Math Methods
Class #25

Dr. Pogo
Monday, April 28, 2025

PDE: More Heat Equation with Derivative Boundary Conditions

In our previous problem, we found the temperature 7(x, y) in a flat plate, where
the bottom edge was forced to be “hot”, and the other edges were forced to be
“cold”. It looked like this. In this sketch, the red arrows show the direction of
heat flow (which we didn’t solve for, but it would be like some questions from
assignment #2). In this case, energy moved from whatever stuff was making the
bottom edge hot, into the plate, and then into the ice (or whatever) that was
keeping the other edges cold. Over time, that ice would melt if it wasn’t

replenished, and over time, the hot stuff would cool down if it wasn’t

maintained, too.

Let’s do a few more heat equation problems similar to the previous one. For the first, I'll use a
square plate (N = 1), but ’'m going to use different boundary

conditions.

This time, the top boundary is still cold, and the bottom boundary
is still hot. However, in this problem, the side edges are insulated.
That means that there is no heat flowing through these edges.
This requires us to remember a little bit of physics: since the heat
flow Q is proportional to temperature gradient, then this

o . . oT
boundary condition is the same thing as saying that W =0 along
X

both of these edges. Heat can move vertically along these edges \ 4
(i.e., in the y direction, from the bottom to the top of the plate, so <

oT

— #0), but it can’t cross out of the plate in the x direction.

Y

. T
If we had instead insulated the top edge, then the upper boundary condition would be 8_ =0 when

y

A T =T

0=0

T = Tho

0=0

Ly

y

y = L;. But that’s a different problem...

As before, we will non-dimensionalize this whole problem before even “starting” it:

0’0 0°0
>+t =0
ox~ dy

an(x*=o)=0 0y =0)=1
ox
99 (¢ =1)=0 ey =1)=0
ox

Much of the early work is the same as before, so we’ll steal results from ourselves... we can
“borrow” everything that we did up until we started using the boundary conditions!
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Recall that when we started our “Separation of Variables”, we invented new functions X(x) and
Y(y), for which we hoped that eventually ®(x, y) = X(x)-Y(y). By substitution, we discovered that if
O followed this pattern, then instead of solving one big PDE we could instead solve two ODE’s and
than join them together. They were these:

9°X (x)
0%x

9°Y(y)

+k*X(x)=0 and 7,

—kY(y)=0

These were both second-order ODEs with constant coefficients, and we chose to write the solution
for X in terms of sines and cosines, but we chose to write the solution for Y in terms of exponentials.
Specifically, we found that:

X = Acos(kx) + Bsin(kx) Y =Cée® + De™

® =(Acos(kx) + Bsin(kx))(Ce” + De™ )

...stolen from last time!

Because of our new boundary condition, we might also need the x derivatives of @ later, so:

aa—® = (kA sin(kx) — kB cos(kx)) Y ()
x

0 = (kAsin(k0)— kB cos(k0)) Y (y)
0=kB

Using BC #1 (left edge): aa—®(x =0)=0 >
X
Well, either k or B could be zero. If we choose k = 0, we end up with nothing at all, because k is

inside both the sine and cosine parts of the answer. So, I guess this is telling us that

0=kAsin(k-1)Y(y)
k=nr

Using BC #2 (right edge): %—(a(x =)=0 >
X

Well, that’s pretty similar to what we had last time. So far, then, we seem to have this:

®@=> A, cos(nzx)(Ce” + De™) & keep re-writing summary so far!
n=0

Note that unlike last time, this infinite series starts at zero, since we now have cosine terms, but in
the problem from the previous class, we only started at n = 1, since we had only sine terms in that
other problem. This creates a subtle problem for us... if n =0, then k = 0, and if k = 0, then our
original two ODE’s actually looked like this:

92X (x) 9’Y(y)
az_x :O and W:O

But, for these ODE’s the solutions are NOT sines and cosines... each of these is actually an easier
“separate and integrate” ODE! Specifically, when k = n = 0, then:
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Xk=0= C1X+C2, and Yk=():C3y+C4.

Therefore, our total solution so far is really: © = Z(@n) = Z(@n) +0,

n=0 n=1

So more specifically: 0= i A, cos(nﬂac)(Ce"”y + De™” )+ (Cx+C,)Cy+C,)
=l

Oh no! Now we have 4 more new constants to solve for! Also, I hope this doesn’t screw up the
boundary conditions we’ve already done! Let’s double check the left and right edges, just to be safe.

Redoing BC #1 (left): ‘3—® =0=(0)ce"™ + D™ )+(C)Cyy+c,) > lai=0
X x=0
Solution so far: 0= i A cos(nizac)(Ce””“V +De™® )+ (c,)c,y+c,)
n=l
Combining annoying constants: 0= i A, cos(nﬂ:x)(Ce"”y + De™™ )+ (Cy+C,)

i.e., let C5 = C2C3 and C(, = C2C4 =

Rechecking BC #2 (right): %—G =0=(0)(Ce"™ + De™™)+0 is already (or still) OK!
X

x=1

=0=(A cos(nm))Ce"™ + De™™ )+ C, + C,

BC #3 (top edge): ®|

y=1

The Cs and Cs worry me a little. How can we tell them apart? What are the possibilities?
a) If Cs = Ce =0, then this boundary condition is the same as what we did last time, but the
n = 0 part of the solution will have completely disappeared.. so no thanks!
b) If Cs + Ce = 0, then this boundary condition is the same as what we did last time.
c) If Cs + Cg #0, then A cos(nmx) = some non-zero number for all values of x. This is just
not possible.
So, of these options, version b) is the most general one. In other words, Cs = —Cs. Also, we get to
use our solution from the other day, too! That time, C and D turned into a hyperbolic sine that
depended on N, and we regrouped A and C into a new constant “F”” This time, N = 1, so our solution
so far is:

0= i F, cos(nzx)sinh(nz(1—-y))+ C,(y—1)

n=1

Bottom edge: BC #4: O(y=0)=1

1= iF cos(nzx)sinh(nz(1-0))+C,(0-1)

n=1

1+C = i F, cos(nzx)sinh(nr)

n=1

Page 3 of 8



Math Methods Dr. Pogo
Class #25 Monday, April 28, 2025

We’ve seen this kind of thing before. Let’s invent a new constant to group some others:

= F,sinh(nx) Leading to:
1+C, = z a, cos(nzx)

We want to solve this for a,. This is a Fourier series problem again:

1
a =211+C.)-cos\nmx)dx = \Mathematica = 0 for all values of n!!!!
,=2[(1+C,)- cos(namx)dx = { )
0

1+C. =0
Well, that’s unexpected good news. So, the bottom BC #4 reduces to: > N
5 =7
Plugging this in so far, we have: [@ = Z (O)sinh{nz(1 —y ))cos(nﬂx)
i sinh nﬂ')

Or just: O=1-y

Well, that’s nuts. That was way too much work for such a simple answer. This
answer says that the temperature is not really a function of x after all, and that
the table gets cooler as you go from the bottom to the top. But it satisfies the
main equation and all the boundary conditions!

Here’s the result, which seems obvious when we draw it:

Non-Uniform Temperature along Bottom Edge

Let’s do a different, but similar problem. This one has the same BC’s for left, right, and top (being
no heat, no heat, and no temperature). But now, the lower edge temperature iS Ghoitom = X. In other
words, the bottom is cold on the left, hot on the right, and rising steadily in between. All we’re
changing is BC #4, so we only need to go back to just before we applied BC#4 (near the bottom of
page 3...). This time:

O(y=0)=x

x= i F, cos(nmx)sinh(nz(1-0))+C,(0-1)

n=1

x+Cs = Zan cos(nx)

n=1
1
For this Fourier series: a, = 2J. (x+C,)cos(nmx)dx = a, =0 when n is even,
0

= a,=—— whennis odd.

nz

This suggests that we want to count n = 1, 3, 5, 7. But in fact, we usually countn =1, 2, 3, 4.
Also, Cs doesn’t even matter to finding a,,!
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To isolate the odd values, we use the same old trick as always: a, = _—422 .
(2n-1)zx
Our solution so far:|®=C, (y—1)+ — . cos((@n - 1)7'”) sinh(@n ~ D7 - y))
~(2n-1) 7 sinh((2n—1)7)

We still need to find a number for Cs... I notice that ®(0, 0) =0  (bottom left corner). So:

i -4 cos[(2n - 1)7[ . 0]sinh[(2n - 1)7[ . (1 - O)]

“(2n-1y7° sinh[(2n —1)7]
B = —4 1-sinh[2n-1)7]

0=+ Zl (2n—1fx* sinh[(2n—1)x]

= _4
0=-G+ Z; Qn-1)7°

| B . )
0=-C, - 5 {infinite sum done in Mathematica}

Yay! We’re done! Here is the full answer:

P b i - 42 cos((2n — 1)@ #)sinh((2n —1)7z(1— y *))
2 Hn-1)r sinh((2n—1)7)

This is also plotted in Mathematica online (available on course demos page). Notice the lack of
slope along the side edges, and the linear profile along the bottom edge, in agreement with our
boundary conditions. The Mathematica version is 3D “rotatable” to see this.

Unsteady Heat Equation

1 aT

One version of the heat equation is: V°T = o where ¢is a material property related to the
o dot

conductivity. We will non-dimensionalize this as before. The only new feature now is that we need

2

to invent a dimensionless time *: * = ( jt . Making this substitution, and again being too lazy to

r

. . ) 00 . )
write the asterisk after every x, y, and 7, the heat equation becomes: Ve = 8_ . Since V2 is really a
t

function of all 3 spatial dimensions x, y, and z, this problem is way too hard for us. So to simplify it,
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we’ll look at a thin stick, which has only one spatial dimension: x. So, this is still a “2D” problem,
0’0 00

7= =0
ox~ ot

with independent variables x* and #*:

This differs in two ways from our prior examples: here, one of the derivatives is only 1* order, and
here, one of the derivatives is negative.

Counting the derivatives, I'll need three “boundary” conditions: two relating to x, and only one
about 7. Here they are:

P length = 1, of course -
The left edge (x = 0) is held at ® = 0 (“cold”), ©=0 |‘ i
The right edge (x = 1) is held at ® = 1 (“hot”). - .
The third “initial” condition is that ® = 0 *

(“cold”) everywhere along the bar when we start.
In other words, it starts off all cold, but it heats up over time as heat leaks into the bar from the right
hand edge.

We’ve learned some tricks about such problems from the last two examples. We will assume that
the answer is comprised of two functions X and 7 that are multiplied together (Separation of
Variables, or “Eigenfunction Decomposition”), and we will add on an extra bit like we did in the
previous problem for n = 0 to account for the “steady state” solution:

O=X(x) TN+ 0O,

Adding the steady state solution is a lot like what we did with non-homogenous ODE problems,
where we assumed that ycompieie = Y + Yparticular- 50, ©, = X (x)-T(¢),and ©=0,+0O .

If a steady state temperature distribution is reached, then by definition, the temperature is done
changing. Let’s deal with this @gg part first. So, as t > oo, %—6 =0. So, when ¢ = oo, the heat
t
2 2
equation itself simplifies to o ®2” - %9, =0, or even better: J ®2“ =0
ox ot ox

Integrating twice, this becomes a solution for Og: B4 = Cix + C,.
Since O(x = 0) =0, then C, = 0.
Since O(x =1) =1, then C; = 1.

This simplifies our stead state portion to this: |©® = x 210 =X(xT(*)+ x*
Now, let’s work on Oc: O, =XX)T()
90, =X'T 90, =XT'
ox ot
0’0,
— XIVT
ox’
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The heat equation therefore becomes: X"T-XT'=0
Divide by XT:
X " Tl
2 2 -0
X T
As before, this is only possible if each group is separately constant:
X’ T
— =k’ - —=+k’
X T
X"+k’X =0 T'+k°T =0

From our chapter on ODE’s, the answers to these two equations are:
X = Acos(kx) + Bsin(kx) T=Cet"

Since I'll be multiplying these expressions, the constant C is redundant, and we’ll work it into A and
B as we’ve done with all the other examples so far:

0. = [Acos(kx)+ BSin(kx)]e—kzr

Combining O¢ and Og: 0=0,+0, = [Acos(kx)+ BSin(kx)]e”‘zt +x

Now, we apply the boundary conditions:

BC #1 (left) : ®(x=0)=0 > 0=(Acos(0)+ Bsin(O))e"‘z’ +0 (this last<0”is ©,)

Left edge is cold... >
BC #2 (right): ®@(x=1)=1->

1=(Bsin(k))e™ +1 (this last bitis ©)

Right edge is hot... ,
0= (B sin(k)) et Since B # 0, it must be true that:
k=nr Well, we've seen that before!
e . —ntr?
Our answer so far: 0= Z B, sin(nzx)e™ ™" +x
n=1

Finally, we apply the initial condition: BC #3: ®(r=0)=0 >

i . 22
0= an sin(nzx)e™ ™ +x

n=1

—x= z B, sin(nzx)

n=l1

Note that n starts counting at 1, not 0, because this is a sine series.
This is a regular old Fourier series that we’ve gotten good at:
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1 +1
B, =2 I (—x)sin(nzx)dx (or equivalently , B, =1 I (—x)sin(nmx)dx)
0 -1
2(-1)’
nro

Mathematica says: B, =

sin(nac*)e ™ ™ + x %

So, we’re just about done: 0= i 2(_ 1)
n=l1 nw

2
. . . a
Putting the units back in: x* = x/L and t*= (—jt :

L2
Zﬂ.ZaZ
= 2(=1)" . (nmx) s X
T=T.+(T,-T.) > 1) sin e U o+=
= nmw L L
Some plots of ® are shown in
. . 0.0 02 0.4 0.6 0.8 1.0
Mathematica online. Each separate 10 : : ; : 1.0
line represents a time*, and the
vertical axis is temperature.
0.8r — Initial {os
— Intermediate
~— Final
© o6 los
& 04 {04
0.2 10.2
0.0 - - - 0.0
0.0 0.2 0.4 0.6 0.8 1.0
Position x”

As before, there’s an “infinite” slope here, because we
contradicted ourselves in the problem statement.
Specifically, we said that:
a) the entire stick is cold at the beginning, and
b) the right hand side is always hot.

Page 8 of 8



