Applied Mechanics

Dr. Pogo

Beam and Loading

Displacement (all beams have total length L)
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Applied Mechanics Dr. Pogo
Statically Indeterminate Beams: Using Deflections

This beam has too many reactions (4 reactions in a 2-D )2
Problem), and 3 of them are unknown (since R, = 0).

[IP=E)

Given P, L, and n, determine the reactions. |
We start by defining Rp as some unknown fraction “g @

of P: Ry = gP (see FBD). a=nL |
If we can solve for g, then we’ll know everything. < 2 >|
N2L: Ra+Rg=P,s0Rx=P(1-q)

Similarly, N2LR: Ma = PL(n - q).

Integrating: M ;(x) = P(1 — g)x — M, or

Mi(x) = P(1 = g)x = PL(n — q) RAx{

|
On the right:  V,(x) = —Rg = —gP MAI R4 Rg=g PI
Integrating:  Mj(x) = —qgPx + RgL, or

Mj(x) = Rg(L — x) = qP(L — x)

On the left:  Vi(x) =Ra=P(1 —q) Pl

Vv
Note: M; and M, agree at x = a = nL; +Ra
they both say M(x = nL) = gPL(1 — n)
Next, we use deflections: —Rgp
On the left: Ely," =M
o= ) M +Ry(L — a)

Ely) = | Mydx = 2P(1 - ¢)x* = PL(n — ¢)x + C»
BC: yi"(0)=0 2> C,=0.

Ely, =] (...)dx = ("/6)P(1 = g)x* = VaPL(n — ¢)x* + C4
BC: 0)=0 2> Cy=0. /

y1(0) 4 M,

Ely, = ("1)P(1 = ¢)x* = YAPL(n — ¢)x*

On the right:  Ely,” = M,
Elyy’ = [ Mydx = gP(Lx — Yax")+ Cs
Ely, =] (...)dx = gP(V2Lx* = (16)x*)+ Csx + Cs
BC: yi' (@) =y (a)
BC: yo(L) =0
-> tons of algebra > C3=-%PL*n* , and Cs = PL*(Van® — ('13)q)

BC: yi(a) = y»(a) -> more algebra

g =v(3n* - n’)

Reactions: | Rg =¢gP Ra=(1-¢g)P Ma =PL(n-q)




