CHAPTER 8:
SYMMETRIES OF KNOTS

Knot diagrams can appear symmetrical, and for those that
do not, the lack of symmetry is often an artifact of the
diagram, and is not inherent in the knot itself. For in-
stance, Figure 8.1 presents two diagrams for the knot 7.
The first shows no apparent symmetry, while the second is
quite symmetrical; a rotation of 180 degrees about a point
in the plane leaves the diagram unchanged. As the exam-
ple indicates, finding symmetrical diagrams for a knot can
be a challenging task. On the other hand, powerful tools
are available for proving that a knot does not have hidden
symmetries.
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Figure 8.1

Section 1 expands on some of the basic types of sym-
metry discussed earlier. (For example, it was shown that
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the trefoil is distinct from its mirror image using the signa-
ture; the relationship between a knot and its mirror image
will be discussed further.) The rest of the chapter is de-
voted to another type of symmetry, periodicity; roughly
stated, a knot is called periodic if it has a diagram that is
carried back to itself when rotated about the origin; Figure
8.1 shows that 7g is periodic, with period 2.

The two main results of the chapter are theorems of
Murasugi and Edmonds. The first places algebraic restric-
tions on the Alexander polynomials of periodic knots. The
second restricts their Seifert surfaces. Together these two
theorems provide powerful means for studying the periods
of knots. The examples in the final section will demon-
strate the beautiful and subtle interplay between geometry
and algebra.

O

1 Amphicheiral and Given an oriented knot, K,

Reversible Knots reversing the orientation cre-

ates a new oriented knot

called its reverse, and denoted K”. Changing all of its

crossings yields an oriented knot denoted K™. In Chap-

ter 2, Exercise 5.6 asked you to prove that changing the

crossings in a diagram for K yields a knot equivalent to

the mirror image of K, corresponding to the reflection of
its diagram through the y-axis of the knot diagram.

DEFINITION. An oriented knot K is called reversible
if K is oriented equivalent to K". It is called positive am-
phicheiral if it is oriented equivalent to K™, and negative
amphicheiral if it is oriented equivalent to K™™.
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EXAMPLES

Figure 8.2 illustrates that a 180 degree rotation about the
y-axis carries the knot 4; (the figure-8 knot) to itself, but
reverses its orientation. Hence it is reversible. The reader
should have no trouble showing that if all the crossings
are changed, the resulting knot can be deformed to appear
again as in the diagram. This shows that the figure-8 is
amphicheiral, and, since it is reversible, it is both positive
and negative amphicheiral. (See Exercise 1.1.)
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Figure 8.2

Figure 8.3 illustrates the (3,5,3)-pretzel knot. It too

is reversible; rotate it 180 degrees about the vertical axis in
the diagram. It is now known

that the only reversible pret-

zel knots are those with two

of the bands having an equal

) number of twists. A signa-
ture calculation shows that

this pretzel knot is neither
positive nor negative amphi-
cheiral. (It follows from Ex-
ercise 1.8 of Chapter 6 that
the signature of a knot and
its mirror image are nega-

|

Figure 8.3
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tives.) Finding knots that display one, but not both, forms
of amphicheirality is at least as difficult as constructing
nonreversible knots.

STRONG SYMMETRY

Although reversible and amphicheiral knots contain sym-
metries, the symmetry may be hidden. That is, it may
be the case that the symmetry cannot be displayed in a
diagram. In particular, some knots are reversible, but the
reversal cannot be carried out in a simple manner as in the
previous examples.

DEFINITION. A knot is called strongly reversible if it
is equivalent to a knot that is carried to its reverse by a
180 degree rotation about the y-axis.

If the standard diagram for
the (3,5,3)-pretzel knot is ro-
tated by 180 degrees about
the y-axis, then the represen- /_\
tative for the knot is clearly
fixed. On the other hand,
the connected sum of the
left- and right-handed trefoils
(see Figure 8.4) is not in-
variant under that rotation;
show it is strongly reversible
nonetheless. Figure 8.4

It was once conjectured that a reversible knot is nec-
essarily strongly reversible. This is now known to be false.
The double of a knot is always reversible, as the reversal
can be carried out inside a torus, as illustrated in Figure

N
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Figure 8.5

8.5. However, Whitten proved that for a double of a knot
to be strongly reversible, the original knot itself has to
be reversible. The proofs depend on difficult geometric
constructions.

There are also similar notions of strong amphicheiral-
ity. A knot K is called strongly positive amphicheiral if
there is a self-map T of 3-space with T? = identity, such
that T(K) = K™. Similarly K is called strongly negative
amphicheiral if there is such a T with T(K) = K™™. As
our only example, the connected sum K#K™™ is strongly
negative amphicheiral. Such a connected sum is illustrated
in Figure 8.4. Let T be rotation by 180 degrees about the
y-axis. The effect of T is the same as changing all the cross-
ing in the diagram. As with reversibility, examples exist
demonstrating the distinction between the various notions
of amphicheirality.

EXERCISES
1.1. Prove that for reversible knots, being positive am-
phicheiral is equivalent to being negative amphicheiral.

1.2. (a) Verify that 63 is amphicheiral.
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(b) Show that 63 is reversible.
1.3. Verify that the second knot in Figure 8.1 is 7.

2 Periodic Knots

For any integer g > 2, let R,
denote the linear transforma-

tion of R3 consisting of a rotation about the z-axis of 360/q
degrees. For any knot K, the diagrams for K and R,(K)
differ by a rotation of 360/q degrees about the origin.

O DEFINITION. A knot K is called periodic with period
q if K has a diagram which misses the origin and which
is carried to itself by a rotation of 360/q degrees about the

origin.

Figure 8.6

The diagram in Appendix 1
for the trefoil, 3;, displays its
3-fold symmetry; the trefoil
is periodic of period 3. Simi-
larly, the diagrams of 5; and
71 show that they have pe-
riods 5 and 7, respectively.
Figure 8.6 is another diagram
of 5;, showing that it is also
a period 2 knot. The first di-
agram in the chapter, Figure
8.1, displayed 7¢ as a period

2 knot, although no symmetry at all is evident in the fig-
ure in Appendix 1. The reader should scan through the

Y
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appendix and identify the clearly periodic diagrams.

THE QUOTIENT KNOT AND LINKING NUMBERS
Given a periodic diagram for a knot, there is a simple pro-
cedure for constructing a simpler knot, called the quotient

Figure 8.7

In Figure 8.7, two periodic knots and their quotients
are drawn. Knots of period 2 and 3 are drawn on the left.
Their respective quotients are drawn on the right. Note
that for the first the quotient is itself unknotted, and for
the second the quotient is the Figure-8 knot.
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The construction just given can be reversed: given a
knot diagram that misses the origin and an integer q >
2, one can construct a knot, or link, having the original
knot as a quotient. Figure 8.8 illustrates a case in which
this so-called covering link has more than one component.
Deciding whether or not the covering link is a knot calls
for the introduction of linking numbers into the study.

o

Figure 8.8

Given a diagram for a knot which misses the origin,
choose an orientation. Also, pick a ray from the origin
such that none of the points of intersection of the ray and
knot are tangential. (For a polygonal knot, choose the ray
so that it misses all the vertices of the knot.) The linking
number of the diagram with the z-axis, to be denoted ), is
computed as the absolute value of the intersection number
of the knot with the ray. The intersection number is the
number of intersection points at which the knot crosses
the ray in the clockwise direction minus the number of
counterclockwise intersections. For the knot diagram in
Figure 8.1, A = 5. For the knots in Figure 8.7, the linking
numbers are A = 1 and A = 3. For the knot in Figure 8.8,
A=0.

If a knot diagram is periodic, it is easily seen that the
linking number of the knot with the z-axis is the same as
the linking number of the quotient with the z-axis. (See
Exercise 2.6.) Conversely, if a periodic diagram for a knot
arises from the covering construction, the linking numbers
are the same. It remains to determine when the covering

link is a knot.

0 THEOREM 1. If a knot diagram for K misses the ori-
gin, the corresponding g-fold covering link L has a sin-
gle component if the linking number is relatively pmme to
q. More generally, the number of components in L is the
greatest common divisor of the linking number A and g.

PROOF ‘ .
Observe that neither changes in crossings nor deformations

that do not cross the origin affect the linking number or
the number of components in the cover. Such deformations
determine periodic deformations of the covering link (these
are called lifts of the deformation on the quotient), and
crossing changes clearly have no effect on the algorithm

that computes the linking number.

Figure 8.9
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Now, by an appropriate -
sequence of crossing changes
and deformations, the knot
diagram can be transformed
into one that runs monotoni-
cally around the axis. Cross-
ing changes are used to elim- /
inate any clasps that occur.

This is illustrated in Figure

8.9; after changing the indi-

cated crossing, a deformation

(that does not cross the ori-

gin) results in a knot diagram

that runs clockwise about the Figure 8.10
origin. Denote the new knot by K.

Pick a ray from the origin meeting the knot in A
points, and label the points with integers from 1 to A.
Given any point of intersection on the ray, a new point is
determined by travelling once around the origin along K”.
Hence, a permutation p in Sy is determined. For the knot
illustrated in Figure 8.10, p = (13452).

Next observe that as K is connected, the correspond-
ing permutation is a A-cycle. In general, K’ would have
1 component for each cycle in a decomposition of pasa
product of disjoint cycles, including 1-cycles.

The cover of K’, say L', similarly corresponds to a
permutation, p’, and it is easily seen from the construction
that p’ = p?. Now if q is relatively prime to A then the
g-th power of a A-cycle is again a A-cycle. More generally,
the g-th power of a A-cycle is the product of d disjoint A/d
cycles, where d is the greatest common divisor of q and A.
Proving this is one more exercise concerning the symmetric
group. O
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Note that different pe-
riodic diagrams of a given
knot can have different link-
ing numbers. The trefoil has
a periodic diagram of period
3 and linking number 2. It
also has a periodic diagram of
period 2 and linking number
3, as is shown in Figure 8.11.
(A consequence of results of
the next section imply thai.:, Figure 8.11
for a given knot, any two di- o
agrams of the same period also have the same linking num-

ber.)

EXERCISES -
2.1. Figure 8.1 shows that 7¢ can be described as the

closure of the square of a 5-strand braid. Show that the
same is true for 63. The resulting periodic diagram of 63
will have 8 crossings.

2.2. Find 2 crossing changes
that convert the knot illus-
trated in Figure 8.12 into a
braid about the origin.

2.3. The braid that results
from the crossing changes in
Exercise 2 determines a cyclic
permutation. Find it.

2.4. Does the statement of
Theorem 1 hold when the
Figure 8.12 linking number is 07 Recall

that the greatest common divisor of 0 and ¢ is g.
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2.5. In the definition of period, it was required that the

%{no’c diagram misses the origin. Why is this relevant only
in the case of period 2? )

2.6. Show that the linking number of a periodic knot with

the z-axis is the same as the linking number for the quo-
tient knot.

3 The Murasugi Murasugi gave simple but

Conditions powerful criteria for testing

. a knot for possible periods;

these criteria were based on the Alexander polynomial?

He discovered that if a knot has a periodic diagram, then

the Alexander polynomial of the knot and its quotieilt are
closely related.

. Suppose that a knot K has period ¢ = p", with p

prime. Let J denote the quotient knot of a period g dia-

gr{ml of K, and let A be the linking number of J with the
axis.

THEOREM 2. (Murasugi Conditions) (1) The Alezan-
de.r polynomial of J, A;(t), divides the Alexander polyno-
mial of K, A (t).

(2) The : following mod p congruence holds for some inte-
ger i:

Ag(t) = £ (As() L+t +1%--- + 371271 (mod p).

*f—
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PROOF
The proof of these congruences consists of a lengthy and
clever argument in matrix manipulation. Although the
details cannot be presented, the idea is fairly simple.

To compute the Alexander polynomial one begins with
a labeling of the knot diagram. If the diagram is peri-
odic the labeling can also be chosen to be periodic. For
example, if in the quotient knot an arc is labeled x;, in
the covering knot the various lifts of that arc can be la-
beled zl,z%,...,z]. Hence, the corresponding Alexander
matrix decomposes into blocks corresponding to the sets
{1}, {2},....,{z{}. The individual blocks are closely re-
lated to the Alexander matrix of the quotient knot. It is
perhaps not surprising that the determinant of the large
matrix is related to the g-th power of the determinant of
the quotient knot. The details of the proof consist of a
careful study of the relationship. O

One comment about the sec-
ond condition offers a little
insight. The simplest con-
struction of a period g, link-
ing number A, knot with quo-
tient J is given by lifting
the diagram in Figure 8.13.
The covering knot consists
of a (g,)\)-torus knot with ¢
copies of J added on. Condi-
tion 2 states that any period
g knot with the same quo-
tient and linking number has the same polynomial as this
basic example, modulo p. Essentially, changes in the di-
agram of the quotient only change the polynomial of the
covering by multiples of p.

Figure 8.13




