Math Methods Dr. Pogo
Class #24 Monday, April 21, 2025

Chapter 13: Partial Differential Equations (PDE’s)
(These notes are online as a pdf! Print them before class!

First of all, this topic is very difficult. And it’s new to you. But it’s also super cool.

PDE’s - means that there is more than one independent variable.

2 2 2
Example: V=0 > g ? + g ? + ?9 ? =0 has independent variables x, y, and z.
X y 74

The dependent variable is ¢.

As with ODE’s, the general procedure is to hope that somebody else can tell you the answer
before you even start the problem. But, sometimes you still have to do it yourself.

In physics, there are a zillion relevant PDE’s. Example include heat transfer, the equations that
describe the motion of waves (e.g., sound, or light, which is a wave of electric field),
Schrodinger’s equation, momentum conservation in Fluids, etc.

Many of these equations include a V? somewhere, which always results in derivatives with
respect to x, y, and z. In addition, if you want to know the temperature (or whatever), you not
only have to specify where you want to know ¢ (i.e., at x, y, and z), but often you also have to
specify when you want to know ¢ (f). So, a lot of PDE’s have 4 independent variables. Naturally,
there are even more kinds of problems than just finding temperature as a function of these 4
variables. You might instead have an equation that, if solved, could tell you pressure as a
function of temperature and density.

Separation of Variables

Whenever possible, we solve PDE’s by a method called “separation of variables”, which is
unfortunately not anything like the “separation of variables” we used to solve ODE’s. For PDE’s
“separation of variables” is a nickname for a method actually called “Eigenfunction
decomposition”.

The Heat Equation
Let’s start with a simplified form of “the heat equation”. This equation is about conduction: how

the temperature in one part of an object affects the temperature in other parts. The basic equation

. oT . . .
is: kV’T = > This equation assumes that there are no sources of energy embedded in the
t

object, so this version is already somewhat simplified. We will further simplify it by saying that
our object is only 2D, and also by saying that the temperature profile is “steady” (i.e., that it is

o’'T o°T
= + =2 = 0 .
ox~ dy
Notice that the conductivity of the material, k, cancelled out altogether as a result of making it

not a function of time). With these simplifications, the equation becomes merely
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“steady”. As you imagine, this equation is not that interesting yet. In fact, it still has an infinite
number of “answers”.

In order to even get started, we have to recognize that there must be some cause for the
temperature to actually be one way instead of another. For most problems, that means that we
need to specify boundary conditions. Looking at this equation, I see two derivatives with respect
to x, and two with respect to y. That means that I need to specify a total of four boundary
conditions before this might even become a real physics problem that I might want to bother
with. So, here is the “real” problem I want to solve:

My object is a rectangular 2D sheet of metal (the kind of metal
apparently doesn’t matter, since k is gone). I will hold the

bottom edge against something hot, and the other three edges A T=T
against something cold. In other words, I will completely "
specify the temperatures around the edges. As you might
imagine, with these boundaries, the temperature of parts of the
plate “near” the bottom edge will likely be hotter than those
“near” the other edges. That’s our goal: to find T(x, y).

T cold

L,

"=

Let’s write out the boundary conditions explicitly:

T(x=0)=T,

Tcold

T =

T(x=L)=T.

T(y=0)=T, <

L
T(y=L)=T, 1
It is customary (but not strictly necessary) to algebraically manipulate both the equation and all
the boundary conditions in such a way that the result has no units. This is done so that having
created the solution in a generic way, we can apply it to multiple similar situations. It is
analogous to solving Analyt I problems symbolically instead of solving them numerically.

Here is the usual way of removing units from equations. We create new variables that are linearly
related to our original independent and dependent variables:

)c*zi - )czx*L1
L
£y
y L y=y L
L
N== — L =NL
L
T-T
0= ¢ 5 T=(T,-T.)0+T,
TH_TC
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Notice that none of the four new variables has any units. Simple substitution directly into our
basic equation and also into our boundary conditions transforms the equations into these:

0’0 0°0

— +—*:0
ox? oy’

O(x =0)=0
O =1)=0
O(y =0)=1
O(y =N)=0

In other words, we will really solve for @(x*, y*). Once done, we can convert it back into 7, if we
care, using the last “purple” equation on the previous page.

At this point, it also customary to admit to ourselves that we are too lazy to bother writing out all
the “stars”. So, even though it’s confusing, we’ll write x when we really mean x*. Now, we can
start the real work. First, “Separation of Variables”: this means that we cross our fingers and
hope that the answer is the product of two separate functions, each of which is itself a function of
only one of the independent variables. Let’s call these two functions X(x) and Y(y).

So, we’re hoping that ® = X(x)-Y(y).

Let’s algebraically substitute this bit of this crazy hopefulness back into the main equation:

8?:8 X(x)zY(y)_Y( )8 X(x)’
ox ox
8?:8 X(x)2Y(y) X(x )BY(y)
dy dy
X Y
E;? 3(? ()a (x)+X()a ()’) -0

Then dividing both sides by X(x)Y(y):

1 BZX(x)_l_ 1 °Y(y) _
X(x) ox? Y(y) oy’ B

You might see why they call this “separation of variables”... all the x’s are together in one group
(both the variable x and the function X), and all the y’s are together, too.
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If (some group that depends only on x) plus (another group that depends only on y) adds up to
zero, always, then logically it must be true that each group is actually a constant, and one group is

L X _ . 1 9
X(x) ox’ Y(y) oy’
As you can see, I called the constant K, but it has nothing to do with the conductivity k that we
saw earlier.

the negative of the other. I’ll write it this way: =+k*

In other words, if my hopes work out, then what I really need to do is solve these two separate
ordinary differential equations to get X and Y, and then multiply X times Y to find the “total”
answer. The decision to call the constant —k* instead of something more inspirational such as C
comes from hindsight, from having done the problem already and noticing that if you called it C},

then the answer has a /—C, in it. So, by calling it —k*, we’re hoping to make the answer look

simpler in the long run.

Let’s now solve these two equations separately:

i a — k2 la—Y =+k’
X Y 9y’
"X (x) =—k*X o’ f +k*Y
ox’ dy
X +k*’X =0 Y’ —k*Y =0
From chapter 8, we use the auxiliary equation "D" method to discover:
X = Acos(kx) + Bsin(kx) Y =Ce" + De™

©® = (Acos(kx) + Bsin(kv)) (Ce” + De™)

We now have 5 unknowns to solve for (A, B, C, D, k), using only our 4 boundary conditions. I
hope one of the unknowns magically disappears!

BC #1 (left edge): ®@(x = 0) = 0 > therefore [A =0}> © =(Bsin(kx))(Ce” + De™)

BC #2 (right edge): ®(x=1)=0-> 0= (Bsin(k))(Ceky + De™™ ) . The only way for this to

happen is if B is always zero, or if sin(k) is always zero. But if B = 0, then we have no solution
left whatsoever, so let’s examine sin(k) = 0. In this case, it must then be true that k is some

integer multiple of 7. In fact, it can be any and every integer multiple of 7: -
- : , A i
So, our solution so faris > @ = Z (B, sin(nﬂ:x))(Ce”m + De™™” ) ap;l:i?;, o
n=1
W . _ Ce+n7ﬂ\/
BC #3 (top edge): @(y=N)=0 > 0=(Ce + De ), or D=—-——.
e
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So, our total answer so far is:

As you see, you’ll want to re-write

“the answer so far” many, many times!

< ) iy e"™ e
= z sm[mzx] Ce _Ce_T

0-3 (s sm[m](

—n/zN n

e—nﬂN

7W_
T —Ce"™e ””yj

If we review chapter two a little bit, we might recognize that this can be simplified. Specifically,

sinh(x) = ¢ _2

e—X

Plugging this in results in this “simplified” result so far:

0= i (B, sin[nﬂx]' E sinh [nfr(N - y)]) , where E,
n=l

=-2Ce"™ .

To save myself some trouble, I'll call the product B,E, to be some new function F, (this is what

eliminates my

“5th9a

Ms

unknown, by the way!):

F, sin(n7x)) 51nh(n7[(N y))

I have one more BC: BC #4 (bottom edge): O(y =0) =1

F, sin(n7zrx))sinh (nz (N -0))

This is a lot like the Fourier series problems we’ve done recently. Noticing that n, 7z, and N are all
just numbers, and again, to save myself some cramping in my hand, I’ll once again invent a new

letter for this group of constants: b, =

=300,

n=1

sin(n7x))

F, sinh(nzN). In other words, I have:

If this were a Fourier series problem it would have a 1/L in front of it. So, this thing on the right
hand side is the odd Fourier series for f{x) = 1 using L = 1. To complete the final steps of this
problem, let’s think of this Fourier series as representing a repeating function. Since it only has
sine terms in it, it better be an odd repeating function, as opposed to an even one:

== Minimum that we need

-2

-1

=== ()dd function we’ll get.

Solving this for b, as we did for all the other Fourier series last week:
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:lJ. sm( jdx+ J.+1 sm[ mjdx :i(l—cos(l’lﬂ'))
L nw

The function cos(n7) is interesting, and might be simplified if we’re lucky:
If n is an even number, then cos(nz) = 1, and so b, = 0.
If n is an odd number, then cos(nz) =—1, and b, =—.
niw
I'll take this by, and plug it back into b, = F, sinh(nzV) to find F,.

So, we have arrived at some version of our complete answer:

O > [isinh(nﬂ'(N—y))

nz  sinh(nzN)

sin(nf[x)j .

n=odd

Our last step would be to convert n into some other form m that isolates the odd values for us, as
we did last week. In this case, odd values of n are generated using 2m — 1. So, for example,
m=12>n=1, m=22>n=23, m=32>n=23, etc.

o i( " sinh[(2m—1)75(N_ y*)] Sin[(2m—1)ﬂ3€ *]]

sinh[(2m — 1)V ]

m=1

Also, back-substituting to restore x, y, and 7 from x*, y*, and O:

T=T. +Z( T, —T.) sinh[(2m—1)z(N - [y/L])]

2m 1 Slnh[(Zm _ l)ﬂ,N] [(Zm I)E[X/L ]])

That’s been a lot of work here. It requires us to combine
parts from virtually every separate topic that we’ve studied
so far this semester. We used series, complex numbers,
chain rules, integrals, differential equations, and Fourier
series. The only thing we didn’t use was matrices.

See associated Mathematica sheet for generation of this 2D
(contour) plot of the solution:

Page 6 of 6




