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PDE: More Heat Equation with Derivative Boundary Conditions 

 

In our previous problem, we found the temperature T(x, y) in a flat plate, where 

the bottom edge was forced to be “hot”, and the other edges were forced to be 

“cold”. It looked like this. In this sketch, the red arrows show the direction of 

heat flow (which we didn’t solve for, but it would be like some questions from 

assignment #2). In this case, energy moved from whatever stuff was making the 

bottom edge hot, into the plate, and then into the ice (or whatever) that was 

keeping the other edges cold. Over time, that ice would melt if it wasn’t 

replenished, and over time, the hot stuff would cool down if it wasn’t 

maintained, too.  

 

Let’s do a few more heat equation problems similar to the previous one. For the first, I’ll use a 

square plate (N = 1), but I’m going to use different boundary 

conditions.  

 

This time, the top boundary is still cold, and the bottom boundary 

is still hot. However, in this problem, the side edges are insulated. 

That means that there is no heat flowing through these edges. 

This requires us to remember a little bit of physics: since the heat 

flow Q is proportional to temperature gradient, then this 

boundary condition is the same thing as saying that 0
T

x

∂
=

∂
 along 

both of these edges. Heat can move vertically along these edges 

(i.e., in the y direction, from the bottom to the top of the plate, so 

0≠
∂

∂

y

T
), but it can’t cross out of the plate in the x direction.  

 

If we had instead insulated the top edge, then the upper boundary condition would be 0
T

y

∂
=

∂
 when 

y = L1. But that’s a different problem… 

 

As before, we will non-dimensionalize this whole problem before even “starting” it: 
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Much of the early work is the same as before, so we’ll steal results from ourselves… we can 

“borrow” everything that we did up until we started using the boundary conditions!  
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Recall that when we started our “Separation of Variables”, we invented new functions X(x) and 

Y(y), for which we hoped that eventually Θ(x, y)  = X(x)⋅Y(y). By substitution, we discovered that if 

Θ followed this pattern, then instead of solving one big PDE we could instead solve two ODE’s and 

than join them together. They were these: 
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These were both second-order ODEs with constant coefficients, and we chose to write the solution 

for X in terms of sines and cosines, but we chose to write the solution for Y in terms of exponentials. 

Specifically, we found that: 
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Because of our new boundary condition, we might also need the x derivatives of Θ later, so:   

( )sin( ) cos( ) ( )kA kx kB kx Y y
x

∂Θ
= −

∂
 

 

Using BC #1 (left edge):  ( 0) 0x
x

∂Θ
= =

∂
  
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Well, either k or B could be zero. If we choose k = 0, we end up with nothing at all, because k is 

inside both the sine and cosine parts of the answer. So, I guess this is telling us that B = 0. 

 

Using BC #2 (right edge):  ( 1) 0x
x

∂Θ
= =

∂
  

0 sin( 1) ( )kA k Y y

k nπ

= ⋅

=
 

 

Well, that’s pretty similar to what we had last time. So far, then, we seem to have this:  

( )
0

cos( )  ky ky

n

n

A n x Ce Deπ
∞
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=

Θ = +       keep re-writing summary so far! 

 

Note that unlike last time, this infinite series starts at zero, since we now have cosine terms, but in 

the problem from the previous class, we only started at n = 1, since we had only sine terms in that 

other problem. This creates a subtle problem for us… if n = 0, then k = 0, and if k = 0, then our 

original two ODE’s actually looked like this:  
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But, for these ODE’s the solutions are NOT sines and cosines… each of these is actually an easier 

“separate and integrate” ODE! Specifically, when k = n = 0, then: 

 

…stolen from last time! 



Math Methods  Dr. Pogo 

Class #25  Monday, April 28, 2025 

Page 3 of 8 

Xk = 0 = C1x + C2,   and   Y k = 0 = C3y + C4. 

 

Therefore, our total solution so far is really:  0
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)()( Θ+Θ=Θ=Θ 
∞

=

∞

= n

n

n

n  

So more specifically:            ( ) ( )( )4321
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Oh no! Now we have 4 more new constants to solve for! Also, I hope this doesn’t screw up the 

boundary conditions we’ve already done! Let’s double check the left and right edges, just to be safe. 

 

Redoing BC #1 (left): ( )( ) ( )( )431
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Solution so far:     ( ) ( )( )432
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Combining annoying constants:   ( ) ( )65
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Rechecking BC #2 (right): ( )( ) 000
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ππ  is already (or still) OK! 

 

BC #3 (top edge):         ( )( ) 651
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The C5 and C6 worry me a little. How can we tell them apart? What are the possibilities? 

a) If C5 = C6 = 0, then this boundary condition is the same as what we did last time, but the 

n = 0 part of the solution will have completely disappeared.. so no thanks! 

b) If C5 + C6 = 0, then this boundary condition is the same as what we did last time. 

c) If C5 + C6 ≠ 0, then Ancos(nπx) = some non-zero number for all values of x. This is just 

not possible.  

So, of these options, version b) is the most general one. In other words, C6 = −C5. Also, we get to 

use our solution from the other day, too! That time, C and D turned into a hyperbolic sine that 

depended on N, and we regrouped A and C into a new constant “F” This time, N = 1, so our solution 

so far is: 
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Bottom edge: BC #4:   ( 0) 1yΘ = =  
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i.e., let C5 = C2C3 and C6 = C2C4 
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We’ve seen this kind of thing before. Let’s invent a new constant to group some others:  

 

   an = Fnsinh(nπ)  Leading to: 
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We want to solve this for an. This is a Fourier series problem again: 
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5 = 0 for all values of n!!!! 

Well, that’s unexpected good news. So, the bottom BC #4 reduces to: 
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Plugging this in so far, we have: ( )
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Or just:   1   yΘ = −  

 

Well, that’s nuts. That was way too much work for such a simple answer. This 

answer says that the temperature is not really a function of x after all, and that 

the table gets cooler as you go from the bottom to the top. But it satisfies the 

main equation and all the boundary conditions! 

 

Here’s the result, which seems obvious when we draw it:  

 

Non-Uniform Temperature along Bottom Edge 

 

Let’s do a different, but similar problem. This one has the same BC’s for left, right, and top (being 

no heat, no heat, and no temperature). But now, the lower edge temperature is Θbottom = x. In other 

words, the bottom is cold on the left, hot on the right, and rising steadily in between. All we’re 

changing is BC #4, so we only need to go back to just before we applied BC#4 (near the bottom of 

page 3…). This time: 

Θ(y = 0) = x 
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For this Fourier series: ( ) ( )dxxnCxan πcos2

1

0

5 +=   an = 0 when n is even,  

        
22

4

πn
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=  when n is odd. 

 

This suggests that we want to count n = 1, 3, 5, 7. But in fact, we usually count n = 1, 2, 3, 4. 

Also, C5 doesn’t even matter to finding an! 
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To isolate the odd values, we use the same old trick as always:
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Our solution so far: ( )
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We still need to find a number for C5… I notice that Θ(0, 0) = 0  (bottom left corner). So: 
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Yay! We’re done! Here is the full answer:  
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This is also plotted in Mathematica online (available on course demos page). Notice the lack of 

slope along the side edges, and the linear profile along the bottom edge, in agreement with our 

boundary conditions. The Mathematica version is 3D “rotatable” to see this. 

 

Unsteady Heat Equation 

 

One version of the heat equation is: 2

2

1 T
T

tα

∂
∇ =

∂
 where α is a material property related to the 

conductivity. We will non-dimensionalize this as before. The only new feature now is that we need 

to invent a dimensionless time t*: 
2

2
*t t

L

α 
=  
 

. Making this substitution, and again being too lazy to 

write the asterisk after every x, y, and t, the heat equation becomes: 2

t

∂Θ
∇ Θ =

∂
. Since ∇2

 is really a 

function of all 3 spatial dimensions x, y, and z, this problem is way too hard for us. So to simplify it, 
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we’ll look at a thin stick, which has only one spatial dimension: x. So, this is still a “2D” problem, 

with independent variables x* and t*:    
2

2
0

x t

∂ Θ ∂Θ
− =

∂ ∂
 

 

This differs in two ways from our prior examples: here, one of the derivatives is only 1
st
 order, and 

here, one of the derivatives is negative.  

 

Counting the derivatives, I’ll need three “boundary” conditions: two relating to x, and only one 

about t. Here they are:  

The left edge (x = 0) is held at Θ = 0 (“cold”), 

The right edge (x = 1) is held at Θ = 1 (“hot”). 

The third “initial” condition is that Θ = 0 

(“cold”) everywhere along the bar when we start. 

In other words, it starts off all cold, but it heats up over time as heat leaks into the bar from the right 

hand edge.  

 

We’ve learned some tricks about such problems from the last two examples. We will assume that 

the answer is comprised of two functions X and T that are multiplied together (Separation of 

Variables, or “Eigenfunction Decomposition”), and we will add on an extra bit like we did in the 

previous problem for n = 0 to account for the “steady state” solution: 

 

    ( ) ( )  
ss

X x T tΘ = ⋅ + Θ  

 

Adding the steady state solution is a lot like what we did with non-homogenous ODE problems, 

where we assumed that ycomplete = yC + yParticular. So, )()( tTxXc ⋅=Θ , and ssc Θ+Θ=Θ . 

 

If a steady state temperature distribution is reached, then by definition, the temperature is done 

changing. Let’s deal with this ΘSS part first. So, as t  ∞, 0=
∂

Θ∂

t
. So, when t = ∞, the heat 

equation itself simplifies to  0
2
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Integrating twice, this becomes a solution for Θss:  Θss = C1x + C2. 

Since Θ(x = 0) =0, then C2 = 0. 

Since Θ(x = 1) =1, then C1 = 1. 

This simplifies our stead state portion to this: ss
xΘ =     **)(*)( xtTxX +=Θ  

 

Now, let’s work on ΘC:     )()( tTxXC =Θ  
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length = 1, of course 
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The heat equation therefore becomes:    X ''T – XT ' = 0 

Divide by XT: 

      0
'''
=−

T

T

X

X
 

As before, this is only possible if each group is separately constant:  

2 2

2 2
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From our chapter on ODE’s, the answers to these two equations are: 
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Since I’ll be multiplying these expressions, the constant C is redundant, and we’ll work it into A and 

B as we’ve done with all the other examples so far: 
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Combining ΘC and Θss:  ( ) ( )[ ] xekxBkxA
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Now, we apply the boundary conditions: 

 

BC #1 (left) : Θ(x = 0) = 0  ( )
2
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BC #2 (right): Θ(x = 1) = 1   
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                              Well, we've seen that before!
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Our answer so far:   
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Finally, we apply the initial condition: BC #3: Θ(t = 0) = 0  
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Note that n starts counting at 1, not 0, because this is a sine series.  

This is a regular old Fourier series that we’ve gotten good at: 

 

“0” 

Left edge is cold… 

Right edge is hot… 
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So, we’re just about done:  
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Putting the units back in: x* = x/L and 
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Some plots of Θ are shown in 

Mathematica online. Each separate 

line represents a time*, and the 

vertical axis is temperature.  

 

 

As before, there’s an “infinite” slope here, because we 

contradicted ourselves in the problem statement. 

Specifically, we said that: 

a) the entire stick is cold at the beginning, and 

b) the right hand side is always hot. 


