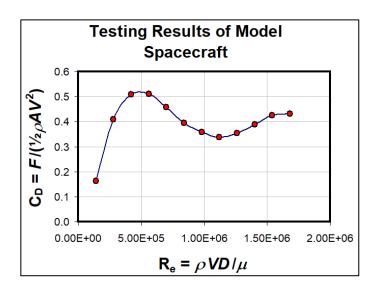

Fluid Mechanics Dr. Pogo

Example Problem for Model Testing

One night in Nevada, photographs are taken of a strange craft flying over the desert. From the photos, the major diameter of the craft is estimated to be 7.5 m. Using the photo, a small model having D = 0.25 m is built, and tested in a water tunnel.


Model In Water			
μ	$8.90 \times 10^{-4} \text{Ns/m}2$		
ρ	997 kg/m ³		
D	0.25 m		
\boldsymbol{A}	0.4909 m^2		

Actual Aircraft (Air)				
μ	$1.84 \times 10^{-5} \text{Ns/m2}$			
ρ	1.19 kg/m^3			
D	7.5 m			
\boldsymbol{A}	44.18 m^2			

Model Testing Data & plot:

<i>V</i> (m/s)	$F_D(N)$	Re	C_D
0.5	1	1.40E+05	0.163
1.0	10	2.80E+05	0.409
1.5	28	4.20E+05	0.509
2.0	50	5.60E+05	0.511
2.5	70	7.00E+05	0.458
3.0	87	8.40E+05	0.395
3.5	107	9.80E+05	0.357
4.0	132	1.12E+06	0.337
4.5	175	1.26E+06	0.353
5.0	238	1.40E+06	0.389
5.5	314	1.54E+06	0.424
6.0	380	1.68E+06	0.431

I. If eyewitnesses claim that the craft was moving at U = 2.0 m/s, what is the drag force?

$$Re = \frac{(1.19 \text{ kg/m}^3)(2 \text{ m/s})(7.5 \text{ m})}{(1.84 \times 10^{-5} \text{ Ns/m}^2)} = 970,109 \implies \text{look up value on plot} \implies C_D = 0.356$$

$$F_D = C_D \left(\frac{1}{2}\rho AV^2\right) = (0.356)(0.5)(1.19 \text{ kg/m}^3)(44.18 \text{ m}^2)(2 \text{ m/s})^2$$
 $F_D = 37.5 \text{ N}$

II. If other eyewitnesses claim that the craft was moving at U = 5.0 m/s, what is the drag force?

$$Re = \frac{(1.19 \text{ kg/m}^3)(5 \text{ m/s})(7.5 \text{ m})}{(1.84 \times 10^{-5} \text{ Ns/m}^2)} = 2,425,272 \implies \text{look up value on plot} \implies \text{no data there!}$$

Calculation can't be done!

→ More experiments are needed to answer this question!