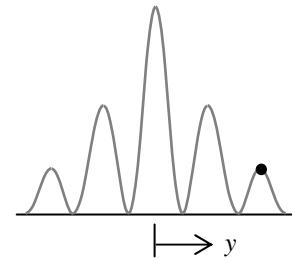


Quiz #2

Name: _____


1. For a *single* slit experiment, the middle position on the screen is: [bright] [dark] (circle one).
2. For a *double* slit experiment, which distance should be the largest? [λ] [D] [d]
3. For a *double* slit experiment with light, which distance should be the smallest? [λ] [D] [d]

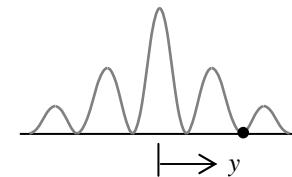
For the remainder of these questions, use: $\lambda = 632.8 \text{ nm}$, $d = 300 \mu\text{m}$, $a = 80 \mu\text{m}$, and $D = 1.8 \text{ m}$.

4. For a **double** slit experiment, you see a pattern like this, where “height” corresponds to “brightness” or intensity. What is “ m ” for the bright point indicated by the dot?

$$m = \underline{\hspace{2cm}}$$

5. What is the position y for this bright spot? $y = \underline{\hspace{2cm}} \text{ mm}$

6. What is θ for this bright spot? $\theta = \underline{\hspace{2cm}}^\circ$


7. For these bright spots, you plot y vs m . Determine the slope of this plot, as a number.

$$\text{slope} = \underline{\hspace{2cm}} \text{ mm}$$

8. Here is a similar intensity pattern for a **single** slit experiment. What is “ n ” for the dark point indicated by the dot?

$$n = \underline{\hspace{2cm}}$$

9. What is the position y for this dark spot? $y = \underline{\hspace{2cm}} \text{ mm}$

10. For these dark spots, you plot y vs n . Determine the slope of this plot, as a number.

$$\text{slope} = \underline{\hspace{2cm}} \text{ mm}$$