a route of three different tunnels and end
up back where you started.”

Since the insects are bad at measuring distances, they are not always able
to distinguish between layouts which we would see as different.

—e

Task 1.1.1: Explain why the insects
cannot distinguish between this coun- |
try’s layout and the first one shown

previously. \

Sl A

Task 1.1.2: For each pair of countries, determine whether the insect§ would
view them as the same or different. For those that are different, des.c.rlb(?, how
the insects can tell them apart. Note: for each pair, the number of cities is the
same and the number of tunnels is the same. If this were not 'the case, then the
insects could immediately tell that the two countries had a different layout.
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continued...
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Task 1.1.3: Devise a precise description of what it means for two countries to
be ‘the same’ as far as the insects are concerned.

Task 1.1.4: An insect says, “My country has seven cities and nine tunnels. One
city has just one tunnel connected to it, one city has five tunnels connected to it,
two cities have three tunnels connected to them, and the other three cities have
two connecting tunnels.” Draw two different countries which fit that description,

and explain how the insects can tell them apart. How many different countries
fit that description?

Adyvice. As you go through this book, you may find it helpful to keep a record
of your thoughts and ideas. Set aside a notebook for this purpose. Put all of
your work there, not just the final answers. It is important to keep a record of
the entire process you went through as you worked on a problem, including work
which didn’t seem to lead to an answer. Your failed method on one problem
could turn out to be the correct method for another problem. Having all your

work in one place will help you see what you have done and will make it easy to
find old work when you need it.

It is important that you spend sufficient time thinking about the Tasks as
you encounter them. Some Tasks are easy and some are very difficult, so you
should not expect to find a complete answer to every one. If a Task seems
mysterious, it can help to discuss it with someone else. Occasionally you may
skip a Task and come back to it later, but skipping a Task in the hope of finding
the answers in the text will lead you nowhere. The only way for you to find an
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answer is to discover it yourself. Sometimes this will mean spending a long time
on one Task. That is the nature of mathematical discovery. You will find that
discovering your own mathematics is not at all like trying to learn mathematics
which has already been discovered by someone else.

1.2 Notation, and a catalog

The ideas of the previous section fall under the mathematical topic of gr'aph
theory. The fanciful idea of insects crawling through dark tunnels will contmu'e
to be useful, but we will switch to using the mathematical terminology. Here is
how to translate:

Insect name: Math name:
country graph
city point or vertex
tunnel line or edge

An example sentence is, “A graph is made up of points and lines.” Note that
‘vertices’ is the plural of ‘vertex,’ so we can also say, “A graph consists of vertices
connected by edges.”

The actual picture we draw of a graph is called a graph diagram. Just as
the insects could not distinguish between certain countries, the same graph can
be represented by many different graph diagrams. The only important ?’aature
of the graph is how the various vertices are connected. Each graph dmgrgm
will have additional features, such as the lengths of the edges and the relative
position of the vertices, but these aspects of the diagram have nothing to do
with the graph itself.

Here are three diagrams of the same graph:

A diagram may appear to show two edges crossing, but if there.is not a
vertex at the junction then the edges do not actually meet. Think of it as t_wo
insect tunnels which pass each other but do not intersect. The topic of drawing
graphs without crossing edges will be explored in a later section.

A graph is called connected if we can get from any vertex to any othe?r
vertex by traveling along edges of the graph. The opposite of connected is
disconnected.

1.2 NOTATION, AND A CATALOG a3
AN %
This can be thought of as a \\\ "'.IL
disconnected graph with 9 ___——--‘7 \
vertices, or as two separate "‘x\ / o
connected graphs. \\/ / B

Any graph is just a collection of connected graphs; these are called the compo-
nents of the graph.

The graphs we have been studying are presented as drawings on paper. It
is easy to invent graphs which are described in other ways. For example, we
can make a graph whose vertices are all of the tennis players in the world, and
where an edge connects two players if they have played tennis together. We have
defined a graph, although it would not be feasible to actually draw it. Another
graph can be made by letting the vertices be the countries of the world, and
having an edge connect two countries if those countries border each other. With
the help of a map it would be possible to draw this graph. It is amusing to
invent fanciful graphs and then try to determine what properties they have. For
example, is the tennis player graph connected? If it is, that would mean each
tennis player has played someone who has played someone who has . . . played
Jimmy Connors. The play Six Degrees of Separation mentions, informally, the
graph whose vertices are all of the people in the world, with edges connecting
people who know each other. The title of the play comes from speculation that
you can get from any one vertex to any other vertex by crossing at most 6 edges.

In order to make an organized study of graphs, we must impart a few more

rules. Usually we do not allow our graphs to have more than one edge connecting
two vertices, and we do not allow an edge to connect a vertex to itself.

R RS

~

A graph with

g A graph with loops
multiple edges

Unless we state otherwise, a ‘graph’ is a ‘graph without loops or multiple edges.’

We classify graphs according to how many vertices they have. Here is a
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catalog of all graphs with 4 vertices:
® 2 ] ' [ °
l 8
B AN 4
L L
1 K
.

You should convince yourself that the list is complete.

Task 1.2.1: Make a catalog of all graphs with 5 vertices. Hint: there are
between 30 and 40 of them. First find all the ones with no edges, then 1 edge,
then 2 edges, and so on.

In the above Task it is difficult to be absolutely sure that you found all the
graphs. Fortunately, there is something we can do to increase our confidence.
For the graphs with 4 vertices we found a total of 1 +1+2+3+2+1+1=11
graphs, where we counted the graphs according to how many edges they have.
Notice that the numbers form a symmetric pattern.

Task 1.2.2: Do your numbers from Task 1.2.1 form a symmetric pattern? If not,
go back and fix your list. After your list is correct, explain why the symmetric
pattern appears.

Task 1.2.3: Devise a code for describing a graph over the telephone. Note:
your code only needs to describe a graph, not a graph diagram.

1.3 Trees

If we think of a graph as a roadmap then it is natural to look at the various
routes we can take through the graph. A path in a graph is a sequence of edges,
where successive edges share a vertex. To make things easier to read, we will
describe a path by showing which vertices the path visits; this should not cause
any confusion.

1.3 TREES 7

Example paths:
(d b, cd)
(fedbc)
(.8 b a b, g)

A path is closed if it ends at the same vertex as it began. The first path
above is closed. A path is simple if it doesn’t use the same edge more than
once. The first two paths above are simple. A simple closed path is sometimes
called a circuit. The first path-above is a circuit, and so is (b, ¢, d, ¢, g, b). A
graph is connected if there is a path from any one vertex to any other vertex.

A graph is a tree if it is connected and it doesn’t have any circuits. Here
are three trees:

N RLAR"

Task 1.3.1: What is the relationship between the number of vertices and the
number of edges in a tree? Why does this relationship hold?

Trees are particularly simple kinds of graphs, so our plan is to study trees,
and then to use trees to study other graphs. Here are all trees with 5 vertices:

: a
N\ —.
Those trees should be in your catalog of graphs from Task 1.2.1. Here are all
trees with 6 vertices:

TNy

continued...
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Task 1.3.2: Make a list of all trees with 7 vertices. If you feel ambitious, make
a list of all trees with 8 vertices. Hint: there are between 20 and 30 of them.

Task 1.3.3: Suppose you had plenty of time and you wanted to make a list of
all trees with a given large number of vertices; say, all trees with 12 vertices. De-
scribe the method you would use. Is your method guaranteed to give a complete
list with no repeats? Is your method practical?

Task 1.3.4: In Task 1.2.3 you devised a code for describing a graph over th.e
telephone. Suppose that you only needed the code for describing trees. Is it
possible to devise a simpler code which still works in this case?

1.4 Trees in graphs

A tree inside a graph which hits every vertex of the graph is called a span-
ning tree. A spanning tree must use the edges in the graph, and it must h.1t
every vertex. A useful way to show a spanning tree is to highlight the edges in
the tree:

JERROEE

A graph can have many different spanning trees. Here are three different span-
ning trees for the same graph:

1.5 EULER’S FORMULA 9

It is important to keep in mind that a graph can have several different
spanning trees, so without a picture the term ‘spanning tree’ can be ambiguous.

Task 1.4.1: Devise a way of counting the number of spanning trees of a graph.

In the next section we use spanning trees to study graphs.

1.5 Euler’s formula

A graph diagram divides the plane into separate regions:

The first diagram divides the plane into 4 regions, and the second divides
the plane into 3 regions. Note that the big outside area counts as a region.

Task 1.5.1: Draw several graphs and record the following information:
— the number of vertices in the graph (call it v)

- the number of edges in the graph (call it €)
the number of separate regions of the graph (call it f)

the number of vertices in a spanning tree (call it A)

the number of edges in a spanning tree (call it B)

the number of edges not in a spanning tree (call it C)

Here is an example. Find a spanning tree and check that the numbers are
correct:

y=11
e=14
f=5
A=11
B=10
C=4

Note: for this Task you should only use connected graphs which you have drawn
without crossing edges. A diagram drawn without crossing edges is called a
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planar diagram. The importance of using planar diagrams in this Task is
discussed in the next section.

Task 1.5.2: Look at the information you recorded and try to find patterns and
relationships among the six quantities.

Task 1.5.3: Explain why the observations you made are correct. Note: one
of your observations may have been A = B + 1. You already discussed this in

Task 1.3.1.
Task 1.5.4: Explain why your observations can be used to show v —e+ f = 2.

The equation v — e + f = 2 is known as Euler’s Formula. It was first
discovered by the Swiss mathematician Leonhard Euler in 1736. Note: Euler is
pronounced ‘Oiler.’ Say it out loud a few times. This will keep you from looking

foolish later.

Task 1.5.5: Suppose a graph has 7 vertices and 9 edges. Use Euler’s formula to
predict how many separate regions it would have if you drew the graph. Draw
such a graph and check if your prediction is correct.

1.6 Planar graphs

Euler’s formula v — e+ f = 2 is true for any connected graph which is drawn
without crossing edges. For instance:

Bad: Good: e

v =4 || 3 i v =4

e=6 \ e=6

f=35 \ 2 f=4
v-e+f=2

We say that a graph is planar if it has a diagram without crossing edges.
Above are two diagrams of the same graph, but Euler’s formula only works in the
second case. This is usually expressed as “Euler’s formula holds for connected

planar graph diagrams.”
Task 1.6.1: What can you say about v — e + f if the graph is not connected?

The graph shown above is called ‘the complete graph on 4 vertices,’ and it
is denoted K, pronounced “kay four.” This means that it has 4 vertices and
each vertex is connected to every other vertex. Similarly, K5 is the graph with
5 vertices and each vertex is connected to every other vertex.

1.6 PLANAR GRAPHS 11

Here is a representation of Kj: \\ ! X
\ ,-’i/ f

Task 1.6.2: How many edges does K5 have? Kg? K,?

Task 1.6.3: Explain why K, has 14+2+ 3+ - 4+ (n — 1) edges. We will find
another expression for this in Task 1.7.9.

Task 1.6.4: Try to draw K5 without any crossing edges. Make at least four
attempts.

After four attempts at Task 1.6.4, you should stop. Further attempts would
be pointless because it is impossible to draw Ky without any crossing edges. In
other words, K5 is not planar. We will use Euler’s formula to show why the
Task is impossible.

The reason we write f for the number of separate regions of a graph is that
those regions are usually called faces. A key fact we need is that each edge of
a planar graph diagram is a border of two faces.

The dotted edge is a border of face
X and face Y, and the fuzzy edge
is a border of faces Y and Z.

‘The number of edges of a face is called the order of the face. In the diagram
above, face X has order 4, face Y has order 3, and face Z has order 5.

An important relationship between the number of edges and the number of
faces in a planar graph is:

3f < 2e.

We will use the concept of order, along with the observation that each edge
borders two faces, to establish this inequality. Then we will use the inequality
to show that K5 does not have a planar diagram. But first, do this Task:

':I‘ask 1.6.5: Draw a few planar graph diagrams and check that 3f < 2e holds
in each case. What graphs have 3f = 2¢e?
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The first step in showing 3f < 2e is this observation:

Counting Observation. If you add up the number of edges bordering every
face, then you get twice the number of edges. In other words:

the sum of all the orders of the faces = 2e.

For example, in the diagram above there are three faces: X, Y, and 7Z. Adding
up the orders of each faces gives 4 +3 +5 = 12. And sure enough, 12 is twice
the number of edges in the graph.

The reason behind the Counting Observation is that each edge is a border
of two faces, so as we add up the number of edges around each face, each edge

gets counted twice.
Now, we need at least 3 edges to make a face, so each face must have order
at least 3. So, adding up the orders of each face gives something at least 3 f, s0

3f < the sum of all the orders of the faces,
5O,
3f < 2e.
This is the inequality we wanted. We now use it to show Ky is not planar.

The graph K5 has 5 vertices and 10 edges. IF K5 had a planar diagram,
then Buler’s formula v —e+ f = 2 would tell us f = 7. The inequality we proved
would then say

3f < 2e
3.7<2-10
21 < 20.
Of course, 21 is more than 20, so something is wrong. The error was the as-
sumption that K5 had a planar diagram. The inescapable conclusion is that K5

does not have a planar diagram. In other words, it is impossible to draw K
with no crossing edges. In other other words, K is not planar.

Task 1.6.6: For each case below, either draw a planar graph with the given
information, or explain why this is not possible.
a) A graph with v =7 and e = 17.
b) A graph with v =8 and e = 12.
c) A graph with v =7 and e = 15.
The method we used to show that K5 does not have a planar diagram can
also be used to show that some other graphs are not planar, but the method is

N
/ %N

This graph is called K33. It has
6 vertices and 9 edges, and it does
not have a planar diagram.

1.7 PATHS IN GRAPHS 13

The name K33, pronounced “kay three three,” means the graph consists of one
set of 3 vertices, each of which is connected to another set of 3 vertices. Here
are more examples to explain the notation:

“ S, A
NN

Task 1.6.7: How many edges does K, 5 have? Kg6? Ki1002007 Knm?

K

Task 1.6.8: 'Try to draw K33 without crossing edges. You will not succeed,
because K3 3 is not planar, but you should make a few attempts anyway.

We showed that K5 does not have a planar diagram, but the same method

doesn’t work for K3 3. Fortunately, we can modify the method. The key to the
modification is this observation:

No Triangles Observation. K33 does not contain any simple closed paths of
three edges.

The quick way to say it is: K33 does not contain any triangles. This means
that if we could draw K33 without any crossing edges, then every face would
have order at least four.

Task ?.6.9: Explain why a planar graph with no triangles must have 4f < 2e.
Use this to show that K3 35 does not have a planar diagram.

It turns out that understanding K5 and K33 is fundamental to under-

standing all nonplanar graphs. See the Notes at the end of the chapter for an
explanation.

Task 1.6.10: Do all trees have a planar diagram?

1.7 Paths in graphs

In this section we study various kinds of paths in a graph. We start with a
puzzle and two problems.

Task 1.7.1: Trace this figure with-
out picking up your pencil and with-
out repeating a line, or explain why
this is impossible,
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Task 1.7.2: A huge snowstorm has
covered the town with snow! There
is only one snowplow, and the roads
need to be plowed as soon as pos-
sible. The snowplow driver figures
that if she can manage to plow all ! =
the streets in one trip, without driv-
ing over a street which has previously
been plowed, then this will get the
job done quickly. Trace an efficient
route on the map shown to the right,
or explain why a completely efficient
route is impossible.

Task 1.7.3: The highway inspector

must evaluate the safety of all the

roads in town. Since he is lazy, he /
wants to travel along each road ex-
actly once; he does not want to drive —
on a road which he has already in-

spected. Trace an efficient route for
the lazy inspector, or explain why no / \

such route is possible.

Hopefully you traced the figure in Task 1.7.1 and you also found an efficient
path for the snowplow in Task 1.7.2. If not, then go back and try again! There
is no efficient path for the lazy inspector in Task 1.7.3. No matter how hard
you try, it is impossible to trace the roads of that town without using some road
more than once. Our next goal is to give an explanation for this.

The three Tasks above have the same theme: each gives a graph and asks
if there is a simple path which uses every edge in the graph. Recall that simple
means that no edge is used twice. In a graph, a simple path which uses every
edge is called an Euler path. An Euler circuit is an Euler path which begins
and ends at the same vertex.

If you check back at your answers to the above Tasks, your solution to the
puzzle is an Euler path, and your solution to the snowplow problem is an Euler
circuit. The graph for the highway inspector has neither an Euler path nor an
Euler circuit.

Task 1.7.4: Find an Euler path in each of these graphs. The Task will become

1.7 PATHS IN GRAPHS 15

very easy once you determine the significance of the x vertices.

N /“"
—

®

The key to Euler paths in a graph lies in careful examination of the vertices.
The number of edges connected to a vertex is called the order of the vertex.

Each vertex in this graph is
labeled with its order.

Task 1.7.5: What relationship exists between an Euler path in a graph and the
orders of the vertices in that graph? If you don’t see a relationship yet, then do
more examples. Explain why your observations are correct.

The previous Task is the key point of this section. Be sure to give it sufficient
thought.

Task 1.7.6: Repeat your work in the previous Task for Euler circuits.

Task 1.7.7: Draw a graph with exactly one odd-order vertex. Does it have an
Euler path?
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Task 1.7.7 is a trick question: it is impossible to draw a graph with exactly
one odd-order vertex. Here is one way to see this:

Task 1.7.8: Explain why the Counting Observation following Task 1.6.5 is valid
with ‘face’ replaced by ‘vertex.” Use this New Counting Observation to explain
why Task 1.7.7 is impossible.

Task 1.7.9: Use the New Counting Observation in Task 1.7.8 to show that Ky,
has n(n — 1)/2 edges. Compare this to Task 1.6.3.

The Handshake Principle is a slight generalization of our rule that a graph
cannot have exactly one odd—order vertex.

The Handshake Principle. Take a group of people and have each person
shake hands with various other people in the group. The number of people who
shook hands an odd number of times must be even.

In terms of a graph, the Handshake Principle says that the number of odd-
order vertices must be even.

We have been studying paths which cross every edge once. Another inter-
esting problem is to study paths which visit every vertex once. This idea first
appeared in a game invented by the English mathematician Sir William Rowan
Hamilton. He sold the idea to a game producer, but the game never made any
money!

Hamilton’s problem: find a path
in this graph which visits every
vertex once, and which ends at
the same vertex as it began. In
the original version each vertex
was labeled with a famous city,
and the object was to ‘Iravel the
World.’

A Hamiltonian path in a graph visits every vertex exactly once. The
path is a Hamiltonian circuit if it ends at the same vertex as it began. A
Hamiltonian path can also be thought of as a spanning tree with no ‘branches.’
See the middle graph at the very end of Section 1.4 for an example.

The study of Hamiltonian paths is much more difficult than the study of
Euler paths. A few rules are known, and any specific graph can be analyzed by
computer, but nobody has found a simple method for determining when a graph
has a Hamiltonian path.

1.8 Dual graphs

We introduce a way to take one graph diagram and use it to produce another
graph. This new graph is called the dual of the original diagram.

1.8 DUAL GRAPHS 17
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Put a vertex in each separate
region of the original diagram.

Connect the new vertices which
are in adjacent regions of the
original diagram. Each original
edge will have a new edge cross-
ing it.

k]

The graph made with the new
edges and vertices is called the
dual of the original graph dia-
gram,

The above procedure is called taking the dual of the original graph diagram.
We will see that there are interesting relationships between a graph and its dual,
and the dual graph is useful for solving certain problems.

Recall that a graph is not permitted to have loops or multiple edges. Be-
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cause of this restriction, the dual of a graph diagram might not be a ‘graph’ in
the strictest sense. For example:

A diagram: Its dual:

That dual graph has multiple edges, so it is not ‘really’ a graph. It is too much ;
effort to keep worrying about this distinction, so for the rest of this section we

will permit our graphs to have loops and multiple edges.

Task 1.8.1: Draw a few planar graph diagrams, and then find their duals.

Task 1.8.2: What is the relationship between v, e, f for a graph and v, e, f
for its dual?

After doing Task 1.8.2, you should look back at the first part of Task 1.7.8.

Task 1.8.3: What is the relationship between a graph, its dual, and the dual
of the dual?

Task 1.8.4: Find a few graphs which are the same as their dual.

Task 1.8.5: Can you draw a curve
which crosses each edge of this fig-
ure exactly once? The curve is not
allowed to cross itself. Two failed
attempts are shown below.

Task 1.8.6: Would the above Task be any easier if the curve was allowed to
cross itself?

1.9 A map of the United States
On the next page is a map of the 48 continental US states. It might not

1.9 A MAP OF THE UNITED STATES

19

look like a typical US map, but there is a way to label each region with the name

of a state so that each state borders the same states as on the usual map.

i
j7=%
e \
\

"

Task 1.9.1: Label the 48 regions of the map. Explain how you determined
which region corresponds to which state. Is there only one way to correctly

label the regions?
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Task 1.9.2: Which state borders the most other states?

Task 1.9.3: Devise a similar map for your favorite geographic region.

1.10 Coloring graphs

A cartographer is producing a new map of the world. To make the map
easier to read, each country will be given a color, and adjacent countries must
be assigned different colors. Two countries can have the same color provided
they don’t border each other. Here is a map which we have colored using the
numbers 1, 2, 3 and 4:

3
Fa

i Fl ‘:I T

—
nalifEliEne

2 i ‘ —

3]

Note that the large outside region also gets a color.

There are a few rules about the ‘maps’ we will consider. Each region rep-
resents a separate country, and countries are not permitted to have ‘satellite
states.” For example, on the usual world map we would not permit Alaska to be
part of the Unites States, because Alaska is not directly connected to the other
states. We can use the world map as an example for our ‘map,” but must permit
Alaska to be a different color than the 48 continental states. Also, we do not
consider two regions to be bordering if they have only one point in common. For
example, Colorado and Arizona do not border each other on the United States
map. Another example can be seen in the lower right portion of the example
above. The small square labeled ‘1’ does not border the large region labeled ‘1.’

Task 1.10.1: Draw a few maps and color them. Use as few colors as possi-
ble.

All of your maps from Task 1.10.1 can be colored with at most 4 colors. If
you used 5 or more colors in some of your maps then go back and color them
again. All maps can be colored with at most 4 colors. If you are skeptical about
this then try to design a map that requires 5 colors.

The statement that any map can be 4—colored is known as “The Four-Color
Theorem.” The Four-Color Theorem is easy to understand, and trying a few
examples makes it easy to believe, but giving a complete proof is extremely dif-
ficult. The Four-Color Theorem has been widely believed for more than 100
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years, but a formal proof was not given until 1974. The proof was controver-
sial because a computer was used for part of the calculation. Some people are
still skeptical that all of the details were checked properly, and an independent
calculation has not yet been completed. In this book we give a’ detailed proof
that any graph can be 6—colored, and we roughly indicate why any graph can
be 5-colored. If you figure out a simple proof of The Four—Color Theorem, then
your name will be immortalized forever in the annals of mathematics.

We will spend the rest of this section using graphs to study map colorings.
It is easy to associate a graph to a map: put a vertex in each region, including
the large outside region, and connect adjacent regions with an edge. This works
just like finding a dual graph. Here is the graph associated to the map shown
previously:

And here is a simpler example. Each vertex in the graph is colored the same as
the corresponding region of the map.

Coloring a map is now replaced by coloring a planar graph: we color the
vertices of the graph so that adjacent vertices, vertices which share an edge, have
different colors. For the purposes of coloring, the graph has the same information
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as the map. We will study graph coloring because then we can make use of our
knowledge of planar graphs.
Task 1.10.2: An obvious way to try to get a map which cannot be 4-colored
is to draw 5 countries, each one of which borders the other 4 countries. Since
each country borders every other country, 5 different colors would be needed.
However, such an arrangement is impossible. Explain why.

It might seem that since we can’t have 5 countries simultaneously bordering
each other, that would automatically imply that any map can be 4-colored.
However, the logic is flawed. To see the flaw, look at the map below.

Each region borders only
two other regions, but the
map requires three colors.

The above example shows that the number of neighbors of each region is not
always directly related to the number of colors needed to color the map. Another
version of the same idea is given in the next Task.

Task 1.10.3: Color the vertices of each of the following graphs with as few
colors as possible. Note that the number of colors is not directly related to the

number of neighbors of each vertex.
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For certain kinds of graphs we can say exactly how many colors are needed
to color them.
Task 1.10.4: Suppose a graph has every vertex of order 3 or less. Explain how
to 4—color that graph.
Task 1.10.5: Explain why any tree can be 2—colored.

Task 1.10.6: Suppose each separate region of a graph has an even number of
sides. Is it necessarily true that the graph can be 2—colored? Note: you are

e

o
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coloring the graph, so each vertex gets a color, and vertices sharing an edge
must get different colors.

Task 1.10.7: Construct a map by drawing a continuous curve which begins
and ends at the same point and crosses itself as many times as you want. An

example is shown below. Determine how many colors are needed to color such
a map.

Task 1.10.8: Repeat Task 1.10.7 for maps made by several different overlapping
curves. That is, draw several different curves as in Task 1.10.7 and permit the
curves to cross each other.

Task 1.10.9: How many colors are needed to color K, ? Note: for n > 5 that
graph will not be planar, but it still makes sense to color the vertices so that
vertices sharing an edge get different colors.

Task 1.10.10: How many colors are needed to color K, ,,?

Task 1.10.11: Devise some graphs which require exactly three colors.

1.11 The six—color theorem

Since The Four—-Color Theorem is so hard, we will prove The Six—Color
Theorem: every graph can be colored with at most six colors. This is a common
occurrence in mathematics: the ultimate goal may be out of reach, but we
can still get satisfaction by proving a partial result. To prove The Six—Color
Theorem, we need this fact about planar graphs.

Planar Graph Fact. Every planar graph has at least one vertex of order five
or less.

In other words, we can’t have every vertex of order six or more. We will
prove The Six-Color Theorem, and after that we will prove the Planar Graph
Fact. But first...

Task 1.11.1: Draw a graph where each vertex has order at least five. What
does this say about the Planar Graph Fact?

We will describe a procedure for 6-coloring a planar graph, and then we
will illustrate the procedure with an example.
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To 6-color any planar graph, just follow these four steps:

Step 1: Locate a vertex of order 5 or less.

Step 2: Delete that vertex and all edges connected to it.

Keep repeating Steps 1 and 2 until only 5 vertices are left. Keep track of the
order in which you deleted the vertices.

Step 3: Color the five remaining vertices with the colors 1, 2, 3, 4, 5.

Step 4: Put back the last vertex and edges you deleted. Color that vertex
a different color than the vertices adjacent to it.

Repeat Step 4, replacing vertices in the reverse order they were deleted. After
you put all the vertices back you will have reconstructed the original graph and
each vertex will be colored with one of the 6 colors.

The Planar Graph Fact mentioned above is what makes the procedure work.
Since a planar graph must have a vertex of order 5 or less, Step 1 can always be
done. As you put the vertices back, each vertex is connected to at most 5 other
vertices. Since there are 6 colors available, Step 4 can always be done.

Here is an example of using the procedure to 6-color a graph. The important
thing to notice is that the procedure described above is followed exactly. No
cleverness is needed. We just mechanically follow the plan and everything will
work out right. First remove vertices one-by-one, also removing the connecting
edges. If there is more than one vertex of order less than 6 then it doesn’t matter
which one we choose. Stop when there are only 5 vertices left.

Now color the remaining vertices, and then replace the vertices in the reverse
order they were deleted. When we replace a vertex we color it with any number
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different from the vertices it is adjacent to.

The result is a 6—coloring of the graph.

Of course, it is also possible to 4-color that same graph, but this requires
cleverness. Nobody has ever found a simple procedure which is guaranteed to
4~color any planar graph.

Task 1.11.2: Four-color the graph shown above.

Now we prove the planar graph fact used above. This is the plan: we assume
that it is possible for a planar graph to have all vertices of order at least 6. Using
this assumption we will end up with a nonsensical statement. This shows that
the assumption was not valid.

We use Euler’s formula v—e+ f = 2. We also need the earlier observations:
Sum of the orders of all the faces = 2e,

and
Sum of the orders of all the vertices = 2e.

First consider the faces. Each face must have at least 3 edges. In other
words, the order of each face must be > 3. If we counted ‘3’ for each face then
we would get something smaller than if we counted the order of each face. In
other words, 3f < 2e. This can also be written f < %e. Note: a more complete
version of this same argument is given in Section 1.6.

Next consider the vertices. IF every vertex has order at least 6, then count-
ing ‘6’ for each vertex gives something smaller than counting the order of each
vertex. In other words, 6v < 2e. This can also be written v < %e.
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Here are the three relationships we have:

2=v—e+f

Putting them all together gives

: ‘
2< Ze—e+ =
__36 +36

86,

2<0.

That last inequality is nonsense, so our assumption that all vertices had order
at least 6 is invalid, so we conclude that at least one vertex has order 5 or less.
End of Proof.
Task 1.11.3: Modify the above calculation to show that if a planar graph has
all vertices of order 5 or more, then the graph must have at least 30 edges.
Conclude that it must have at least 12 vertices. Find a graph with 12 vertices,
each vertex having order 5.

We end this chapter by describing a procedure for 5-coloring any planar
graph. This procedure is a modification of the 6-coloring method. The basis for
the improvement is the following fact:

Another Planar Graph Fact. Given any & vertices in a planar graph, there
must be two which are not directly connected to each other.

The proof is simple: If all 5 vertices were directly connected to each other
then that would be K5, but K5 is not planar.

We use this new fact to modify Step 2 of the procedure. We delete vertices
and edges as before, but then we glue two of the vertices together. Specifically,
if there were five vertices connected to the vertex we just deleted, choose two of
them which are not adjacent, and then form a new graph by gluing those two
vertices together. If this gives multiple edges then delete all but one of each
repeated edge. This ends the new Step 2. Here is an example using the previous
graph:

Delete a vertex of
order 5 or less.
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The vertices marked * are not adjacent, so we can glue them together. -
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In the new procedure, repeat the new Step 2 until there are only 4 vertices
left. For the new Step 3, color each of the remaining 4 vertices a different color.
For the new Step 4, replace the deleted vertices in the reverse order they were
removed. This is slightly more complicated than the original method because
sometimes you have to rip apart two vertices which had been glued together.

To complete this Task, convince yourself that the procedure works. Note
that if the graph has a vertex of order 4 or less then we can choose to delete that
vertex first, so we only need to use the “gluing two vertices” step when every
vertex has order 5 or more.

1.12 Notes

Note 1.12.a: Graphs were invented by Leonhard Euler to solve the ‘Seven
bridges of Konigsberg’ problem. The city of Konigsberg, now known as Kalin-
ingrad, Russia, had seven bridges. Here is what it looked like in Euler’s time:

The citizens of the city wondered about the following question: Was it
possible to take a walk which crossed each of the seven bridges exactly once?
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It became a common recreational activity to try and complete such a walk, but
nobody succeeded in the task. Euler showed that the task was impossible. His
method used the idea of an Euler path in a graph.

A walk crossing each bridge exactly once would correspond to an Euler path
in this graph:

Each vertex corresponds to a piece of land, each edge corresponds to a bridge,
and an Euler path in the graph corresponds to a walk crossing each bridge
exactly once. Since the graph has four odd-order vertices, there is no Euler
path, so it is impossible to walk across each of the seven bridges exactly once.

Note 1.12.b: There is a large class of graphs which we have not discussed.
These are known ‘as ‘directed graphs,’ commonly called digraphs. In a digraph
the edges are like one-way streets. Here are two examples:

The main difference between a graph and a digraph is that in a digraph a path
must ‘follow the arrows.” For example, if you ignore the arrows then both graphs
above have Euler paths. But if you must follow the arrows, then only the digraph
on the right has an Euler path.

Note 1.12.c: Some people use the word valence where we use the word order.

Note 1.12.d: A graph contained within another graph is called a subgraph.
This means that the vertices and edges of the subgraph are also vertices and
edges of the larger graph. A spanning tree is a special type of subgraph.

Many properties of a graph also hold for all its subgraphs. For example, a

Lad
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subgraph of a planar graph is also planar. Also, if a graph can be colored with
at most N colors, then so can all its subgraphs.

Note 1.12.e: The usual way to prove Euler's formula v — e + f = 2 is by
induction on the number of vertices and edges in the graph.

Note 1.12.f: We showed that K5 and K33 are not planar. An important re-
sult known as “Kuratowski’s Theorem” says that all nonplanar graphs ‘contain’
either K5 or K33, or both. Exactly what it says is:

Kuratowski’s theorem. Starting with any nonplanar graph, you can produce
one of K5 or K33 by repeatedly performing these three moves:

Move A: Delete an edge.
Move B: Delete a vertex and all edges connected to it.
Move C: Delete a vertex of order 2, combining the two ‘dangling’ edges into

one edge.

The idea of Kuratowski’s theorem is that we can take a nonplanar graph
and throw away a bunch of it until we reduce down to either K5 or K3 3. The
proof can be found in [GT], or in any other good introductory graph theory
book.

Kuratowski’s theorem says that if a graph is nonplanar then it ‘contains’
either K5 or K3 3. The reverse is also true: if a graph ‘contains’ either K or
K3 3 then it is nonplanar. Is this obvious?

Task 1.12.1: Determine if the following statement is true:

Suppose a graph is nonplanar, but deleting any one edge results in a graph
that is planar. Then the original graph must be either K5 or K3 3.

Either explain why the statement is true, or modify the statement so that it
becomes true.

Task 1.12.2: The Petersen graph is nonplanar. Draw a picture to show that
the Petersen graph contains one of K5 or K3 3.

The Petersen graph.

Task 1.12.3: Here is an amusing way to show that the Petersen graph is non-
planar. First, show that the Petersen graph does not contain any simple closed
paths with fewer than 5 edges. Second, explain why this means that any dia-
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gram of the Petersen graph would have 5f < 2e. Finally, use v —e+ f = 2 and
5f < 2e to show that the Petersen graph is nonplanar.

Note 1.12.g: In this chapter we discovered that if a graph has an Euler path
then it must have 0 or 2 odd order vertices. The question remains: if a graph
has 0 or 2 odd order vertices, does that automatically imply that it has an Euler
path? The answer is ‘yes’, and this can be proved by induction on the number of
vertices in the graph. See [GT] or any other introductory book on graph theory.

Task 1.12.4: Which graphs K,, and K, ,,, have an Euler path? Euler circuit?

Task 1.12.5: Use your answer to Task 1.12.4 to show that it is possible to place
the tiles from the game of Dominoes in a circle so that the number of spots on
the end of each tile matches the number of spots on the end of the adjacent tile.

Note 1.12.h: When discussing planar graphs we made the point of saying ‘dual
of a planar diagram.’ This is important because we use the diagram to find the
dual, and a planar graph can have several different planar diagrams. Here are
two different diagrams of the same graph:

And here are the duals of those diagrams:

Y
., - ||

The duals are different: one has a vertex of order 10 and the other does not.
Keep in mind that when you refer to the dual of a graph, you may need a
diagram to describe which dual you mean.



