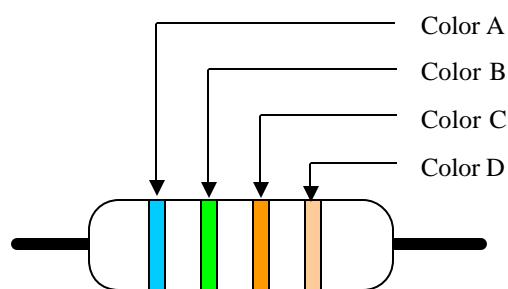

Restrictions:
 $C \geq 500 \text{ pF} = 500 \times 10^{-12} \text{ F}$
 $R_A \geq 1 \text{ k}\Omega = 1000 \Omega$
 $R_A + R_B \leq 6.6 \text{ M}\Omega = 6.6 \times 10^6 \Omega$

Results:
 $t_1 = 0.693 R_B C$
 $t_2 = 0.693 (R_A + R_B) C$
 $T = 0.693 (R_A + 2R_B) C$
 $f = \frac{1}{T} = \frac{1.443}{(R_A + 2R_B) C}$


Example: We want $T = 1 \text{ sec}$ ($f = 1 \text{ Hz}$)
 Given $R_A = 1 \text{ M}\Omega$, and $C = 0.47 \text{ mF}$
 Then $R_B = 1.04 \text{ M}\Omega$
 The closest R we have to this is $R_B = 1 \text{ M}\Omega$
 So, the actual $T = 0.977 \text{ sec}$

By itself, the 555 timer can never generate a pulse train with a 50% duty cycle. However, if you connect the output (pin 3) to the CLK of a JK Flip Flop operating in toggle mode, the output of the flip flop will be a pulse train having a 50% duty cycle (but with half the frequency of the 555 timer).

Determining Resistor Values

Color	Value
Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Gray	8
White	9

Color D is usually silver or gold, and indicates how close the actual resistance will be to the expected value.

$$R = (10A + B) \times 10^C \Omega$$

Examples: Given colors A, B, and C:

Blue Green Orange: $R = (10 \cdot 6 + 5) \times 10^3 \Omega = 65000 \Omega = 65 \text{ k}\Omega$
 Blue Blue Violet: $R = (10 \cdot 6 + 6) \times 10^7 \Omega = 660000000 \Omega = 660 \text{ M}\Omega$
 Brown Black Red: $R = (10 \cdot 1 + 0) \times 10^2 \Omega = 1000 \Omega$