xviii KNOT THEORY

Section 4 Slice Knots
Section 5 The Knot Concordance Group

Chapter 10 NEw COMBINATORIAL
TECHNIQUES

Section 1 The Conway Polynomial of a Knot
Section 2 New Polynomial Invariants
Section 8 Kauffman’s Bracket Polynomial

Appendix 1 KNOT TABLE

Appendix 2 ALEXANDER POLYNOMIALS
&
§ REFERENCES

INDEX

193
201

205

207
215
217

221
229
233
239

CHAPTER 1:
A CENTURY OF KNOT THEORY

In 1877 P. G. Tait published the first in a series of papers
addressing the enumeration of knots. Lord Kelvin’s the-
ory of the atom stated that chemical properties of elements
were related to knotting that occurs between atoms, im-
plying that insights into chemistry would be gained with
an understanding of knots. This motivated Tait to begin
to assemble a list of all knots that could be drawn with
a small number of crossings. Initially the project focused
on knots of 5 or 6 crossings, but by 1900 his work, along
with that of C. N. Little, had almost completed the enu-
meration of 10-crossing knots. The diagrams in Appendix
1 indicate the kind of enumeration he was seeking.

Tait viewed two knots as equivalent, or of the same
type, if one could be deformed to appear as the other, and
sought an enumeration that included each knot type only
once. The difficulty of this task is illustrated by the four
knots in Figure 1.1. For now a knot can be thought of
simply as a loop of rope. With some effort it is possible to
deform the second knot to appear untangled, like the first.
On the other hand, no amount of effort seems sufficient to
unknot the third or fourth. Is it possible that with some
clever manipulation the third could be transformed to look
like the fourth? If a list of knots is going to avoid knots of
the same type appearing repeatedly, means of addressing
such questions are needed. ;
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When Tait began his work in the subject, the formal
mathematics needed to address the study was unavailable.
The arguments that his lists were complete are convincing,
but the evidence that the listed knots are distinct was em-
pirical. Developing means of proving that knots are dis-
tinct remains the most significant of the many problems
introduced by Thait.

oS
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Figure 1.1

Work at the turn of the century placed the subject of
topology on firm mathematical ground, and it became pos-
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sible to define the objects of knot theory precisely, and to
prove theorems about them. In particular, algebraic meth-
ods were introduced into the subject, and these provided
the means to prove that -

knots were actually distinct. ) =

The greatest success in this

early period was the proof

by M. Dehn in 1914 that

the two simplest looking

knots, the right- and left-

handed trefoils, illustrated

in Figure 1.2, represent dis-

tinct knot types; that is,

there is no way to deform

one to look like the other. Figure 1.2

In 1928 J. Alexander described a method of associat-
ing to each knot a polynomial, now called the Alexander
polynomial, such that if one knot can be deformed into an-
other, both will have the same associated polynomial. This
invariant immediately proved to be an especially powerful
tool in the subject; a scan of Appendix 2 reveals that only
8 knots out of the 87 with 9 or fewer crossings share poly-
nomials with others on the list.

Alexander’s initial definitions and arguments were
combinatorial, depending only on a study of the diagram of
a knot, without reference to the algebra that had already
proved so successful.

By 1932 the subject of knot theory was fairly well de-
veloped, and in that year K. Reidemeister published the
first book about knots, Knotentheorie. The tools that he
presented in the text are, in theory, sufficient to distinguish
almost any pair of distinct knots, although as a practical
matter for knots with complicated diagrams the calcula-
tions are often too lengthy to be of use. -
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One theme that was well established by this time
was the study of families of knots. The most interest-
ing family is formed by the torus knmots, so called be-
cause they can be drawn to lie on the surface of a torus.

,/> /j
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Figure 1.3

For any ordered pair of relatively prime integers, (p,9),
with p > 1 and |g| > 1, there is a corresponding (p,q)-
torus knot. Figure 1.3 illustrates the (3,5)-torus knot
and the (3,—5)-torus knot. The right- and left-handed
trefoils are easily seen to be the same as the (2,3) and
(2,—3)-torus knots, respectively. These knots provide test
cases for new techniques and building blocks for construct-
ing more complicated examples. Dehn and O. Schreier
used group theoretic methods to give the first proof that
the (p,g) and (p’,q’)-torus knots are the same if and only if
the (unordered) sets {p,q} and {p’,q'} are the same. (The
Alexander polynomial of the (p,q)-torus knot turns out
to be (P9l — 1)(t — 1)/(¢!P! — 1)(#!9l — 1), and except for an
issue of sign, this too is sufficient to distinguish the torus
knots.)

Soon after Knotentheorie appeared, H. Seifert made a
significant discovery. He demonstrated that if a knot is the

boundary of a surface in 3-space, then that surface can be
used to study the knot; he also presented an algorithm to
construct a surface bounded
by any given knot. Figure
1.4 illustrates a surface with
knotted boundary. This ap-
proach was certainly of prac-
tical importance, as it gave
efficient means for comput-
ing many of the known in-
variants. More important,
it laid the foundation for
the use of geometric meth-
ods into a subject that, until

Figure 1.4
then, had been dominated by combinatorics and algebra.

In 1947 H. Schubert used
geometric methods to prove a
key result concerning the de-
composition of knots. Given
any two knots, one can form
their connected sum, denoted /

K#J, as illustrated in Fig- (

ure 1.5. (If knots are thought : f )

of as being tied in a piece

of string, the connected sum

of two knots is formed by

tieing them in separate por- Figure 1.5

tions of the string so that they do mnot overlap.)
A knot is called prime if it cannot be decomposed as a
connected sum of nontrivial knots. (The appendix illus-
trates those prime knots with 9 crossings or less.) Schu-
bert proved that any knot can be decomposed unique-
ly as the connected sum of prime knots. As an imme-
diate corollary, if K is nontrivial, there is no knot J so
that J#K is unknotted. )
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Unlike the problem of distinguishing knots, the prob-
lem of developing general means for proving that one knot
can be deformed into another remained untouched. That
changed in 1957. Early in the century Dehn gave an incor-
rect proof of what has become known as the Dehn Lemma.
In rough terms, it stated that.if a knot were indistinguish-
able from the trivial knot using algebraic methods, then
the knot was in fact trivial. In 1957, C. Papakyriakopou-
los succeeded in proving the Dehn Lemma, and it soon
became the centerpiece of a series of major developments
in the subject. One of special note occurred in 1968, when
F. Waldhausen proved that two knots are equivalent if and
only if certain algebraic data associated to the knots are
the same. The interplay between algebra and geometry
was essential to this work, and the connection was pro-
vided by Dehn’s lemma.

The late 1950’s through the 1970’s were also marked
by an extensive study of the classical knot invariants, and,
in particular, how properties
of the knot were reflected
in the invariants. For in-
stance, K. Murasugi proved
that if a knot can be drawn so .
that the crossings alternate
from over to under, then the - '
coefficients of the Alexander : —
polynomial alternate in sign. \-/

. . -~

Figure 1.6 illustrates a non-

alternating knot diagram—

see how two successive over- Figure 1.6
crossings are marked. By the Murasugi theorem, it is
_impossible to find an alternating diagram for this knot, as
it has Alexander polynomial 2¢¢ — 3¢5 +¢* +¢3 +42 — 3t +
2. Murasugi’s work also detailed relationships between
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knot invariants and symmetries of knots, another major
topic in the subject. Figure 1.7 illustrates three 9-crossing
knots (94,917, and 933 in the appendix.) Two of the dia-
grams appear quite symmetrical, while the last is striking
in its asymmetry. Is it possible to deform the third knot
so that it too displays a similar symmetry?

"L

Figure 1.7
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In a completely different direction, the investigation
of higher dimensional knots, such as knotted 2-spheres in
4-space, became a significant topic. In 1960 the subject
consisted of little more than a sparse collection of exam-
ples. By 1970 it had become a well-developed area of topol-
ogy. It also had become a significant source of questions
concerning classical knots.

Since 1970, knot theory has progressed at a tremen-
dous rate. J. H. Conway introduced new combinatorial
methods which, when combined with more recent work by
V. Jones, have led to vast new families of invariants. New
geometric methods have been introduced by W. Thurston
(hyperbolic geometry) and by W. Meeks and S. T. Yau
(minimal surfaces), and together these have provided sig-
nificant new insights and results. Finally, in 1988 C. McA.
Gordon and J. Luecke solved one of the fundamental prob-
lems in knot theory. Many of the methods of knot theory
focus not on the knot itself, but on the complement of
the knot in 3-space; Gordon and Luecke proved that knots

with equivalent complements are themselves equivalerit.

Knot theory remains a

lively topic today. Many
the other extreme, the results
of recent years promise to
provide many new insights. \-)

of the basic questions, some '
dating to Tait’s first paper in
the subject, remain open. At
EXERCISES

1. If at a crossing point in
a knot diagram the crossing

is changed so that the section - Figure 1.8

that appeared to go over the other instead passes under,
an apparently new knot is created. Demonstrate that if
the marked crossing in Figure 1.8 is changed, the resulting
knot is trivial. What is the effect of changing some other
crossing instead?

2. Figure 1.9 illustrates a
knot in the family of 3-
stranded pretzel knots; this
particular example is the
(5,—3,7) pretzel knot. Can
you show that the (p,q,7)-
pretzel knot is equivalent to
both the (g,r,p)-pretzel knot
and the (p,r,q)-pretzel knot?

Figure 1.9

3. The subject of knot theory has grown to encom-
pass the study of links, formed as the union of dis-
joint knots. Figure 1.10 il-

lustrates what is called the

Whitehead link. Find a de-

formation of the Whitehead =

link that interchanges the

two components. (It will be

proved later that no defor-

mation can separate the two

components. )

4. For what values of (p,q,r)
will the corresponding pret- ]
zel knot actually be a knot, Figure 1.10

and when will it be a link? For instance, if p=q=1r=2,
then the resulting diagram describes a simple link of three
components, “chained” together.
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5. Describe the general procedure for drawing the
(p,q)-torus knot. What happens if p and ¢ are not rel-
atively prime? '

6. . The link in Figure 1.11

is called the Borromean link.

It can be proved that no de-

formation will separate the

components. Note, however,

that if one of the two compo-

nents is removed, the remain-

ing two can be split apart.

Such a link is called Brun-

nian. Can you find an exam-

_ ple of a Brunnian link with
Figure 1.11 more than 3 components?

(H. Brunn described families of such examples in 1892.)

7. The knots illustrated in Figure 1.12 were, until re-
cently, assumed to be distinct, and both appeared in many
knot tables. However, Perko discovered a deformation that
turns one into the other. As a challenging exercise, try to
find it.

CHAPTER 2:
WHAT IS A KNOT?

There are many definitions of knot, all of which capture
the intuitive notion of a knotted loop of rope. For each
definition there is a corresponding definition of deforma-
tion, or equivalence. This chapter will concentrate on one
pair of such definitions, and mention another. (Results at
the foundations of geometric topology relate the various
definitions. Such matters will not be presented here, and
do not affect the work that follows.) The goal for now is
to demonstrate how the notion of knotting can be given a
rigorous mathematical formulation, and to give the reader
a flavor of the problems and techniques that occur at this
basic level of the subject.

1 Wild Knots and Considering a pair of defini-
Unknottings tions that are not appropri-

ate, and seeing how they fail,

demonstrates some unexpected subtleties and the need for
precision and care in finding the right approach. One might
define a knot as a continuous simple closed curve in Eu-
clidean 3-space, R2. To be precise, such a curve consists
of a continuous function f from the closed interval [0,1] to
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R3 with £(0) = f(1), and with f(z) = f(y) implying one
of the three possibilities:

(1) z=y,

(2) z=0andy=1,o0r

(3) z=1and y = 0.

This is illustrated schematically in Figure 2.1.

- '_*(O

Figure 2.1

Unfortunately, with this definition the infinitely knot-
ted loop illustrated in Figure 2.2 would be admitted into

) -?’,)-é,)-a-ao..

Figure 2.2
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our studies. Such pathological examples are distant from
the intuitive notion of a knot and the physical knotting
that the theory is modelling, and so must be avoided.

Suppose for the moment that a definition similar to
that indicated above were suitable. How would the idea of
a deformation be captured? A natural choice would be to
say that a knot J is a deformation of K if there exists a
family of knots, K;, 0 <t <1, with Ky = K, K; = J, and
with K; close to K, for t close to s. Of course the idea of
knots being close would have to be defined as well.

Once again, an example indicates the difficulty of us-
ing a definition based on continuity. In Figure 2.3 several
steps of a deformation of a knot into an unknotted loop
are illustrated. Note that at every step of the deformation
the loop is a continuous simple closed curve. Somehow the
definition must rule out such deformations.

One remedy is to introduce differentiability into the
discussion. For instance, if the function f is required to
be differentiable, with unit velocity, the possibility of a
wild knot is eliminated; for the knot in Figure 2.3, the
tangent is varying rapidly near the wild point where the
small knots bunch up, and there is no continuous way to
define a tangent direction at that wild point. Introducing
differentiability into the definition of deformation is also
possible, but more difficult.

An alternative solution is to use polygonal curves in-
stead of differentiable ones. This approach avoids many
technical difficulties and at the same time eliminates wild
knotting, as polygonal curves are finite by nature. A theo-
rem relating the two approaches is proved in the appendix
of the text by Crowell and Fox, a good starting point for
readers interested in this aspect of the theory.
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Figure 2.3

2 The Definition of The simplest definitions in
a Knot knot theory are based on

. polygonal curves in 3-space.
Essentially a knot is defined to be a simple closed curve
formed by “joining the dots.”

For any two distinct points in 3-space, p and g, let [p,q]

_denote the line segment joining them. For an ordered set

of distinct points, (p1,pa,...,p,), the union of the segments
LT’I,p2]7 @271’3],--~,[pn—1,pn]a and [pmpl] is called a closed
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polygonal curve. If each segment intersects exactly two
other segments, intersecting each only at an endpoint, then
the curve is.said to be »simple.

DEFINITION. A knot is a simple closed polygonal
curve in RS.

Figure 2.4a illustrates the simplest nontrivial knot,
which is called the trefoil, drawn as a polygonal curve.
The unknot, or trivial knot, is defined to be the knot de-
termined by three noncollinear points, as illustrated in Fig-
ure 2.4b. (Note that picking a different set of three points
yields a different “unknot.” This ambiguity will be re-
solved in discussing deformations and equivalence, and in
the exercises.)

(a) (b)
Figure 2.4

Knots are usually thought of, and drawn, as smooth
curves and not jagged omes. An informal way of dealing
with this is to view smooth knots as polygonal knots con-
structed from a very large number of segments. That a
smooth knot can be closely approximated by a polygonal
curve is intuitively clear. The formal way of dealing with
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this problem is to study the relationship between polyg-
onal and differentiable knots. Knots will often be drawn
smoothly in this book, but this is for aesthetic reasons, and
all the figures could have been drawn polygonally instead.

There is one important observation to be made about
the definition. A knot is defined to be a subset of 3-space,
the union of a collection of segments. Various choices of or-
dered sets of points can define the same knot. For instance,
cyclicly permuting the order of the points does not alter
the underlying knot. Also, if three consecutive points are
collinear, then eliminating the middle one does not change
the underlying knot. This last observation about eliminat-
ing points along segments leads to a useful definition.

DEFINITION. If the ordered set (p;,ps,...,pn) defines
a knot, and no proper ordered subset defines the same knot,
the elements of the set {p;} are called vertices of the knot.

Finally, even if one’s goal is to study only knots, links of
many components will arise.

DEFINITION. A link is the finite union of disjoint
knots. (In particular, a knot is a link with one component.)
The unlink is the union of unknots all lying in a plane.

Notice that the condition that the components of the
unlink lie in a single plane is essential; examples of non-
trivial links with each component unknotted have already
been described. As with the definition of the unknot, am-
biguities appear here; for instance, in the definition of the

unlink does it matter what plane is used? Following the
" definition of equivalence presented in Section 3, these is-
sues can be addressed.

i
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EXERCISES

2.1. The ordering of the points {p;} used to define a knot
is essential. Show that by correctly changing the ordering
of the points, one might not get a knot at all. (Hint: with
the vertices reordered a closed curve will still result, but
is it necessarily simple?) Also, show that by changing the
ordering of the points {p;} defining the trefoil, the resulting
knot can be deformed into the unknot.

2.2. Tt is not clear from the definition that a knot has only
one set of vertices. Prove that in fact the vertices of a knot
form a well-defined set.

3 Equivalence of The next step is to give a

Knots, Deformations mathematical formulation of

the idea of deforming knots.

This is done with the notion of equivalence, which is in
turn defined via elementary deformations.

0 DEFINITION. A knot J is called an elementary defor-
mation of the knot K if one of the two knots is determined
by a sequence of points (p1,p2,...,Pn) and the other is de-
termined by the sequence (po,p1,D2,---,Pn), where (1) po is
a point which is not collinear with p; and pr, and (2) the
triangle spanned by (po,p1,pn) intersects the knot deter-
mined by (p1,p2,-..,Pn) ONly in the segment [p1,pn).

Here a triangle is the flat surface bounded by the
edges [po,p1], [P1,Pn], and [pn,po]. It is defined formally
asT = {:L'po+yp1 + zpn | 0< z, Y, 2 and z+yt+z= 1}
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The second dition i ips !
forming an e';:;ei::fylzetfhe definition assures that in per- |  DEFINITION. Knots K and J are called equivalent if |
ormation the knot does not cross 3 there is a sequence of knots K = Ko,Ki,...,Kn = J, with

itself. Figure 2.5a illustrates ai ‘
: . an elementary defo i 1 ; i
and 2.5b illustrates a deformation which is not perrzail:tl;ce):il, » :ZCh (I)(Hl an elementary deformation of i, for ¢ greater
. i an 0.

ﬁs ex.a.mples .have indicated, such crossings can change a
not 1nto. a dlfi’erent type of knot. Of course, the point of
the definition is to make these ideas precise.

N

This notion of equivalence satisfies the definition of
an equivalence relation; it is symmetric, transitive, and
reflexive, three facts that the reader can verify.

Knot theory consists of the study of equivalence
classes of knots. For instance, proving that it is impossible
to deform one knot into another is the same as proving that
the two knots lie in different equivalence classes. Proving

A that a knot is nontrivial consists of showing that it is not
’ . . .
‘ i4 contained in the equivalence class of the unknot.

TERMINOLOGY

It is usual in the subject to blur the distinction between a
knot and its equivalence class. For instance, rather than
say that a knot is equivalent to the unknot, one just states
that the knot is unknotted. Similarly, when it is said that
two knots are distinct, it is meant that the knots are in-
equivalent. This convention seldom can cause confusion,

- 7{__'_ . : but will be avoided in ambiguous situations.
! ’l —_ N—y :
| / J - /7 ‘ EXERCISES
‘ 3.1. Suppose a knot lies in a plane, and bounds a convex

f region in that plane. (Convex means that any segment
: (b) 4 with endpoints in the region is entirely contained in the

Figure 2.5 region.) Prove that the knot is equivalent to a knot with
3 vertices. That is, describe how to construct a sequence
of knots, each an elementary deformation of the previous
one, starting with the convex planar knot and ending with
a knot having exactly 3 vertices.- Hint: Apply induction
on the number of vertices. '

Knots K and J are called equivalent if K can be

changed into J by performi i
: ng a series of el
formations. More precisely: cementery de
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3.2. Suppose that K and J are
plane. (Recall that this mean
determined by

unknots lying in the same
ona : s that K and J are each
. ¢ noncollinear points.) Show that K
and J are equivalent by describing a method for finding

the appropriate sequence of elementary deformations

3.3. Exercises 3.1 and 3.2

. -2 show that two ¢ i
a plane determine equivalent knots, oot e In
for nonconvex knots, and is called the

Prove the Schonflies theorem for plan.
5 vertices.

This result is true
Schonflies Theorem.
ar knots with 4 and

3.4. Is every knot with exactly 4 vertices unknotted?

3.5. Let K be a knot determined by points (v

Show that there is a number z such that i o d
from p; to p) is less than z, t
.knot determined by (p1,p2,..
1s.a %z such that every vertex
without changing the equivale
are both detailed arguments i

-sPn)-
f the distance
hen K is equivalent to the
-»Pn)- Similarly, show there
can be moved a distance z
nce class of the knot. (These
» . n epsilons and deltas.)
1 .t .dProve, using 3.5, that a knot can be arbitrarily trans-
ated or rotated by a sequence of elementary deformations

3.7. Generalize the definition o

f elementary deformati
- C ation
and equivalence, to apply to links. (Your definition should,

not permit one component to pass through another )

4 Dlall)gra:ms 'and Although a knot is a subset

rojections of space, all our work takes
place in a plane. The pictures
ece of paper and your practice

in this book all lie on a flat pi

is done on a flat blackboard or piece of paper as well. How
is it that a diagram on a piece of paper gives a well-defined
knot? This is answered by formalizing the notion of knot
diagram.

The function from 3-space to the plane which takes

a triple (z,y,2) to the pair (z,y) is called the projection
map. If K is a knot, the image of K under this projection
is called the projection of K. A projection of the figure-8
knot (knot 4; in the appendix) is illustrated in Figure 2.6.
It is possible that different

knots can have the same

projection. Once the curve

is projected into the plane,

it is no longer clear which

portions of the knot passed

over other parts. To rem-

edy this loss of information,

gaps are left in the draw-

ings of projections to indi-

cate which parts of the knot

pass under other parts. Such Figure 2.6

a drawing is called a knot diagram. In this book all
the drawings of knots are really knot diagrams.

At this point the distinction between knots and equiv-
alence classes of knots appears. Many different knots can
have the same diagram, as the diagram indicates that cer-
tain portions of the knot pass over other portions, but not
how high above they pass. It turns out that this does not
matter! If two knots have the same diagram they are equiv-
alent. To state this formally as a theorem requires a more
careful study of projections.

Suppose that a knot has a projection as illustrated
in Figure 2.7a. If that knot is rotated slightly in space,
the resulting knot will have a projection as illustrated in
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Figure 2.7b! Such knot projections have to be avoided as

too much information has been lost in the projection.

(a) (%)
Figure 2.7

O DEFINITION - A knot projection is called a regular
projection if no three points on the knot project to the same

point, and no vertez projects to the ;
' same
point on the knot. o s amy other

There are two theorems that make regular projections
especially useful. The first states that if a knot does not
have a regular projection then there is an equivalent knot
nearby that does have a regular projection. The second
states that if a knot does have a regular projection then all
nearby knots are equivalent and also have regular projec-

tions. The notion of nearby i .
. y 1s made precise b .
the distance between vertices. Y measuring

';;Ij(:g]i}l}d 1 Let K be a knot determined by the or-
dered. pom,ts (pl,.... sPn). For every number t > 0

ere 15 a knot K' determined by an ordered set (@ )
§ucl/z .that the distance from q; to P; 15 less than t,}‘.o'r,'qgll
4, K’ is equivalent to K , end. the projection of K is regular
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0 THEOREM 2. Suppose that K is determined by the

sequence (p1,...,Pn) and has a regular projection. There is
a number t > 0 such that if a knot K' is determined by
(q1,---,qn) with each g; within a distance of t of p;, then
K’ is equivalent to K and has a regular projection.

Knot diagrams are only defined for knots with regular
projections. The theorem relating knots to diagrams is the
following;:

THEOREM 3. If knots K and J have regular projec-
tions and identical diagrams, then they are equivalent.

ProoFr
One approach is the following. First arrange that K is
determined by an ordered sequence (p1,...pn) and J is de-
termined by the sequence (g1,...,g») With the projection of
p; and ¢; the same for all <. This may require introducing
extra points in the defining sequences for both knots.
Next perform a sequence of elementary deformations
that replace each p; with a ¢; in the defining sequence
for K. These moves are first applied to all vertices which
do not bound intervals whose projections contain crossing
points. Finally each crossing point can be handled. O

TERMINOLOGY
A knot diagram consists of a collection of arcs in the plane.
These arcs are called either edges or arcs of the diagram.
The points in the diagram which correspond to double
points in the projection are called crossing points, or just
crossings. Above the crossing point are two segments on
the knot; one is called an overpass or overcrossing, the
other the underpass or undercrossing. Notice that the
number of arcs is the same as the number of crossings.
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With Theorem 3 it is now possible to blur the dis-
tinction between a knot and its diagram. There is usually
no confusion created by not distinguishing a knot diagram
from an equivalence class of a knot. To be clear, though:
a knot is a subset of 3-space, knots determine equivalence
cl.asses of knots, and knots with regular projections have
diagrams, which are drawings in the plane.

EXERCISES
4.1. Fill in the details of the proof of Theorem 3.

4.2. Sketch a proof of Theorem 1. (A proof can make use
of Exercise 6, Section 3. A projection is regular as long
as.l) no line joining two vertices is parallel to the vertical
axis, 2) no vertices span a plane containing a line parallel
to the vertical axis, and 3) there are no triple points in the
projection. Argue that the knot can be rotated slightly

to achieve conditions 1 and 2, and then deal with triple
points.)

4.3. Prove Theorem 2. The previous hint should help here.

4.4. Show that the trefoil knot can be deformed so that its
(nonregular) projection has exactly one multiple point.

5 Orientations Knots can be oriented, or, in-

. formally, given a sense of di-
rection. Recall that a knot is determined by its (ordered)
set of vertices. If the ordered set of vertices is (P15---,Pn),

-then, as noted earlier, any cyclic permutation of the ver-

tices gives the same knot. It is also true that reversing the
order of the vertices will yield the same knot.

O DEFINITION. The reverse of the oriented knot deter-

0 DEFINITION. An oriented knot consists of a knot and

an ordering of its vertices. The ordering must be chosen
so that it determines the original knot. Two orderings are
considered equivalent if they differ by a cyclic permutation.

The orientation of a knot is usually represented by
placing an arrow on its diagram. The connection with the
definition of orientation should be clear. '

The notion of equivalence is easily generalized to the
oriented setting. If a knot is oriented, an elementary de-
formation results in a knot which is naturally oriented.
Hence, an elementary deformation of an oriented knot is
again an oriented knot.

0 DEFINITION. Oriented knots are called oriented

equivalent if there is a sequence of elementary deforma-
tions carrying one oriented knot to the other.

One of the hardest problems that arises in knot theory
is in distinguishing equivalence and oriented equivalence.
The first examples of knots which are equivalent but not
oriented equivalent were described by H. Trotter in 1963;
for example, the (3,5,7)-pretzel knot can be oriented in two
ways, and Trotter showed the resulting oriented knots are
not oriented equivalent, even though they are the same
when orientations are ignored.

Another related definition will be useful later.

mined by the ordered set of vertices (p1,...,Pn), is the ori-
ented knot K™ with the same vertices but with their order
reversed. An oriented knot K is called reversible if K and
KT are oriented equivalent. If K is not oriented, it is called
reversible if for some choice of orientation it is reversible.
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EXERCISES
5.1. Formulate a definition of oriented link.

5.2. Any oriented knot, or link, determines an unori-

ented link. Simply ignore the orientation. Given a knot,
there are at most two equivalence classes of oriented knot

that determine its equivalence class, ignoring orientations.
(Why?)

(a) What is the largest possible number of distinct ori-
ented n component links which can determine the
same unoriented link, up to equivalence? Try to con-
struct an example in which this maximum is achieved.
(Do not attempt to prove that the oriented links are
actually inequivalent. This will have to wait until
more techniques are available.)

(b) Show that any two oriented links which determine the
unlink as an unoriented link are oriented equivalent.

5.3. Explain why if an unoriented knot is reversible, then
for any choice of orientation it is reversible.

5.4. Show that the (p,p, g)-pretzel knot is reversible.

5.5. The knot 8,7 is the first knot in the appendix that is
not reversible, a difficult fact to prove. Find inversions for
some of the knots that precede it. Several are not obvious.

5.6. Classically, what has been defined here as the re-
verse of a knot was called the inverse. The change in
notation arose from high-dimensional considerations that
will be discussed in Chapter 9. The inverse is now de-
fined as follows. Given an oriented knot, multiplying the
z-coordinates of its vertices by —1 yields a new knot, K™,
called the mirror image, or obverse of the first. The in-
verse of K is defined to be K™,

2
WHAT Is A KNOT? 7

(a) How are the diagrams of a knot and its obverse and
inverse related?

(b) Given a knot diagram it is possible to form a new lt‘j'not1
diagram by reflecting the diagram tl:.lrough a ver 1ca4t
line in the plane, as illustrated in F.1gure 2.8. Wha?
operation on knots in 3-space does this correspond to?

(D AD

—>

Figure 2.8

(c) Show that the operation described in part b) yields a
knot equivalent to the obverse of the original knot.




CHAPTER 3:
COMBINATORIAL TECHNIQUES

The techniques of knot theory which are based on the study
of knot diagrams are called combinatorial methods. These
techniques are usually easy to describe and yet provide
deep results. For instance, in this chapter such methods
will be used to prove that nontrivial knots exist and then
to demonstrate that there is in fact an infinite number of
distinct knots.

Combinatorial tools often appear as unnatural or ad
hoc. In many cases alternative perspectives, though more
abstract, can provide insights. One of the successes of al-
gebraic topology is to provide such perspectives, but in
some cases, the efficacy of combinatorial techniques re-
mains mysterious. Recent progress in combinatorial knot
theory will be described in Chapter 10.

1 Reidemeister Moves In what ways are diagrams

of equivalent knots related?
Clearly, even a single elementary deformation can have
a dramatic effect on the diagram. Some of the sim-
plest changes in a diagram that can occur when a knot
is deformed are illustrated in Figure 3.1. In the figure only

29
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“tion in combinatorial knot theory

that portion of the diagram where a change occurs is illus-

trated.

)=
(=

M
-2

e

N e T
7N XN

Figure 3.1

e cfl}ach of .the t}}ree figures represents a pair of possi-
o inv:;lsies ’11‘;11 a d%agra,m; each operation is paired with
. ese six simple operations whi
formed on a knot dia, i o the o be per
: gram without altering the corr
: espond-
ing knot are called Reidemeister moves . The key ob:erI\lra

and Briggs: was made by Alexander

0 THEOREM 1. If two knots (or links) are equivalent,

their diagrams are related by a sequence of Reidemeister
moves.

Proor

If you have already done some of the exercises showing
that different diagrams can represent the same knot then
this result should seem intuitively clear. In turning one
diagram into the other the only changes that you ever need
to make are these Reidemeister moves. The full proof is a
detailed argument keeping track of a number of cases, but
the main ideas are fairly simple.

Suppose that K and J represent equivalent knots, and
that both have regular projections. Then K and J are
related by a sequence of knots, each obtained from the next
by an elementary deformation. A small rotation will assure
that each knot in the sequence has a regular projection,
and thus the proof is reduced to the case of knots related
by a single elementary deformation.

Again after performing a slight rotation, it can be as-
sured that the triangle along which the elementary defor-
mation was performed projects to a triangle in the plane.
That planar triangle might contain many crossings of the
knot diagram. However, it can be divided up into many
small triangles, each of which contains at most one cross-
ing. This division can be used to describe the single el-
ementary deformation in a sequence of many small ele-
mentary deformations; the effect of each on the diagram
is quite simple. The proof is completed by checking that
only Reidemeister moves have been applied. O

EXERCISES
1.1. Show that the change illustrated in Figure 3.2 can be
achieved by a sequence of two Reidemeister moves.
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Figure 3.2

1.2. Find a sequence of Rei-

demeister moves that trans-

forms the diagram of the un-

knot drawn in Figure 3.3 into /
a diagram without crossings. \
Here is a harder exercise: /

What is the least number of
Reidemeister moves needed
for such a sequence? Can you
prove that this is the least
number that suffices?

Figure 3.3

2 Colorings  The method of distinguishing

knots usin, « ility”
of the‘ir diagrams was invented by Raipghtgix.c?ll“?lrea?rlgc};
c}ure Is simple: A knot diagram is called colorable if each
arc can be drawn using one of three colors say red (R)
yellow (Y), and blue (B), in such a way th7a,t 1) at least,
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two of the colors are used, and 2) at any crossing at which
two colors appear, all three appear. Figure 3.4 illustrates
a coloring of a knot diagram. Exercise 2.1 is a quick prob-
lem, asking you to check which of the diagrams for knots
with 7 or fewer crossings, as illustrated in Appendix 1, are

colorable.

R R

AKXy

Figure 3.4

Is it possible that some diagrams for a knot are col-
orable while others are not? Our first result in combinato-
rial knot theory is that the answer is no.

0 THEOREM 2. If a diagram of a knot, K, is colorable,
then every diagram of K is colorable.

Hence the following definition makes sense:

0 DEFINITION. A knot is called colorable if its diagrams
are colorable.

The proof of Theorem 2 is the model for most of the
proofs of later combinatorial results. But before giving
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it, one immediate consequence should be noted; nontrivial
knots exist! Clearly the unknot is not colorable because its
standard projection cannot be colored. It follows that any

colorable knot is nontrivial. Further consequences appear
in the exercises.

Proor

(Theorem 2) It is sufficient to show that if a Reidemeister
move is performed on the colorable diagram of a knot,
then the resulting diagram is again colorable. Hence, the
proof breaks into six steps, one for each Reidemeister move.
Each step consists of checking various cases and none is
difficult, although some are a bit tedious. One step is
presented here; the others are left to the exercises.
Suppose that Reidemeister move 2b is performed on
a colored knot diagram. It must be shown that the new
diagram is again colorable. There are two cases. In the
first, the arcs are colored with two (and hence three) colors,
as illustrated in Figure 3.5a. (Only the affected portions
of the knots are included in these illustrations.) The new
diagram can be colored as before, with the altered section
colored as in Figure 3.5b. As two colors still appear, the
resulting diagram is still colorable.

R Y

\ R Y .

e’

(a) ) (®)
Figure 8.5
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The second possibility is that both of the ‘affected arcs
start out colored with the same color. In this case,.after
performing the Reidemeister move the arcs can s_t111 be
colored with that same color and the rest of t1.1e diagram
can be colored as it was originally. All the requirements of

ility are still satisfied.
COlorg]}allelzgfg Reidemeister moves la, 1b, and 2@, are all
as simple as this. Moves 3a and 3b present a few mor;
cases to check.

S
ETE %\ijllw.sljh of the knot diagrams with seven or fe?wer Cross-
ings, as illustrated in Appendix 1, are colorable? o
2.2. For which integers n is the (2,n)-torus knot in Figure
3.6a colorable? The knot illustrated in Figure: 3.6b is called
the n-twisted double of the unknot, where 2n‘ is the number
of crossings in the vertical band. The trefoil results yvhen
n = —1. What if n = 0 or 1?7 For which values of n is the
n-twisted double of the unknot colorable?

Figure 3.6
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2.3. Discuss the colorability of the (p,q,r)-pretzel knots.

f.él. (a) Prove the coloring theorem for Reidemeister move
a. '

(b) How many cases need to be considered in proving The-
orem 2 for Reidemeister move 3a?

(c) Check each of these cases.
(d) Complete the proof of Theorem 2.

2.5. Given an oriented link of two components, J and K, it
is possible to define the linking number of the componerylts
as follows. Each crossing point in the diagram is assigned a
sign, +1 if the crossing is right-handed and —1 if it is left-
handed. (A right-handed crossing is a crossing at which
an observer on the overcrossing, facing in the direction of
the overcrossing, would view the undercrossing as passing
from right to left. Right and left crossings are illustrated
in Figure 3.7.) The linking number of K and J, Ck(K,J)
is defined to be the sum of the signs of the crossing po,inté
where J and K meet, divided by 2.

Tight left
Figure 8.7
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A X

(a) Use the Reidemeister moves to prove that the linking
number depends only on the oriented link, and not on
the diagram used to compute it.

(b) Figure 3.8 illustrates an oriented Whitehead lLink.
Check that it has linking number 0.

(c) Construct examples of links with different linking
numbers.

2.6. This exercise demon-
strates that the linking num-
ber is always an integer. -_—
First note that the sum used
to compute linking numbers
can be split into the sum
of the signs of the cross-
ings where K passes over J,
and the sum of the crossings

where J passes over K.
Figure 3.8

(a) Use Reidemeister moves to prove that each sum is
unchanged by a deformation.

(b) Show that the difference of the two sums is unchanged
if a crossing is changed in the diagram.

(c) Show that if the crossings are changed so that K al-
ways passes over J, the difference of the sums is 0.
(This link can be deformed so that K and J have dis-
joint projections.)

(d) Argue that the linking number is always an integer,
given by either of the two sums. (This is the usual def-
inition of linking number. The definition in Exercise
2.5 makes it clear that (k(K,J) = £k(J,K).)

2.7. The definition of colorability is often stated slightly

differently. The requirement that at least two colors are
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used is replaced with the condition that all three colors
appear.

(a) Show that the unlink of two components has a di-
agram which is colorable using all three colors and

another diagram which is colorable with exactly two
colors.

(b) Why is it true that for a knot, once two colors appear

all three must be used, whereas the same statement
fails for links?

(c) Explain why the proof of Theorem 2 applies to links
as well as to knots.

2.8. Prove that the Whitehead link illustrated in Figure
3.8 is nontrivial, by arguing that it is not colorable.

2.9. In this exercise you will prove the existence of an
infinite number of distinct knots by counting the number
of colorings a knot has.

If a knot is colorable
there are many different ways
to color it. For instance,
arcs that were colored red
can be changed to yellow, yel-
low arcs changed to blue, and ‘
blue arcs to red. The re- ‘
' quirements of the definition 1§ ]
of colorability will still hold.

There are six permutations of

the set of three colors, so any

coloring yields a total of six Figure 3.9
colorings. For some knots there are more possibilities.

(a) Show that the standard diagram for the trefoil knot
has exactly six colorings.
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(b) How many colorings does the square knot shown in
Figure 3.9 have?

(c) The number of colorings of a knot projection depen(.is
only on the knot; that is, all diagrams of a knot will
have the same number of colorings. Outline a proof
of this.

(d) Use the connected sum of n trefoils, illusf:rated— in Fig-
ure 3.10, to show that there are an infinite number of
distinct knots.

Figure 3.10

How can colorability be gen-
eralized? Is it possible to use
more than three colors to de-
scribe new methods of distin-
guishing knots? There are actually several ways tf) gen-
eralize colorability, the first of which is presented in this
section. .

In describing the method of colorings in the previous
section, instead of labeling the arcs of the knot diagram

3 A Generalization
of Colorability,
mod p Labelings
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with colors, three integers, 0,1, and 2, could have been
used. The condition on colorings at crossings translates
into the simple statement that if the overcrossing is labeled
z and the two other arcs y and z, then the difference 2z —
y—z is divisible by 3, or, more succinctly, 2z -y —z =
0 (mod 3). (Check that this condition is equivalent to the

coloring condition.) A possible generalization immediately
appears:

DEFINITION. A knot diagram can be labeled mod pif
each edge can be labeled with an integer from 0 to p—1 such
that 1) at each crossing the relation 2z —y — z = 0 (mod D)
holds, where z is the label on the overcrossing and y and z
the other two labels, and 2) at least two labels are distinct.

Figure 3.11 illustrates a mod 7 labeling of a knot.

Figure 3.11

For reasons that will be made clear in the exercises,
p will be restricted to the odd primes. In Exercise 3.3
the reader is invited to check that whether or not a knot

diagram can be labeled mod p depends only on the .equiv-
alence class of the knot, so that Theorem 2 generah'zes t'o
this new situation. Figure 3.12 illustrates one step; if Rei-
demeister move 2b is performed on a labeled diagram, the
resulting diagram can again be labeled.

e

Figure 3.12

0 THEOREM 3. (Labeling theorem) If some diagram for

a knot can be labeled mod p then every diagram for that
knot can be labeled mod p.

EXERCISES .
3.1. Determine which knots with 6 or fewer crossings can

be labeled mod 5.

3.2. For what primes p can the trefoil knot diagram be
labeled mod p? .
3.3. Prove Theorem 3 by showing that if any Reidemgls—
ter move is performed on a labeled diagram, the resulting
diagram can again be labeled.

3.4. Show that if all the labels of a knot.that is labeled
mod 3 are multiplied by 5, the resulting labeling is a la-
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beling mod 15. This gives some indication as to why p is
restricted to the primes.

3.5. If p is 2, other difficulties come up. Explain why no
knot can be labeled mod 2. (Modulo 2, what does the
crossing relationship say?)

3.6. Check that the theory of labelings applies to links of
many components.

3.7. Show that the knots 4;, 7;, and 8¢ are distinct by
using mod 5 and mod 7 labelings. (Find mod 5 and mod 7
labelings of 81¢.)

4 Matrices,
Labelings, and
Determinants

Linear algebra simplifies the
problem of labeling knot di-
agrams; just as important is
the fact that, with the intro-
duction of matrices, many new knot invariants appear.
Some of these invariants are introduced here. These in-
variants are studied in greater depth in Chapter 7.

Here is an algebraic reduction of the problem. Given a
knot diagram, label each arc of the diagram with a variable,
say z;. At each crossing a relation between the variables
is defined: if arc z; crosses over arcs z; and xy, then 2z; —
z;j — 2 = 0 (mod p). A knot can be labeled mod p if there
is a mod p solution to this system of equations with not
all z; equal.

Whether or not a knot is colorable, or can be labeled
mod p, has now been reduced-to a problem of linear a)-
gebra, that of studying the solutions to a system of linear
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equations. As usual in linear algebra, the use of matrices
will simplify the problem.

4

Figure 3.13

For example, the knot in Figure 3.13 is drawn with its
arcs labeled and its crossings numbered. The correspond-
ing system of equations that needs to be solved is giver'l by
the matrix below. The rows correspond to the equations
determined by each crossing, the columns to the variables
taken in order.

2 -1 -1 0 0
-1 0 2 -1 0
-1 0 0 2 -1

0 -1 0 -1 2

0 2 -1 0 -1

Standard techniques of linear algebra apply to solv-
ing systems of equations mod p as well as for ﬁnd‘ing real
or rational solutions. (Formally, for p prime the integers
mod p form a field.) Unfortunately, the added condition in
the present problem, that the solutions have at least two
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of the z; distinct, introduces a few subtleties that need to
be addressed before general results can be presented.

Two preliminary observations are needed. First note
that setting each x; = 1 yields a solution to the system of
equations. Second, observe that any two solutions can be
added together to yield another solution.

These remarks imply that if there is a solution with
not all entries equal, there is such a solution with z,, = 0.
(zn, could be replaced with any other z; here.) Conversely,
a nontrivial solution with z,, = 0 results in a labeling of the
knot. Hence, a solution with not all z; equal corresponds to
a nontrivial solution to the system of equations determined
by the original matrix with its last column deleted.

It is easier to work with problems related to square
matrices, and fortunately the given problem can be re-
duced to this setting. This is done by showing that any
one of the equations is a consequence of the others. In
terms of the matrix, multiplying certain of the rows by —1
results in a matrix with its rows adding to 0.

The correct choice of
the algorithm: Orient the . /-\
knot. At each crossing in
the diagram put a dot to \j .
the right of the overcrossing, ’

Now, count how many arcs of
the diagram must be crossed
by a path from the dot to a
point in the plane far from
ber of arcs are crossed, then. multiply the corresponding
row of the matrix by —1. It is fairly simple to show that

—1’s is not obvious; here is
just before the crossing point. \
. the diagram. If an odd num- Figure 3.14

_-—ﬁ—-———

COMBINATORIAL TECHNIQUES 45

the sum of the rows is now trivial. In Figure 3.14 the cross-
ings that correspond to rows that are multiplied by —1 are

marked.
The following result summarizes the discussion above.

THEOREM 4. There is an n X n matric corresponding
to a knot diagram with n arcs. Deleting any one column
and any one row yields a new matriz. The knot can be
labeled mod p if and only if the corresponding set of equa-
tions has a nontrivial mod p solution.

Of course whether or not the system of equations has a
nontrivial solution depends on the determinant of the ma-
trix. A solution exists if the determinant is 0, or, working
mod p, if the determinant is divisible by p. Furthermore,
the number of solutions is determined by the mod p nullity
of the matrix.

(The nullity of a matrix is the dimension of the kernel
of the matrix, thought of as a linear transformation. More
algorithmically, any square matrix with entries in a field,
(mod p entries in the present case), can be diagonalized by
performing row and column operations; that is, by adding
multiples of rows or columns to other rows or columns re-
spectively. The number of 0’s on the diagonal {(or entries
divisible by p if working mod p) is the nullity. With more
care, a square integer matrix can be diagonalized, using
only integer row and column operations. Performing this
integer diagonalization performs mod p diagonalizations
for all p simultaneously. The exercises illustrate these pro-
cedures.)

DEFINITION. The determinant of a knot is the abso-
lute value of the determinant of the associated (n— 1) x
(n—1) matriz constructed above. ‘
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0 DEFINITION. The mod p rank of a knot is the
mod p nullity of the associated (n—1) x (n—1) matriz
constructed above. '

Of course, for these two definitions to give well-defined
invariants, it must be proved that none of the choices in-
volved, of either the knot diagram or the ordering of the
labels on the arcs and crossings, affects the determinant or
mod p rank of the associated matrix.

0O THEOREM 5. The determinant of a knot and its
mod p rank are independent of the choice of diagram and
labeling.

Proor
There are two parts to the proof. The first is purely linear
algebra, observing facts about the determinant and nullity
of matrices. The second calculates the effect of the choice
of labelings and the Reidemeister moves on the associated
matrix.

As far as the linear algebra goes, a needed result states
that if, for a square matrix, the sum of the rows and the
sum of the columns is 0, then if a row and column are
removed, the nullity (and the absolute value of the deter-
minant) of the resulting matrix does not depend on which
row and column were removed. A simpler result states
that if the matrix is changed by adding a new row and
column, each containing all 0’s except for a single 1 on the
diagonal, then the nullity and determinant are unaffected.

The rest of the argument checks the effect of the Rei-
demeister moves on the associated matrix. For example,
Reidemeister move 2a introduces two new rows and two
new columns. Two of the new columns result from split-
ting one of the old arcs into two, and hence the sum of
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those two columns has entries determined by the one old
column. A few row and column operations show that the
pew matrix can be changed into the old, with two new
rows and columns added, each of which has a single +1 in
it. The full argument for this and the other Reidemeister
moves, is left to the reader. O

TORSION INVARIANTS

_ The determinant and ranks are captured by stronger in-

variants. It is relatively easy to diagonalize a matrix when
working mod p; any nonzero entry can be used to clear
out a row and column. Diagonalizing over the integers is
harder, though possible, as is proved in most modern alge-
bra texts in the classification of abelian groups. The proof
uses the Euclidean algorithm. The typical result states
that a square integer matrix can be diagonalized so that
each entry on the diagonal divides the next entry. If the
matrix associated to a knot is diagonalized in this way, the
resulting diagonal entries are called the torsion invariants
of the knot. Their product is the determinant of the knot,
and the number of entries which are divisible by p is the
mod p rank of the knot.

The proof that these are well-defined knot invariants
will not be given. The best approach relies on the theory
of abelian groups. The matrix associated to a knot can be
viewed as a presentation matrix for an abelian group. The
various alterations in the matrix do not affect the group so
determined, and the torsion invariants are just the torsion
invariants of this group.

EXERCISES

4.1. For each knot with 6 or fewer crossings find the asso-
ciated matrix, and its determinant. In each case, for what
p is there a mod p labeling?
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4.2. The knots 8;3 and 924 both have determinant 45. 1’ with entries that are integers the entries of the matrix are
Check that one has a mod 3 rank of 1, while the other ; polynomials.

has a 1¥10d 3 rank of 2. The l.mots 8g and 949 both have ] - Alexander’s original description was based on label-
determinant 25. Compute their mod 5 ranks. ] ing the regions in the plane bounded by the arcs of the

diagram, and Reidemeister was the first to give a presen-

4.3. Prove the linear algebra results stated in the proof of
tation focusing on the arcs. Since then, many alternative

Theorem 5.

4.4. Because the unknot has particularly simple diagrams, deﬁni.tions h e beeI;I fOI'md. 'Cha'pterl y pcriovlide's . Ir%(()id-
the arguments given above really need to be modified ] o v1e:vp01nt, one ¢ i ot . qli;lte simple, and that provides
sligl}tly. The two diagrams for the unknot that cause diffi- 2 acces;o ch)nI:n itr;ev;vhznvziina;&er olynomial of a knot

c1?lt1es are the diagram with no crossings, and the diagram 1 Ag(t), first Il))ick an oriented diangmyfor K. Number th;,
with exactly one crossing. What goes wrong in these cases? arcs 0% the diagram, and separately number the crossings.
Why don’t these problems occur in other situations? How a Next, define an n >: n matrix, where n is the number of
would }'rou correct for these minor problems? (Define the ] cross;ngs (and arcs) in the diz;gram, according to the fol-
determinant and nullity of a 0 x 0 matrix to be 1.) lowing procedure:

4.5. Prove that the determinant of a knot is always odd. 1 If the crossing numbered £ is right-handed with arc
(See Exercise 5 of the previous section, relating to mod 2 ] passing over arcs j and k, as illustrated in Figure 3.15a,

enter a 1 —¢ in column i of row £, enter a —1 in column
than one component.) j of that row, and enter a t in column k of the row. If
4.6. Show that if a knot has mod p rank n, then the number the crossing i?, left—handgd, as illustrated in F'igure 3.15b3
of mod p labelings is p(p™ — 1). ] enter a 1—% in column ¢ of row £, enter a ¢ in coluI.nr.l J
1 and enter —1 in column k of row £. All of the remaining

entries of row £ are 0. (An exceptional case occurs if any of
i, j, or k are equal. In this exceptional case, the sum of the
‘ 4 entries described above is put in the appropriate column.
! For instance, if j = k for some left-handed crossing, enter
—1+t in column j. What if j = k at a right-handed

labelings. Also, this result does not apply for links of more

i crossing?)
5 Thepﬁ;exanc{: In the previous section it was ; ‘ O DEFINITION. The (n—1)x (n—1) matriz obtained
ynomi seen thz?,t. the simple notion of ] by removing the last row and column from the n X n ma-
colorability leads to a study 1 triz just described is called an Alezander matriz of K. The

-of determinants of matrices. The following description of
the Alexandér polynomial greatly extends the use of ma-
trices and determinants. In this case, rather than work

determinant of the Alezander matriz is called the Alezan-
der polynomial of K. (The determinant of a 0 x 0 matriz
is defined to be 1.)
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Unfortunately, this polynomial depends on the choice
of the original diagram as well as on the other choices in-
volved in its description. That dependence is captured by
the following theorem.

(b)

Figure 3.15

O THEOREM 6. If the Alexander polynomial for a knot
is computed using two different sets of choices for diagrams
and labelings, the two polynomials will differ by a multiple
of £tk for some integer k.

For example, applying this procedure to the trefoil
yields the polynomial t? —t+1. Another set of choices
might give —t* +t3 —#2. See below.

SKETCH OF PROOF
The argument is more detailed than, but quite similar
to, the proof of Theorem 5. With some care, the reader
should be able to check the effect of performing Reidemeis-
ter moves on the Alexander matrix. The complete proof
‘includes one new difficult step; analyzing the effect of a
change of orientation. It will be shown that the Alexander
polynomial of the reverse of a knot K is obtained from
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the Alexander polynomial of K by substituting t~1 for ¢
and multiplying by an appropriate power of ¢, and per-
haps multiplying by —1. (See Exercise 5.7.) Hence, the
independence of the Alexander polynomial on orientation
follows from its symmetry; replacing ¢ with t~! returns the
same polynomial multiplied by some power of t. This sym-
metry property will be discussed in Chapter 6. (Alexander
was unable to find a proof; a complete argument was first
given by Seifert.)

EXAMPLES

The trefoil knot provides
the simplest example of a
knot with nontrivial Alexan-
der polynomial. Figure 3.16
indicates a labeling of the
arcs and crossings. The as-
sociated matrix is:

3 1-t -1t
Figure 3.16 t 1—t —1
-1 t 1-¢

Deleting the bottom row and the last column gives a 2 x 2
Alexander matrix with determinant t* —t+ 1.

Consider a harder example, the (2,n)-torus knot,
shown in Figure 3.17. If the diagram is labeled as was
done for the trefoil, the Alexander polynomial is given as
the determinant of the (n— 1) X (n — 1) matrix

1-1 -1 0 0 0
t 1-1 -1 0 0
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Clearly, to compute the exact
determinant here would take

8 a fairly detailed inductive ar-
2 gument. (The result turns
P out to be (t"+1)/(t+1).)

Without actually computing

v the determinant it is easily

( proved that for different pos-

itive n the Alexander poly-

nomials are distinct. Note

first that the coefficient of the

Figure 3.17 lowest degree term, the con-

stant term, is the determinant of the matrix obtained by

setting £ = 0. The result is 1. The highest degree term is

found by taking the determinant of the matrix containing

only the ¢ terms of the matrix above; that is remove all the
+1’s. The resulting determinant is "~ 1.

Hence the Alexander polynomial of the (2,n)-torus
knot is of degree exactly n— 1. In particular, these knots
form an infinite family of distinct knots, all of which are
distinguished by the Alexander polynomial.

EXERCISES

5.1. Compute the Alexander polynomial for several knots .
in the appendix.

5.2. Relate the value of the Alexander polynomial of a knot
evaluated at —1 to the determinant of the knot, defined in
the previous section.

5.3. Check that Reidemeister move la does not change the
Alexander polynomial.

'5.4. It is possible to construct knots with the same poly-
nomial, but which can be distinguished by their mod p
ranks for some p. Compute the polynomials of 85 and 924
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3

to check that they are identical. In Exercise 4.2 of this
chapter these knots were distinguished using the mod 3
ranks.

5.5. Show that the knot
in Figure 3.18 has Alexan-
der polynomial 1. (This is
one of only two knots with
11 or fewer crossings that
has trivial polynomial, other
than the unknot.) Use Ex-
ercise 5.2 to argue that the
knot cannot be distinguished
from the unknot using label-
ings. Stronger algebraic tech- .
niiues (Chapter 5) or combi- Figure 3.18

natorial tools (Chapter 10) can be used to prove it is non-
trivial.

5.6. Prove that a knot and its mirror image, as illustrated
in Figure 3.19, have the same polynomial. (Hint: Label
the mirror image in the obvious way, but reverse its orien-

tation.)

a9

Figure 3.19

-

<
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5.7. Show that the Alexander polynomial of K with its ori-
entation reversed is obtained from the polynomial of K by
substituting ¢t~ for ¢, and multiplying by the appropriate
power of ¢, and perhaps changing sign.

CHAPTER 4:
GEOMETRIC TECHNIQUES

Consider the surface drawn in Figure 4.1. It is built from a
disk by attaching two twisted bands. Note that the bound-
ary, or edge, of the surface is a knotted curve. In fact, the
boundary is a trefoil knot.

Figure 4.1

By studying the surface it is possible to learn more
about the trefoil knot. In general, the term geometric tech-
niques refers to the methods of knot theory that are based
on working with surfaces. The use of these methods is mo-
tivated by a theorem stating that for every knot there is
some surface having that knot as its boundary. An impor-
tant application, on which this chapter ends, is the prime
decomposition theorem for knots.
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The first section of this chapter presents the basic def-
inition of surface. The discussion corresponds closely to
that of Chapter 2 where knot is defined. Naturally the def-
inition is more technical. For a knot the interest is entirely
in its placement in space; a surface has additional struc-
ture which is independent of its placement. For instance,
the surface in Figure 4.1 is clearly different from a disk.
The concept of internal, or intrinsic, properties of surfaces
is made precise with the notion of homeomorphism, that
is also described in Section 1.

Section 2 presents the fundamental theorems concern-
ing surfaces. These results completely classify surfaces in
terms of intrinsic properties. Once this internal structure
of surfaces is understood the focus can shift to the place-
ment of surfaces in space and to the knotted boundaries of
surfaces. Section 3 begins the application of surface theory
to knot theory; it is proved that every knot is the bound-
ary of some surface. Sectioms 4 and 5 address the prime
decompostion theorem, with Section 4 devoted to building
the tools of the proof and Section 5 outlining the details
of the argument.

1 Surfaces and As with knots, it is possi-

Homeomorphisms ble to define a surface using

the notion of differentiability.

Again, a simpler working definition can be given using
-polyhedra.

Any 3 noncollinear points in 3-space, p1, p2, and ps,

form the vertices of a unique triangle. That triangle is
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defined to be the set of points
{zp1 +yp2+2ps |z +y+2=1,2,9, 220},

where each p; is thought of as a vector in R3. The union
of a finite collection of triangles is called a polyhedral sur-
face if: (1) each pair of triangles is either disjoint or their
intersection is a common edge or vertex, (2) at.most two
triangles share a common edge, and (3) the union of the
edges that are contained in exactly one triangle is a disjoint
collection of simple polygonal curves, called the boundary
of the surface. This third condition rules out such possibil-
ities as a surface being the union of exactly two triangles
meeting at a vertex. (In this case the union of the edges
contained in exactly one triangle would be all six edges;
these form two unknots meeting in the common vertex—
they are not disjoint.) Figure 4.2 illustrates a simple poly-
hedral surface, a planar square with a square hole in its
center. It is illustrated as the union of a collection of tri-
angles.

Figure 4.2

Surfaces will be drawn smoothly. Any smooth surface
can be closely approximated by a polyhedral surface, but
as the number of triangles required can be extremely large,
it is easier to leave that triangulation out of the illustra-
tion. The details of the relationship between smooth and
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polyhedral surfaces is part of the foundational material of
geometric topology.

ORIENTATION

The intuitive approach to orientability states that a surface
is orientable if it is two-sided. The Mobius band is the
standard example of a nonorientable surface. In calculus,
a surface is called orientable if there is a nowhere vanishing
vector field normal to the surface. For polyhedral surfaces
there is a simple definition which corresponds to both the
intuitive idea and the formal definition given in calculus.

DEFINITION. A polyhedral surface is orientable if it is
possible to orient the boundary of each of its constituent
triangles in such a way that when two triangles meet along
an edge, the two induced orientations of that edge run in
opposite directions.

A surface can be triangulated, that is, described as
the union of triangles, in many different ways, and the def-
inition of orientability appears to depend on the choice of
triangulation. However, whether or not a surface can be
oriented is actually independent of the choice of triangula-
tion.

HOMEOMORPHISM

A notion of deformation of polyhedral surfaces can be given
in much the same way as was done for knots. An impor-
tant observation is that, although one surface might not be
deformable into a second surface, the two might be intrin-
sically the same; that is, they are indistinguishable with-
-out reference to how they sit in space. For example, the
number of boundary components of a surface is intrinsic;
an inhabitant of the surface could determine this number.

However, whether or not the boundary is knotted can only
be seen from a three-dimensional perspective.

This idea of intrinsic equivalence is formally defined as
homeomorphism. Surfaces F' and G in 3-space are called
homeomorphic if there is a continuous function with do-
main F and range G which is both one-to-one, and onto.
For polyhedral surfaces there is an alternative definition.
Note that there are many ways that a triangle can be sub-
divided into smaller triangles; a few such subdivisions are
illustrated in Figure 4.3. Triangulations of surfaces can
similarly be subdivided so as to yield finer triangulations.

Figure 4.3

0 DEFINITION. Polyhedral surfaces are called homeo-

morphic if, after some subdivision of the triangulations of
each, there is a bijection between their vertices such that
when three vertices in one surface bound a triangle the cor-
responding three vertices in the second surface also bound
a triangle.

Determining whether or not two surfaces are home-
omorphic can be difficult. It might first come as a sur-
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(E@/@ )

Figure 4.4

prise that the surfaces illustrated in Figure 4.4 are homeo-
morphic. (In the illustrations surfaces will usually not be
shaded any more.)

A homeomorphism from one to the other is given by
the map that cuts the first along the dotted line, unknots
and untwists the band, and then reattaches it. The map
is easily seen to be one-to-one and onto. Continuity fol-
lows from the fact that points that are close together on
the original band are mapped to close points on the image
band. Notice that this homeomorphism does not preserve
the knot type of the boundary! In.a case such as this it
would be extremely complicated to write the map down ex-

plicitly in terms of coordinates. Triangulating the surfaces °

and finding the bijection would be completely unmanage-
able. In the next section tools are developed that greatly
simplify the use of surfaces.

EXERCISES

1.1. Show that the boundary of the surface illustrated in
Figure 4.1 is the trefoil knot.

1.2. The surface in 4.1 is homeomorphic to the same sur-
face with the bands untwisted. Why? By comparing their
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R 3

boundaries, show that the surface with its bands twisted
cannot be deformed into the one with untwisted bands.

1.3. Given a knot diagram, it is possible to construct a
surface by “checkerboarding” the plane. Figure 4.5 shows
this for two diagrams of the trefoil. Each surface was con-
structed by darkening in alternate regions of the plane de-
termined by the knot projection. The first surface in 4.5
is nonorientable. (If you start on the top of the surface
and travel around it once, you have gone through three
twists, and hence finish on the other side.) The other
surface is orientable. Redraw it using two colors to dis-
tinguish the two sides. Which of the diagrams for knots of
7 or fewer crossings in the Appendix result in orientable
surfaces when checkerboarded?

Figure 4.5

2 The Classification Several connected orientable
of Surfaces surfaces without boundary

are illustrated in Figure 4.6.

Associated to these surfaces is an integer called the genus
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of the surface, which roughly counts the number of holes.

It turns out that for any oriented surface there is an asso- | 4

ciated number called the genus.

o O

Figure 4.6 .

A theorem, called the classification of surfaces, im-
plies that connected oriented surfaces without boundary are
homeomorphic if and only if the they have the same genus.
(Recall once again that homeomorphic surfaces need not
be deformable into each other in 3-space.) A more general
classification of surfaces applies to surfaces with boundary.

-EULER CHARACTERISTIC AND GENUS
The Euler characteristic is an easily defined invariant of
a polyhedral surface. Its definition is stated in terms of
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a specific triangulation, and a basic result, usually proved
using algebraic topology, says that its value is independent
of choice of triangulations. Consequently, the Euler char-
acteristics of homeomorphic surfaces are equal. The Euler
characteristic and genus are difficult to compute from the
definitions alone. The following results greatly simplify
their calculation.

0 DEFINITION. If a polyhedral surface S is triangulated
with F triangles, and there are a total of E edges and V
vertices in the triangulation, then the Euler characteristic
is given by x(S)=F—-E+V.

For example, in the octahedron illustrated below,
there are 8 faces, 12 edges, and 6 vertices. Therefore its
Euler characteristic is 8 —12+6 = 2.

Figure 4.7

The genus of a surface is defined in terms of its Euler
characteristic. Initially, the definition appears to introduce
unnecessary algebra, but many simplifications will derive
from it. ’
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O DEFINITION. The genus of a connected orientable sur-
face S is given by

2—x(S)—-B

9(8) = 5 ,

where B is the number of boundary components of the sur-
face.

0 THEOREM 1. If two surfaces intersect in a collection of
arcs contained in their boundary, the Euler characteristic
of the union is the sum of their individual Euler charac-
teristics minus the number of arcs of intersection.

ProoF

The basic idea of the proof is simple. Suppose that each arc
of intersection is a single edge of a triangle on each surface.
Then the triangulations of the surfaces piece together to
give a triangulation of the union. The count that is used to
compute the Euler characteristic of each surface separately
gets a contribution of 1 from each edge of intersection (-1
for the edge, and +2 for its endpoints.) Hence for the sum
of the two Euler characteristics there is a contribution of
+2 from each edge of intersection. However, in the union
there is a contribution of only +1 from each edge. The
result follows.

If each arc is not a single edge of a triangle, it can
be arranged to be the union of edges, after subdividing.
Again it turns out that the contribution of each arc toward
the total Euler characteristic is +1, and the rest of the
argument is the same. O
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EXAMPLE . ‘
Many of the surfaces that arise are formed as disks with

twisted bands added. (See Figures 4.1 and 4.4.) As the
Euler characteristic of a disk is 1 (compute it for a single
triangle), and a band is just an elongated disk, the Euler
characteristic of a single disk with bands added is

(1 + #(bands)) — 2(#(bands)) = 1 — #bands.

(Each band contributes two arcs of intersection.) If the
surface is formed by adding bands to a collection of dis-
joint disks, the resulting surface has Euler characteristic

(#disks) — (#bands).

0 COROLLARY 2. If two connected orientable surfaces
intersect in a single arc contained in each of their bound-
aries, the genus of the union of the two surfaces is the sum
of the genus of each.

ProoOF
Express the Euler characteristic in terms of the genus and

apply Theorem 1. Note that one boundary component is
lost in forming the union. Exercise 2.3 asks for the de-

tails. O

Theorem 3 follows from a calculation similar to that
of Theorem 1:

O THEOREM 3. If a connected orientable surface ts
formed by attaching bands to a collection of disks, then
the genus of the resulting surface is given by

(2 — #disks + #bands — #boundary components) /2.

One more result of this sort will be needed later on.
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0O THEOREM 4. If two surfaces intersect in a collection of
circles contained in the boundary of each, the Euler char-
acteristic of their union is the sum of their Euler charac-
teristics.

ProOF

The argument is similar to that of Theorem 1. In com-
puting the Euler characteristic of a surface, each bound-
ary component contains an equal number of edges and
vertices of the triangulation. Hence, it contributes 0 to
the total Euler characteristic. The same is true for the
union. O

CLASSIFICATION THEOREMS

In knot theory the main interest in surfaces concerns those
with boundary. Hence, the statements of the classification
theorems are restricted to this setting. The first part of
the classification gives a family of standard models for sur-
faces. The second gives the homeomorphism classification
of these models.

THEOREM 5. (Classification I) Every connected sur-
face with boundary is homeomorphic to a surface con-
structed by attaching bands to o disk.

SKETCH OF PROOF

The proof of this theorem is technical, and the details ap-
pear in the references. Here is the overall idea. Fix a
triangulation of the surface. A small neighborhood of each
vertex forms a disk. Thin neighborhoods of the edges form
Jbands joining the disks together. Hence, a neighborhood of
the edges is homeomorphic to.a union of disks with bands
added. Two steps remain. The more difficult one shows
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that adding the faces has the same effect as not attaching
certain of the bands. The other one shows that the num-
ber of disks can be reduced to one, and is detailed in the
exercises. O

THEOREM 6. (Classification II ) Two disks with bands
attached are homeomorphic if and only if the following
three conditions are met: :

(1) they have the same number of bands,
(2) they have the same number of boundary components,
(3) both are orientable or both are nonorientable.

EXAMPLE

The surface in Figure 4.8a consists of two disks joined
together by three twisted bands. The boundary is the
(5,—3,7)-pretzel knot. If that surface is deformed by push-
ing in a narrow strip through the center band, the result-
ing surface can be further deformed to appear as in Figure
4.8b.

’\\:\‘\,\,
R

(0)

Figure 4.8
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EXERCISES

?.1. Use Theorem 3 to compute the genus of the surface
illustrated in Figure 4.9 below. '

Figure 4.9

2.2. Provide the details of the proof of Theorem 3.
2.3. Prove Corollary 2.

24 Use. Theorem 5 to prove that the only genus 0 surface
with a single boundary component is the disk.

2.5. Generalize the construction illustrated in Figure 4.8

Fo arbitrary pretzel knots. For what values of p, ¢, and r
is the surface orientable? ' ,

?.6. By the classification of surfaces, the punctured torus
in Figure 4.10a can be deformed into a disk with bands
attached. Find a deformation into the disk with two bands
illustrated in Figure 4.10b. (The punctured torus has a
subsurface, which is outlined. Your deformation should
-consist of two steps. First, deform the entire surface onto
the subsurface; then, deform the subsurface to appear as
the disk with bands added.)

9.7. Tf a surface consists of two disks with a single band
joining them, it is homeomorphic to a single disk with no
bands attached. Based on such an observation argue that
any connected surface which is built by adding bands to a
collection of disks can in fact be built starting with only
one disk. (This observation is of practical importance: The
surfaces that knots bound will initially be constructed from
several disks. Calculations of knot invariants coming from
surfaces are much easier if the surface is described using
only one disk.)

9.8. Prove that the genus of a surface is nonnegative by
using induction on the number of bands.

(a) ' (b)
Figure 4.10

9.9. Prove that the genus of an orientable surface is an in-
teger. (Apply induction on the number of bands, and check
the effect of adding an (oriented) band on the number of
boundary components.

92.10. Prove that every connected orientable surface is
homeomorphic to a surface of the type illustrated in Fig-
ure 4.11. (Compute the genus and number of boundary
components, and then apply Theorem 6.)
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AV

Figure 4.11

3 Seifert Surfaces and The main theorem of this sec-

the Genus of a Knot tion states that every knot is

the boundary of an orientable

surface. Consequently, geometric methods can be applied

to the general study of knots and not just to particular
examples.

THEOREM 7. Every knot is the boundary of an ori-
entable surface.

Proor
The proof consists of an explicit construction first de-
scribed by Seifert. An orientable surface with a given knot
as its boundary is now called a Seifert surface for the knot.
The construction begins by fixing an oriented diagram
for the knot. Beginning at an arbitrary point on an arc,
trace around the diagram in the direction of the orienta-
tion. Any time a crossing is met, change arcs along which
-you trace, but do so in such a way that the tracing con-
tinues in the direction of the knot. If at some point you
start retracing your path, go to an untraced portion of the
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diagram and begin tracing again. Figure 4.12 illustrates
the result of this procedure for a particular knot.

LJD 8’

Figure 4.12

The result of this procedure is a collection of circles,
called Seifert circles, drawn over the diagram. These cir-
cles can now be used to construct an orientable surface, as
follows.

Each of the circles is the boundary of a disk lying in
the plane. If any of the circles are nested, lift the inner
disks above outer disks, according to the nesting.

To form the Seifert surface connect the disks together
by attaching twisted bands at the points corresponding
to crossing points in the original diagram. These bands
should be twisted to correspond to the direction of the
crossing in the knot. Figure 4.13 illustrates the final sur-
face if this algorithm is applied to the knot in Figure 4.12.

It should be clear that the resulting surface has the
original knot as its boundary, that it is orientable is not
hard to prove either. (See Exercise 3.3.) Many different
surfaces can have the same knot as boundary; stated dif-
ferently, a knot can have many Seifert surfaces. O
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O DEFINITION. The genus of a knot is the minimum
possible genus of a Seifert surface for the knot.

Figure 4.13

For example, Figure 4.1 shows that the trefoil bounds
a surface of genus 1. On the other hand, it cannot bound
a surface of genus 0, that is a disk, because then it would
be unknotted, which is not the case.

A warning is called for here. It can be quite difficult
to compute the genus of a knot. The genus of the surface
produced by Seifert’s algorithm depends on the diagram
used, and, more importantly, Seifert’s algorithm will not
always yield the minimum genus surface! Even with this
difficulty the genus is a powerful tool for studying knots.

EXERCISES

3.1. The knot in Figure 4.1 bounds a surface of genus 1,
as drawn. What genus surface results if Seifert’s algorithm
is used to construct a Seifert surface starting with the di-
agram of the knot given in Figure 4.17

'3.2. Does the surface constructed by Seifert’s algorithm
depend on the choice of orientation of the knot? What if
the procedure was used on a link instead?
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3.3. Why does Seifert’s algorithm always produce an ori-
entable surface?

3.4. In applying Seifert’s algorithm, a collection of Seifert
circles is drawn. Express the genus of the resulting surface
in terms of the number of these Seifert circles and the
number of crossings in the knot diagram.

3.5. A double of a knot K is constructed by replacing K
with the curve illustrated in Figure 4.14a. Figure 4.14b
illustrates a double of the trefoil knot. The number of
twists between the two parallel strands is arbitrary. Show
that doubled knots have genus at most 1.

(a) :
Figure 4.14

As discussed before,, Seifert
surfaces can be very compli-
cated. This section presents surgery, a method for sim-
plifying surfaces. All the surfaces that occur later are ori-
entable, and only that case will be described.

4 Surgery on Surfaces
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Underlying the constructions that follow are two ob-
servations. The first is that if two surfaces intersect along
intervals, or circles, contained in their boundaries, then
the union of the surfaces is again a surface. In the pre-
vious section the effect of such constructions on the Euler
characteristic and genus was studied. Secondly, note that
if one surface is contained in another, and the boundaries
are disjoint, then removing the interior of the smaller from
the other surface results in a new surface. For example,
removing a disk from the interior of a surface results in a
surface with one more boundary component. (This con-
struction is sometimes called puncturing the surface.)

SURGERY

The process of cutting out pieces of a surface and pasting
on other surfaces forms the basic operation of surgery. The
initial set-up is the following. F'is a surface in 3-space and
D is a disk in 3-space. The interior of D is disjoint from
F and the boundary of D lies in the interior F'. This is all
illustrated in Figure 4.15.

Figure 4.15

The construction of a new surface proceeds as follows.
Remove a strip, or annulus, on F along the circle where
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F and D meet. The new surface has two more boundary
components than F. To each of these boundary compo-
nents attach a disk which is parallel to the disk D. F
has been transformed into a new surface by removing one
annulus and adding two disks.

DEFINITION. This procedure is referred to as perform-
ing surgery on F along D.

The effect of surgery on the surface in Figure 4.15 is
illustrated below. Note that if the boundary of D had been
a different curve on F, then the surface that results from
surgery might have had two components. In such cases the
curve is called separating.

Figure 4.16

What is the effect of surgery on the genus of F'? There
are two cases to consider. In the first case the new surface
has one component. In the second it has two.

0 THEOREM 8. If surgery on a connected orientable

surface, F, results in a connected surface, F', then
genus(F’) = genus(F)—1. If surgery results in a sur-
face with two components, F' and F", then genus(F) =
genus(F"’) + genus(F").




76 KnoT THEORY

Proor

The proof proceeds by computing the effect of the two
steps in surgery on the Euler characteristic of the surface.
The Euler characteristic of an annulus is 0. Therefore,
by Theorem 4, removing the annulus has no effect on the
Euler characteristic of the surface.

The Euler characteristic of a disk is 1, so by Theorem 4
the effect of adding on the two disks is to increase the Euler
characteristic by 2. Hence, the overall effect of surgery is
to increase the Euler characteristic by 2. It follows from
the formula for the genus of a connected surface that the
genus is then decreased by 1.

In the case that the original surface F' is split into
two surfaces, F' and F"”, the calculation is as follows. Let
B,B’, and B” be the number of boundary components
of F,F’, and F”, respectively. Note that B = B’ + B”.
Hence:

genus(F') + genus(F")
= (2-x(F)-B")/2+(2-x(F") - B")/2
= (4-x(F)—x(F")-B)/2
=@4-x(F)+2)-B)/2

= genus(F). O

5 Connected Sums of The connected sum of knots

Knots and Prime has already appeared in the

Decompositions exercises. It is now time

formally to define this

construction. The theory of prime knots and the prime
decomposition theorem can then be presented.
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Suppose that a sphere in 3-space intersects a knot, K,
in exactly two points, as illustrated in Figure 4.17. This
splits the knot into two arcs. The endpoints of either of
those arcs can be joined by an arc lying on the sphere.
Two knots, K; and Ko, result.

Figure 4.17

0 DEFINITION. In the situation above K is called the

connected sum of K1 and Kz, denoted K = K1#K>.

Given two knots, K; and Kb, it is easy to construct
a knot K such that K = K1#K,. Surprisingly, K is not
determined by K; and K. Examples illustrating the diffi-
culty are hard to construct, but the nature of the problem
appears with a discussion of orientation.

If the original knot K is oriented, then both K and
K, are naturally oriented. Conversely, if K; and K are
oriented knots it is possible to find a unique oriented knot
K such that K = K #K>, as oriented knots. To come
up with a well-defined operation for which the equiva-
lence classes of K; and K determines the equivalence class
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of K 4K, it is actually necessary to work with oriented
knots. For instance, it can be shown that if an oriented
knot K is distinct from its reverse, then the oriented con-
nected sum of K with itself is distinct from the oriented
connected sum of K with its reverse; that is, distinct even
if orientations are ignored. '

With connected sum carefully defined, the notion of
prime knot can now be introduced, along with the prime
decomposition theorem for knots.

DEFINITION. A knot is called prime if for any decom-

position as a connected sum, one of the factors is unknot-
ted.

THEOREM 9. (Prime Decomposition Theorem) Every
knot can be decomposed as the connected sum of nontriv-
ial prime knots. If K = K \#Ko#---#Kn, and K =
Ji#Jo# - #Im, with each K; and J; nontrivial prime
knots, then m = n, and, after reordering, each K; is equiv-
alent to J;.

The proof of the existence of a prime decomposition
follows immediately from the additivity of knot genus, to
be proved below, using induction on the genus of the knot:
if a knot decomposes as a nontrivial connected sum, then
each factor has lower genus than the original knot; genus
1 knots are prime because 1 is not the sum of positive
integers. The uniqueness of decompositions will not be
proved here. The complete proof is similar to the proof of
additivity of genus, as it involves the careful manipulation

- of surfaces in 3-space, in particular the families of spheres
that split the knot into a connected sum. However, the
argument is quite long and detailed.

0 THEOREM 10. (Additivity of knot genus) If K =
K1#K, then genus(K) = genus(K1) + genus(Kz2).

Proor

The proof that the genus of the connected sum is at most
the sum of the genera of the summands is easy. Minimal
genus Seifert surfaces for K; and K> can be pieced together
along an arc to form a Seifert surface for the connected
sum. By Corollary 2, the genus of that surface is the sum
of the genus of each piece. It remains to show that the
surface is 2 minimal genus Seifert surface for the connected
sum. ,
The argument that the genus of the connected sum is
at least the sum of the genera goes as follows. Figure 4.17
illustrates the connected sum of K; and K> along with a
separating sphere S. Let F' be a minimal genus Seifert sur-
face for the connected sum. The surface is not drawn as
there is initially no information as to how it sits in space
relative to K1,Kz, and S. It will be shown that there is
a second surface, G, of the same genus as F, which can
be described as the union of Seifert surfaces for K and
K, meeting in a single interval of their boundaries. It
follows from Corollary 2 that the genus of G is the sum
of the genera of those two surfaces, and is hence at least
the sum of the minimal genera of Seifert surfaces of those
knots. The approach is to work with the intersection of F
and S. F intersects S in a collection of arcs and circles on
S. (Initially, this might not be quite true. For instance,
the intersection could contain some isolated points. How-
ever, moving F slightly will eliminate any such unexpected
intersections.)

In addition, it should be clear that the only arc of
intersection on S runs from the two points on S that in-
tersect K. Now one works with the circles of intersection,
using surgery to eliminate them one by one.
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Consider an innermost circle of intersection. That is,
pick one of the circles on S that bounds a disk on S con-
taining no points of intersection of F and S in its interior.
Surgery can be performed on F along this disk to con-
struct a new surface bounded by K. If the new surface
is connected, then it is a Seifert surface for K, which, by
Theorem 8, has lower genus than did F, contradicting the
minimality assumption on the genus of F. Hence, surgery
results in a disconnected surface. Remove the component
that does not contain K. The remaining surface has genus
less than or equal to that of F (Theorem 8 again), and by
the minimality assumption it actually has the same genus
as F. In addition, this new surface will have fewer circles
of intersection with S; the circle along which the surgery
was done is no longer on the surface.

Repeating this construction, a surface G results that
meets S only in an arc. Hence G is formed as the union
of Seifert surfaces for K; and K3 that intersect in a single
arc, as desired.

This argument is often referred to as a cut-and-paste
argument, because it consists of cutting out portions of the
surface and pasting in new pieces of the surface. Another
name for this type of geometric construction is an tnner-
most circle argument. This type of argument is typical of
geometric proofs in knot theory, and in geometric topol-
ogy. _ m]

As described earlier, the existence of prime decompo-
sitions follows from the additivity of knot genus; as a knot
is decomposed as a connected sum, the genus of the factors
decreases. The uniqueness follows from a much more care-
ful cut-and-paste, innermost circle proof. The additivity
of genus has the following immediate consequence.

COROLLARY 11. If K is nontrivial, there does not ez-
ist a knot J such that K#J is trivial.

EXERCISES

5.1. Give a proof of the final corollary.

5.9. Use the connected sum of 3 distinct knots to find an
example of a knot which can be decomposed as a connected
sum in two different ways.

5.3. Prove that a genus n knot is the connected sum of at
most n nontrivial knots.

5.4. Fill in the details of the proof of the existence of prime
decompositions using the additivity of genus.

5.5. Use the genus to give a simple proof that there are
an infinite number of distinct knots. As a much harder
problem, can you find an infinite number of distinct prime
knots? (Later, once more efficient means are developed
to compute Alexander polynomials, this too will become a
simple exercise.)




