

ELECTRICAL ENGINEERING

Dual Degree Program Course Requirements

Engineering Requirements for all majors/departments		
Course Code	Course Title	Semester Credit Hours
CHEM 105	Principles of Chemistry I	3
CHEM 106	Principles of Chemistry II	3
CHEM 113	Principles of Chemistry Lab	2
ENGR 131	Elementary Computer Programming (JAVA)	3
MATH 121	Calculus for Science and Engineering I	4
MATH 122	Calculus for Science and Engineering II	4
MATH 223	Calculus for Science and Engineering III	3
MATH 224	Elementary Differential Equations	3
PHYS 121	General Physics I	4
PHYS 122	General Physics II	4
	Humanities and Social Science (including college level writing proficiency)	22
	Physical Education (2 semesters)	0
		55

The Electrical Engineering Department recommends that the following courses be taken prior to beginning the Dual Degree Program at Case Western Reserve University. If the courses cannot be fulfilled, they will be integrated into the curriculum, which may possibly extend the program timeline.

Recommended Engineering Courses for Electrical Engineering

Course Code	Course Title	Semester Credit Hours	Description
EECS 309	Electromagnetic Fields I	3	Maxwell's integral and differential equations, boundary conditions, constitutive relations, energy conservation and Pointing vector, wave equation, plane waves, propagating waves and transmission lines, characteristic impedance, reflection coefficient and standing wave ratio, in-depth analysis of coaxial and strip lines, electro- and magneto-quasistatics, simple boundary value problems, correspondence between fields and circuit concepts, energy and forces. Prereq: MATH 223 and PHYS 122. Coreq: MATH 224.
ENGR 210	Introduction to Circuits and Instrumentation	4	Modeling and circuit analysis of analog and digital circuits. Fundamental concepts in circuit analysis: voltage and current sources; Kirchhoff's Laws; Thevenin and Norton equivalent circuits, inductors capacitors, and transformers; modeling sensors and amplifiers and measuring DC device characteristics; characterization and measurement of time dependent waveforms; transient behavior of circuits; frequency dependent behavior of devices and amplifiers; frequency measurements; AC power and power measurements; noise in real electronic systems; electronic devices as switches; digital logic circuits; introduction to computer interfaces; and analog/digital systems for measurement and control. Prereq: MATH 122. Coreq: PHYS 122.
STAT 332	Statistics of Signal Processing	3	For advanced undergraduate students or beginning graduate students in engineering, physical sciences, life sciences. Introduction to probability models and statistical methods. Emphasis on probability as relative frequencies. Derivation of conditional probabilities and memoryless channels. Joint distribution of random variables, transformations, autocorrelation, series of irregular observations, stationarity. Random harmonic signals with noise, random phase and/or random amplitude. Gaussian and Poisson signals. Modulation and averaging properties. Transmission through linear filters. Power spectra, bandwidth, white and colored noise. ARMA processes and forecasting. Optimal linear systems, signal-to-noise ratio, Wiener filter. Completion of additional assignments required from graduate students registered in this course. Prereq: MATH 122.

Sample Course Sequence for Electrical Engineering

Fall Year 1

Subject Code	Course Number	Course Title	Hours per Week		Semester Credit Hours
			Class	Lab	
ENGL	398N	Professional Communication	3	0	3
ENGR	210	Circuits and Instrumentation	3	2	4
EECS	281	Computer Org. Logic Design	3	2	4
EECS	246	Signals and Systems	3	2	4
STAT	332	Statistics of Signal Processing	3	0	3
			15	6	18

Spring Year 1

Subject Code	Course Number	Course Title	Hours per Week		Semester Credit Hours
			Class	Lab	
ENGR	225	Thermo, Fluid Dynamics, Heat & Mass Transfer	4	0	4
EECS	245	Circuits, Signals and Systems I	3	2	4
EECS	321	Semiconductor Elect. Devices	3	2	4
ENGR	200	Statics and Strength of Materials	3	0	3
			13	4	15

Fall Year 2

Subject Code	Course Number	Course Title	Hours per Week		Semester Credit Hours
			Class	Lab	
EECS	398	Senior Project Lab I	0	8	4
EECS	351	Communications and Signal Analysis	3	0	3
(or) EECS 354 Digital Communications			3	0	3
Approved Technical Elective			3	0	3
Approved Technical Elective			3	0	3
			9	8	13

Spring Year 2

Subject Code	Course Number	Course Title	Hours per Week		Semester Credit Hours
			Class	Lab	
EECS	399	Senior Project Lab II	0	8	4
		Approved Technical Elective	3	0	3
		Approved Technical Elective	3	0	3
		Approved Technical Elective	3	0	3
		Approved Technical Elective	3	0	3
			12	8	16

Please Note: The course sequence serves as an example of the classes necessary to complete the Dual Degree Program. Courses and the semesters taken will be based on the student's transfer credit and discussion with the Case Western Reserve University faculty advisor.